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For Bernhard Neumann with respect and affection

In response to a question posed by P. Erdos, B.H. Neumann showed that in a group
with every subset of pairwise noncommuting elements finite there is a bound on the
size of these sets. Recently, H.E. Bell, A.A. Klein and the first author showed that a
similar result holds for rings. However in the case of semigroups, finiteness of subsets
of pairwise noncommuting elements does not assure the existence of a bound for then-
size. The largest class of semigroups in which we found Neumann's result valid are
cancellative semigroups.

1. INTRODUCTION

In 1975, Paul Erdos posed the following problem:

Let G be a group in which every set of pairwise noncommuting elements is finite;
is there then a finite bound on the cardinality of sets of pairwise noncommuting
elements?

In [7], B.H. Neumann answered the question in the affirmative, characterising these
groups as those with a centre of finite index. It appears to be only natural to discuss the
problem in the more general setting of semigroups. This is the topic of this paper. In
line with [7], we make the following definition.

DEFINITION 1.1: A semigroup is called a P£-semigroup if every set of pairwise
noncommuting elements is finite.

The following example shows that in the setting of semigroups we cannot expect
results as general as in the case of groups. The example given here is one of a large
number of different ones. There are semigroups where the constituent groups are p-
groups of nilpotency class two and the index of their centres is increasing.

EXAMPLE 1.2: Let Sn be the symmetric group on n letters, n ^ 1. Consider the
oo

disjoint union S = ^JS n U {0} with a product defined as follows: For a e Sn, b € Sm,
7 1 = 1
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let a • b be as in Sn if n = m, and a-b = 0 if n # m; also 0 - z = x -0 = 0 f o r a l l : r € S .
Then 5 is a PS-semigroup but the size of sets of pairwise noncommuting elements is not
bounded.

This raises the question under what conditions on the PS-semigroup there exists
a bound on the size of sets of pairwise noncommuting elements. In [1], PS-rings were
investigated, that is rings in which every set of pairwise noncommuting elements is finite,
and it was shown that a ring is a PS-ring if and only if the centre has finite index in the
ring, thus resulting in a bound for the size of sets of pairwise noncommuting elements.
In the context of semigroups this result can be reformulated in the following way.

THEOREM 1 . 3 . [1] For every PE-semigroup which can occur as the multiplica-
tive semigroup of a ling there exists a bound on the size of sets of pairwise noncommuting
elements.

In this paper we shall show that for every PS-semigroup which can be embedded
into a group, or, more generally, which is cancellative, there exists a bound on the size of
sets of pairwise noncommuting elements. But before we proceed with the proofs, we take
a look at a related commutativity condition. In [4], the authors establish commutativity
for an infinite group G with the property that for each pair X, Y of infinite subsets of
G, there exist x G X and y 6 Y such that x and y commute. In [l] the same result
is established for rings with this property. In context with semigroups we make the
following definition.

DEFINITION 1.4: A semigroup S is a PS*-semigroup if for any infinite subsets
X, Y of 5 there exist x € X and y G Y such that x and y commute.

It can be easily seen that any PS'-semigroup is a PS-semigroup. But for semigroups
we cannot expect results as strong as for groups or rings, since the semigroup 5 of Example
1.2 is also a PS*-semigroup, but not commutative. This leaves us again searching for
conditions on the semigroup implying that a PS*-semigroup is commutative. In the next
section we shall show that a cancellative PJS*-semigroup is commutative.

2. CANCELLATIVE PS*-SEMIGROUPS

A semigroup S is called cancellative if for a, x, y G 5, ax = ay or xa = ya implies
that x = y. The importance of cancellative semigroups in this context comes from the
observation that we can conclude that xA is an infinite set if A is an infinite subset of
a cancellative semigroup S and x G S, a fact frequently used in our arguments here.
Likewise, the following characterisation of PS-semigroups is of importance throughout
this paper. In [7], a proof was given in the case of groups using a graph-theoretical
argument. However, the proof in [1, Lemma 2.2] does not require such an argument, and
works equally well for semigroups.
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LEMMA 2 . 1 . The semigroup S is a PE-semigroup if and only if every infinite
subset ofS contains an infinite set of pairwise commuting elements ofS.

The main result of this section will be a consequence of the next two lemmas.

LEMMA 2 . 2 . Let S be a cancellative PE*-semigroup, x € S, Cs(x) the cen-
trahser ofx in S, and B an infinite set of pairwise commuting elements. Then Cs{x)(~\B
is infinite.

