
J.Aust. Math. Soc. 80 (2006), 317-333

RELATIVE AMENABILITY AND
THE NON-AMENABILITY OF B(ll)

C. J. READ

(Received 6 February, 2004; revised 6 January, 2005)

Communicated by G. Willis

Abstract

In this paper we begin with a short, direct proof that the Banach algebra B(l') is not amenable. We
continue by showing that various direct sums of matrix algebras are not amenable either, for example
the direct sum of the finite dimensional algebras ©Jjl, B(l%) is not amenable for 1 < p < oo, p ^ 2 .
Our method of proof naturally involves free group algebras, (by which we mean certain subalgebras of
B(X) for some space X with symmetric basis — not necessarily X = /2) and we introduce the notion of
'relative amenability' of these algebras.

2000 Mathematics subject classification: primary 46J20, 46H10; secondary 46H20, 13A05, 13G05,
46J05.
Keywords and phrases: amenable, Banach algebra, operator algebra.

Introduction

It is a classical result that the full matrix algebra A = Mn(C) has a diagonal. That
is, the tensor product A® A has an element d (namely d = (l/n) JZ" -=1 £,,y <8> £/,,-,
where Ei%j is the matrix with a 1 in row i column j and zeros elsewhere) such that
d • a = a • d for all a e A (a statement that makes sense because A <S> A is in a natural
way an >l-bimodule), and n(d) = 1, the identity, where n is the natural product map
from A <8> A to A. As a consequence, every derivation from A into an ^4-bimodule E
is inner - the cohomology H\A, E) is trivial.

A Banach algebra is said to be amenable if the continuous cohomology Hl(A, E)
is trivial for every dual Banach .4-bimodule E\ by a theorem of B. E. Johnson this
happens if and only if A has an 'approximate diagonal', that is, there is a bounded
net (da) in the projective tensor product A® A such that \\a • da — da • a\\ -*• 0 for
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every a e A, and n(da) is a bounded approximate identity for A. This notion of 'ap-
proximate diagonal' seems to be the correct generalisation of the notion of a diagonal
to the Banach algebra setting; certainly the question of which well known Banach
algebras are amenable has an extensive literature, see Dales [3], especially Section 2.8
and Section 5.6, for a survey. However, the question has hitherto remained largely
unsolved when the Banach algebra is B(E), the algebra of all bounded operators on
a Banach space E. This is somewhat embarrassing because the archetypal algebra
with a diagonal is Afn(C), that is, B(C), so if 'approximate diagonal' is the correct
generalisation for the infinite dimensional setting, we really ought to know whether
B(E) has one, for a fair variety of infinite dimensional Banach spaces E. However,
the question has proved quite difficult. There is still no infinite dimensional Banach
space E for which B(E) is known to be amenable; and until the ideas in this pa-
per became available, the only Banach spaces for which B(E) was known not to be
amenable were the infinite dimensional Hilbert spaces.

The result that B(H) is not amenable (for an infinite dimensional Hilbert space 7i)
is a corollary of the result of Connes [2] that a C*-algebra is amenable only if it
is nuclear. The converse result, that a C*-algebra is amenable if it is nuclear, was
eventually proved by Haagerup [4], and the full theorem is considered one of the
deeper results in modern analysis.

This paper begins with a fairly short, direct proof that the algebra B(l') of bounded
operators on the Banach space /' is not amenable. Then, we prove that certain l°° direct
sums of finite-dimensional matrix algebras are not amenable either; see Theorem 1.3
for the exact statement. As a corollary, we find that the /°° direct sum A = 0 ^ 1 , B(l?)
is not amenable for any 1 < p < oo, p ^ 2.

Using ideas from this paper, Pisier [6] has produced a variant proof that is simpler
but not quite so self contained, see our concluding section for a discussion. Ozawa [5]
has generalised the result somewhat, though not to the extent of answering the all-too-
obvious question of whether B(lp) is amenable for general p. He does, however, give
a version of the proof which shows that for certain other Banach algebras A, A is not
amenable.

1. Statement of our main results

As we have indicated, our first result is as follows.

THEOREM 1.1. B(l[) is not amenable.

Our second result involves /°° direct sums; the finite dimensional algebras
that we are summing need to be as in the following definition.
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DEFINITION 1.2. Let(n,)~, be a sequence of natural numbers, and for each i, let X,
be a finite dimensional Banach space having normalised, 1-symmetric, 1 -unconditional
basis (ef)nj=x. Let At denote the finite dimensional matrix algebra B(Xt), with its
operator norm, and let A be the /°° direct sum

\ 1 = 1 / OO

consisting of all norm-bounded sequences (a,-)~p #; € A -

Our second theorem is then as follows.

THEOREM 1.3. With the notation of Definition 1.2, let

(1.1) Mi = - ^
X,

Then if either lim sup M, = oo, or lim inf M,- = 0, the algebra A is not amenable.

Informally, then, as long as the spaces X, 'cannot be mistaken for l\\ A is not
amenable.

2. Ideas involved in the proofs

There are two main ideas involved in our proofs: permutation operators and random
hypergraphs. Of these, permutation operators will be familiar to most readers already,
so we will be brief when introducing them. We will spend a little more time in
introducing the random hypergraphs and giving a preliminary lemma. The connection
between random hypergraphs and permutation operators will then be made in the
following section, and after that, the main proofs can be given.

Very broadly, the outline of the proof that B{V) is not amenable is that if it were,
we can show that the free group F2 on two generators g\ and g2 would be an amenable
group; this we know is not the case, so B(V) is not amenable. Now the Banach
space /' is implicitly Z1 (N)—one indexes the unit vector basis (e,) with integers
/ e N. However, as a Banach space this is isometrically isomorphic to the space
X — ll(F2) whose unit vector basis (eg)g€Fz is indexed by the free group F2. It is
convenient to us to prove that B(X) is not amenable, where X = V{F2) (plainly that is
exactly the same statement as saying Z?(/'(N)) is not amenable). This is because there
are two very convenient operators 7] € B(X), namely the isometries 7} (i = 1, 2)
which send each unit vector eg to egrg. The 7} implement left multiplication by the
two generators.
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More generally, if n e S(F) is any permutation on a set F, and Y is a Banach
space with normalised 1-symmetric, 1-unconditional basis (eg)geF, we define the
permutation operator Tn to be the isometry such that Tn{eg) = en(^ for all g e F.
And it is at this point that we have the need for random hypergraphs; we shall use
them to select some specially useful permutations n e S(F2).

Now, the reader will be familiar with the notion that a graph G is a pair (V, E),
where V is its vertex set, and E c Va) is its set of edges, Vw denoting the collection
of all (unordered) subsets of V of size k. In a graph, every edge involves exactly
two (unordered) vertices, so if V has size n, the number of possible edges is the
combinatorial function (!J).

Now, a hypergraph is a pair (V, E) where the edge set E is an arbitrary subset of
the power set V{ V). The edges can involve arbitrary numbers of vertices.

A A-regular hypergraph (the kind of hypergraph we are interested in for the present
proof) is a pair (V, E) with E C V w , so each edge involves exactly k vertices. If V
has size n, the number of possible edges is ("), and for fixed v e V, the number of
edges that contain v is ("l|).

The lemma we need is as follows.

LEMMA 2.1. For all d,k, p e M with A > 2 and p > 9, there is a C > 0
and a No G N with the following property. For all n > No, one can find a k-regular
hypergraph G onn vertices, having at least dn edges, such that (a) for all 1 < r < n/C
the union of any r edges ofG contains at least (k — l ) r /2 vertices, and (b) no vertex
ofG is contained in as many as pdk edges ofG.

Let us remark that, while it is likely that the exact result given in Lemma 2.1 has
never appeared in print before, the general methods for proving such results are well
known, and many similar results will be found in the standard reference [1].