PROOF: By our previous remark it follows that xB is infinite if B is infinite. Since
5 is a P£*-semigroup there exist b,V € B such that xb • tf = 6' • xb, or xV • b = Vx • b.
By cancellation, it follows that xb1 = Vx. Thus b1 € B l~l Cs{x). Consider B\{V}.
Continuing in this manner, we arrive at an infinite set of commuting elements contained
inBflCs(i) . D

In particular, by Lemmas 2.1 and 2.2, in an infinite cancellative P£*-semigroup,
the centraliser of every element contains an infinite set of pairwise commuting elements.
Hence, by Lemma 2.2, we get the following result immediately:

LEMMA 2 . 3 . Let S be an infinite cancellative PE*-semigroup. Then
Cs(x) n Cs(y) contains an infinite subset of commuting elements for any x,y e S.

We are now ready to prove the main result of this section.

THEOREM 2 . 4 . Let S be an infinite cancellative PE*-semigroup. Then S is
commutative.

PROOF: Let x,y e S and let B be an infinite subset of pairwise commuting elements
contained in Cs{x)(lCs(y), which exists by Lemma 2.3. The sets xB and yB are infinite,
since S is cancellative. Now S being a P£*-semigroup implies that there exist a, 6 G B
such that xa-yb = yb- xa. Since a, 6 € Cs{x) D Cs(y) and a, 6 commute, it follows that
xyab = yxab. But by cancellation xy = yx, the desired result. D

3 . P.E-SEMIGROUPS EMBEDDABLE INTO GROUPS

The following characterisation of Pi?-groups is due to B.H. Neumann [7] and Baer
[8, Theorem 4.16].

THEOREM 3 . 1 . For a group G the following are equivalent:

(i) G is a PE-group;

(ii) G is central-by-finite;

(iii) G is the union of finitely many Abelian subgroups.

We should mention here that in [2] an extended list of equivalences can be found
and a similar characterisation for rings appears in [l]. The goal of this section is to give
a characterisation of P-E-semigroups which are embeddable into groups.
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If 5 is a semigroup embeddable into a group G, we always can assume without loss
of generality that G = (5), the group generated by 5. Thus we shall write (S) for this
group from now on. Every g € (5) can be written as g = S i t f 1 . . . sttj"1, where Si, U € 5
and S\ and/or t j 1 may be equal to 1.

Denote by R(g) = {si,..., s*, * i , . . . , i*} a set of elements in S needed for the pre-
sentation of g e (S). More generally, for any subset of elements {g\;X € A} in (5),
where A is an index set, denote by R(g\; A e A) a set of elements in 5 needed for the
presentation of the elements g\, A € A.

For later use, we prove the next lemma in the more general case of cancellative
semigroups.

LEMMA 3 . 2 . Let S be a finitely generated cancellative PE-semigroup and let
b € 5 be a nonperiodic element. Then there exists a positive integer k such that fr* €
Z(S).

P R O O F : Since 6 is nonperiodic, it follows that {b, b2, b3,...} is an infinite set. Then
Bx = {6*x; i G N} is infinite for all x € 5. Since 5 is a PiS-semigroup, there exist r, s € N
with r > s such that Vxb'x = VxVx. By cancellation, we obtain that ^'"x = xtf'*. It
follows that there exists k € N such that &* commutes with all generators of S. Hence
6* 6 Z{S). D

For finitely generated PJ5-semigroups we can find a special presentation of the ele-
ments in (5).

LEMMA 3 . 3 . Let S be a finitely generated PE-semigroup embeddable into a
group. Then every g € (S) can be written as g — sz, where s e S and z € Z((S>).

P R O O F : Let S = (xi,...,im) as a semigroup. If Xi has finite order, then if1 € 5.
If Xi has infinite order then, by Lemma 3.2, we can assume that there exists an integer
a< ^ 1 such that if* e Z(S). Setting zi=x°i, we obtain that x~l = if'"1 • z~l, where
z~x € Z((S}). Now let g e (S). Then g is a product of powers of the z* and their
inverses. By the above, every xf1 either lies in 5 or can be replaced by the product of a
nonnegative power of i j and a central element. Our claim follows. D

The preceding lemma gives rise to the following corollary.

COROLLARY 3 . 4 . Let S be a PE-semigroup embeddable into a group and g €
(S). Then every conjugate ofg can be written in the form g* where teS.