Let us bring this introductory section to a close by proving Lemma 2.1

PROOF OF LEMMA 2.1. Fix n and choose an arbitrary vertex set V of size n. Take
a random A-regular hypergraph G on vertex set V, random in the following sense:
the probability of the event that a given edge e € Va) is in the edge set of G is
p = 3dn/["k), and all these events are independent.

The expected number of edges in G is 3dn, and the value 2dn is (for large n) many
standard deviations below the mean, so for large n, with probability 1 — o(\) we have
at least 2dn edges in G. Let us consider how many edges we would have to delete
from G in order to have condition (b) satisfied.

The number of possible edges e e Vw incident at a given vertex v € V is ("l]); so
the number of 'clusters' of pdk edges all incident at the same vertex v is
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There are n vertices v and the probability of all the edges of a given cluster being
picked is ppdl. So the expected number of 'bad' clusters of pdX edges with a common
vertex all in G is no more than

pdx) \(l)J \pdX

-n (dxy ^ydk ~n

because ("lJ)/(") = k/n. By Stirling's formula, m\ > *s/2nm{m/e)m so for p > 9

3e, when /n = p̂ /A. we have m\ > y/2nm(3dX)m. Hence

M <

Markov's inequality (that for a nonnegative random variable X of mean ii, and for
each a > 0, the probability P(X > a) < ii/a) tells us that the probability of getting n
or more bad clusters is at most 1/10. So with probability at least 9/10, one may obtain
a graph satisfying (b) by deleting at most n edges of G —one from each bad cluster
in G.

Let us finally consider the probability that (a) is satisfied. Let us define

C = C(d,X) = (22(*- \)ed)\

Let 2 < r < n/C (note that (a) is always satisfied when r = 1), and let o be the
integer part of (k — 1 )r /2 (so certainly a < n). The expectation of the number of sets
of a vertices of G that contain at least r edges of G is no more than

U-U ^ = L ){r)
P ~V\ Tr[T)) 5 W )

since (")/(") < ( a / n ) \ and CT! > (a/e)17, and r! > {r/e)r by Stirling's formula. For
\ < a < min(/t, Xr), the right-hand side of (2.1) is an increasing function of a, and
we have o < r(X — l ) /2 , so

2ne \ /r(X—l)\ /4dne\

I I I I

r ( X - \ ) J V 2n

= (2dy (—y
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because r/n < C~[. Now (k + l)/(k - 1) < 3, so

Hr < (2d(k - \)e • C-1 / 3 ) r a + 1 ) / 2 < i r r ( X + 1 ) / 2

because of the choice of C. In particular, fir < l l " r so 5Z1 < r < n / c Mr < 1/10. By
Markov's inequality, the probability that condition (a) fails for any such r is no more
than 1/10.

So, with probability at least 8/10 — o{ 1) as n -*• oo the following hold: the graph G
has at least 2dn edges to begin with; G satisfies condition (a); we may delete at most n
edges from G and obtain a graph that also satisfies (b). The final graph has at least dn
edges left, and satisfies all the conditions of the lemma. Given d, k, and p it remains
to choose an No so large that the probability estimated as 8/10 — o(l) as n -*• oo
really is strictly positive for all n > No. We then know that a suitable graph G exists
on a vertex set of size n, for any n > No. •

3. Using our graph-theoretic lemma

We now use Lemma 2.1 to define permutation operators on X = l[(F2) in the

following slightly peculiar manner. We begin by defining some notation to use when

handling the group F2.

Recall that the length l(w) of a word w in the free group F2 is the least n such that w

is equal to a product of n elements yxy2 • • • yn, y, 6 {gu g2, g^1, g2
1} (and 1(1) - 0).

For g e F2 and n > 0, we define the ball B(g,n) = {hg : h € F2,lQi) < n)
and the sphere dB(g,n) = {hg : l(h) = n). Let us choose, once and for all, a
disjoint collection of balls Bn = B(yn, n), each Bn having radius n. Let dBn be the
corresponding spheres, and let int Bn = Bn\dBn. Let us choose them in such a way
that even the slightly larger balls B(yn, n + 1) are all disjoint.

Note that the size of Bn is 2 • 3" - 1 and so the sizes of int Bn and dBn are 2 • 3""1 - 1
and 2 • (3" - 3"~') respectively. In particular, for n > 1 we have |3f iJ / | int Bn\ < 3.
Let us write fin = 2- 3""1 - 1 = | int Bn\.

Next, we choose specific values of d, p, and k to use in Lemma 2.1.

DEFINITION 3.1. We define d = 3 and p = 9. Let us then choose, once and for
all, an s > 0 which is, in the following sense, a witness to the fact that F2 is not
an amenable group: there is no 0 e l00^)* with 0(1) = 1 and \\<f> o T* - <j>\\ < €
(/ = 1, 2). Then, choose k € N large enough that 192/(A. - 1) < e/4, and choose C
and No as in Lemma 2.1, for these values of p, d, and A..

Note that non-amenability plainly implies that such an epsilon exists, for a weak-*
limit of such functionals <p as e -*• 0 would be a translation invariant mean. In fact,
e = 1/2 will do.
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DEFINITION 3.2. For each n large enough that 6n > No, let us choose a ^.-regular
hypergraph Gn on vertex set int Bn, having 13 Bn | edges and such that (a) no vertex is
contained in more than 27A. edges and (b) for all r < /3n/C, the union of any r edges
contains at least (k — l)r/2 vertices. Let us use the elements of dBn (n > N0(k))
to index the edges of Gn. Let us say the edges of Gn are A-element sets ys =
(Kg. i . Yga< •••' Yg.k) f o r e a c h g e dBn.

Note that the hypergraphs Gn exist because of Lemma 2.1. Having got this far, we
now seek a finite sequence of 'extra' permutation operators Tj, j = 3 , . . . , / , such that
for every n > No, i = 1 , . . . , k, and g e dBn there is a j such that

(3.1) Tjeg=eYiJ.

In fact the number of extra permutations needed is not too large.

LEMMA 3.3. A suitable collection of permutation operators Tt = 7^ {nt e S(F2),
i = 3 , . . . , / ) can be found, satisfying (3.1), with I < 2 + 21k2.

PROOF. Let us totally order F2 in some arbitrary way. We know that for each
y e int Bn there may be up to 21k edges of Gn that are incident at y; and of course
permutations must be injective. So let us choose 21k2 permutations itjj (i = 1 , . . . , k,
j — I,..., 21k) with the property that for every n with [5n > No and every g e dBn,
one has 7r,,,(g) = y provided y = ygJ, and g is (in our total ordering) the j\h highest
of the up to 27A. elements h e dBn whose edges yh involve y. It is plain that such
permutations exist; if we relabel them as nt, i = 3 , . . . , / , we have 1 = 2 + 21k2

and the condition (3.1) is satisfied. The main thing is, the number of maps needed
is finite. Let us choose, once and for all, a set of permutation operators (r,)[=3, and
let Tzi denote the permutations on F2 such that T,• = Tn., i = 1, . . . , /. •

We shall show that the finite collection of operators (7/)(=1, which we have now
defined, generate a 'relatively non-amenable' subalgebra of B(X), in the following
sense.

DEFINITION 3.4. Let B be a subalgebra of the unital Banach algebra A. We say B
is relatively amenable in A (with constant D) if there is a net (<4)X<=A of elements
of A <g> A such that ||<4|| < D, n{dx) = 1, and x • dk - dx • x ->• 0 for all x e B.
Otherwise, we say B is relatively non-amenable in A.

Obviously this implies that B{X) cannot have an approximate diagonal, and so is
not amenable. We cannot find any candidate for an approximate diagonal in B(X)
that even 'works' for the subalgebra finitely generated by the permutation operators
{Tj)\=v And next we give the proof.
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4. Proof of Theorem 1.1

To prove the theorem, we begin by making some definitions which help us to probe
the nature of a (hypothetical) approximate diagonal in B(X).