PROOF: Let g*1 be any conjugate of g under (S), and consider H = (R[g, h)). Then,
by Lemma 3.3, h = tz with teS and z e Z(H). We conclude g11 = gu = g\ the desired
result. D

For the rest of this section we proceed in a similar manner as in [7]. However we
have to argue with infinite subsets of S. The next lemma follows along the lines of [7,
Lemma 1]. However, we shall apply Lemma 2.1 instead of Ramsey's Theorem as used by
B.H. Neumann.
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Call an element of a group an FC-element if it has finitely many conjugates, and a
group an FC-group if all of its elements are FC-elements.

LEMMA 3 . 5 . Let S be a PE-semigroup embeddable into a group. Then {S) is
an FC-group.

PROOF: We may assume without loss of generality that 5 is infinite. Suppose that
(S) is not an FC-group. Then there exists g € (5) such that g has infinitely many
conjugates. We can assume that g e 5, since g is a product of finitely many elements
of 5 and their inverses and products of FC-elements are FC-elements. Corollary 3.4
implies that there exists an infinite subset T of S such that g* ^ gf, whenever t and f
are distinct elements in T.

By Lemma 2.1, there exists an infinite subset U of T consisting of commuting ele-
ments. Consider the set gU = {gu; u € U}. Since g € 5 and U C S, we have gU C S
and gU is infinity since 5 is embeddable into a group. For u, v distinct elements of U
we have [gu,gv] = {gu^igv^gugv = u^g^v^ugv = (p")"1 • gv ^ 1, since gu # gv.
Thus no two distinct elements of the infinite set gU commute, a contradiction since S is
a PE-semigroup. We conclude that (5) is an FC-group. D

The next lemma follows along the lines of [7, Lemma 4]. However the two sequences
in question have to be selected in 5 instead of (5).

LEMMA 3 . 6 . Let 5 be an infinite PE-semigroup in a group (5) and suppose that

(S) is an FC-group which is not central-by-hnite. Furthermore, suppose that S contains
two finite sequences of elements (c i , . . . , a,,), (b\,..., bn) with the following properties:

(i) ifi-£ j , then cuaj ̂  ajcn;
(ii) ifi^j, then a,&j = tya*;
(iii) dibi 7̂  bidi for all i;
(iv) bibj = bjbi for all i,j.

Then S contains two further elements On+i, &n+i such that (i) through (iv) remain valid
for the sequences (au..., On+i) and (&i, • • • , 6n+i) of length n + 1.

PROOF: We begin by choosing ai, &i to be any pair of noncommuting elements in 5 .
Then, assuming that we already have o i , . . . , a» and b\,...,bn satisfying (i) - (iv), let A =
C(s)(ai, ...,On,bi,...,bn). Now (S) is an FC-group. It follows that A has finite index in
(5). But (S) is not Abelian and so [7, Corollary 3] implies that A is not Abelian. Thus
there exist a,be A such t h a t [a, b] ^ 1. Consider H = (R(a\, ...,ctn,bi,...,bn,a, b)). B y
Lemma 3.3, there exist s,t € 5 and z, z1 in Z(H) such that a = sz and b = tzl'. Setting
£!„+! = sbi...bn and bn+i = t, we have o^i,bn+i e S. Observing On+i = az'1^...bn

and 6n+i = fez7"1, it can be easily verified that (i) - (iv) are valid for the sequences
(ax , . . . , a,,+i) and (&i,..., 6n+i). Thus the lemma follows. D

Now we are ready to state and prove a theorem analogue to Theorem 3.1 in the case
of semigroups.
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THEOREM 3 . 7 . Let S be a semigroup embeddable into a group. Then the fol-
lowing conditions are equivalent:

(i) 5 is a PE-semigroup;

(ii) (5) is central-by-finite;

(iii) S is the set-theoretic union of finitely many commutative subsemigroups.

P R O O F : First assume (i). Then (S) is an FC-group by Lemma 3.5. If (S) is not
central-by-finite, an infinite sequence (oi, 02,03,...) of pairwise noncommuting elements
in S can be constructed by Lemma 3.6. This is a contradiction, since S is a PE-semigroup.
Hence (i) implies (ii).

Next, assume (ii). By Theorem 3.1 we have that (S) is the union of finitely many
Abelian subgroups, say Ui,...,Un. Then S is the union of the commutative subsemi-
groups U\ n S,..., Un n 5 . Hence (ii) implies (iii).

Finally, assume (iii), that is 5 is the union of finitely many commutative subsemi-
groups Hi,..., Hn. Consider X, an infinite subset of 5. Since X is infinite, at least one of
the intersections X n Hi,..., X n Hn is infinite. This implies that X contains an infinite
set of pairwise commuting elements. Since X was arbitrary, it follows by Lemma 2.1 that
S is a PE-semigroup. We conclude (iii) implies (i). D

The following corollary is now immediate.

COROLLARY 3 . 8 . The size of the sets of pairwise noncommuting elements in a
PE-semigroup which can be embedded into a group is bounded.

4. CANCELLATIVE PE-SEMIGROUPS

There exist cancellative semigroups which cannot be embedded into groups. Ex-
amples of such semigroups were given for example, by Malcev in [5]. Thus the class of
cancellative semigroups is larger than the class of semigroups embeddable into groups.
The topic of this section is the investigation of cancellative PE-semigroups. We shall
show that for this class of semigroups there exists a bound on the size of the sets of pair-
wise noncommuting elements. However, no new approach is needed. We shall reduce the
proof of our claim to the preceding section by showing that a cancellative PE-semigroup
can be embedded into a group. We start with some preparatory results.

LEMMA 4 . 1 . Let S be a cancellative semigroup with nonempty centre. Then S
can be embedded into a cancellative semigroup with unit element whose centre is a group.

PROOF: We define a relation on S x Z(S) by (b,u) « {c,v) if bv = uc. It can be
shown that this relation is an equivalence relation on S x Z(S). Set

a/z = {(&,«) €SxZ(S) ; (b,u) « (a,z)},
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an equivalence class for V , and let

T={a/z; aeS, z e Z(S)}

denote the set of equivalence classes. We define a multiplication on T by (a/z) • (b/u) —
ab/zu. It can easily be verified that this multiplication is well-defined.

Consider z € Z{S). We have (z/z) • (b/u) = (b/u) • (z/z) = bz/uz = b/u, since
(bz, uz) a (6, u). Thus T contains an identity. It can easily be shown that Z(T) =
{u/v;u,v € Z(S)}. Let u/v G Z(T). Then (u/v) • (v/u) = uv/uv = z/z, hence
(u/v)'1 = v/u and v/u € Z(T). It follows that Z(T) is a group.

Next we show 5 can be isomorphically embedded into T. Choose any z in Z(S) and
define <j>: S —»• T by 0(6) = bz/z and let 5 = {bz/z; b € S}. It can easily be shown that
0 is a one-one homomorphism of S onto S.

Finally, we show T is a cancellative semigroup. Suppose (a/z) • (b/u) = (a/z) • (c/v).
This implies abzv = aczu. By cancellation, we obtain bv = cu and conclude b/u = c/v.
Similarly, (b/u) • (a/z) = (c/v) • (a/z) implies b/u = c/v. D

PROPOSITION 4 . 2 . Let S be a finitely generated cancellative PE-semigroup
containing a nonperiodic element. Then S can be embedded into a group.

PROOF: By Lemma 3.2, there exists a nonidentity element in Z(S). Thus, by
Lemma 4.1, S can be isomorphically embedded into a cancellative semigroup T in which
Z(T) forms a group.

We shall show now that T is a group, that is, every element in T has an inverse. Let
g e T and write g = a/z, a€ S, z£ Z(S).

If a is periodic, then we have in T that a* = 1 for some k. Since gk = 1/z* is
invertible as an element of Z(T), it follows that g is invertible.

If a is nonperiodic, then, by Lemma 3.2, o* 6 Z(S) for some positive integer A:.
Hence gk = ak/zk € Z(T) and 5* is invertible by Lemma 4.1. It follows that g itself is
invertible. 0

We are now ready to prove the main result of this section.

THEOREM 4 . 3 . Let S be a cancellativePE-semigroup. Then Scan be embedded
into a group.

PROOF: Consider So, a finitely generated subsemigroup of S. First, let every element
in So be periodic. By [6, Lemma 2.1], So contains a unit element. It follows that every
element in So has finite order and thus has an inverse. We conclude that So is a group.

Next, suppose that So contains a nonperiodic element. By Proposition 4.2, So can
be embedded into a group.

Thus every finitely generated subsemigroup of S can be embedded into a group. We
can apply now [3, Theorem 12.6], stating that a semigroup is embeddable into a group
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if and only if every finitely generated subsemigroup is so embeddable. We conclude that

5 is embeddable into a group, the desired result. D

Now we can apply Theorem 3.7 to cancellative PS-semigroups and obtain all the

results we had for semigroups embeddable into groups. We state just one corollary which

answers Erdos' original question.

COROLLARY 4 . 4 . The size of sets ofpairwise noncommuting elements in a can-

cellative PE-semigroup is bounded.
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