DEFINITION 4.1. Let A denote the algebra B(Y), where in immediate applications in
this section Y will be X = ll(F2) with its unit vector basis {eg)geF2, but more generally
Y can be any Banach space with given normalised 1-symmetric 1-unconditional
basis (eg)g€F for some set F. Let (e*)geF be the coefficient functionals in Y* with
(eg, e*h) = Sg_h, and let d — J2m Am <g> Bm e A <8> A. We define coefficients dgJlk

(g,h,k e F) by dgJlk = J^m(Bmeg,e*h) • (Ameh,e*k). We define the formal sum
dg.k = Y,hdg-h-keh-

Note that in terms of the familiar method of multiplying matrices together (to get
the (it, g)th coefficient of AB you multiply corresponding entries of row k of A and
column g of B, and add up the results) the numbers dgjhk are obtained by multiplying
entries of the kth 'row' of Am and the gth 'column' of Bm, and then forgetting to add
up the results over the index h. The following is therefore no surprise.

LEMMA4.2. For all g and k, we have dg.k € l\F) and \\dg,k\\\ < \\d\\ (where || • ||,
is the l\ norm, and \\d\\ the projective tensor norm ofd).

PROOF. For

K.*ll. = XX*.*! < ^ K f l ^ O i K e * , A*me*k)\ <Y,WB>»e*\\\\K<\\
h h,m m

(since the basis is 1-unconditional)

^ | . •

DEFINITION 4.3. Let s : / ' (F ) -»• C be the sum functional, s(J^g Xgeg) =

LEMMA 4.4. If n(d) = I, then s(dgk) = Sgk for all g and k. In particular,

IK., || > 1 for all g.

PROOF. For s(dg.k) = £*.„,<*»««. e'h) • (Ameh, e*k) = (n(d)eg, e*k). D

LEMMA 4 . 5 . Let d £ A <S> A, and let 7/ = Tm, i = 1 , . . . , / , be permutation

operators on Y. lf^Ti-d — d-T^ < 8, i = 1 , . . . , / , then we have

for all g € F and i = 1 , . . . , / .
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PROOF. For any g,h e F2 and T = Yjm Am <g> Bm e B(X), we have

(4.1) (T • d)g,k = J^(Bmeg, el)(TAmeh, e*)eh

m,h

m.h

If T*e*k = e* for some /, this gives us (T • d)gk = dg/, and likewise one may check
that if Teg = ep, then (d • T)gk — dpk. For a permutation operator Tn, we have
Tneg = en{g) and T*e*k = e*n_l{k) for all g, k. Accordingly for all g, k, we have

(4.2) (Tn-d-d- Tn)g,k = dg,B-Hk) - dMgU,

and \\T,,-d-d-Tnl < 8 implies \\dgiX-i(k) —dK(g):k\\i < 8 for all g and k; in particular,
\\dg,g — dnig)_n(g) || i < 8 for every g & F. Thus the lemma is proved. •

So far the paper has lacked a lemma that specifically works only for Y = X =
, rather than some other space with symmetric basis. Here is one.

LEMMA 4.6. Let 8 > 0 and let d e B(X) <g> B(X) be a finite sum Yl+\ Am ® Bm
withYl=\ \\Am\W\Bm\\ < D. Let vectors dgk(g,k e F2) be as in Definition 4.1. Then
there is a sequence of vectors (d' k)g,keF2> d'gk — £]/. d' h keh 6 /' with the following
properties:

(i) 114,,* -d'gk\\x <8for all g,ke F2.
(ii) For each h e F2 the number of k with d'ghk 7̂  0 for any g is at most

R = DM/8.

In particular, the number of g with {d'g g, e*h) ^ 0 is at most R.

PROOF. Define d'g h k = dgMM if for any m = 1 , . . . , M we have \{Ameh, e*k)\ >
|| Am\\S/D; otherwise, define^, hk = 0 . Now ||AmeJ|i < || Am ||, so for fixed h, m the
number of k with | (Ameh, ek) | > || Am \\8/D is at most D/8; for fixed h, the number oik
such that this happens for any m = 1 , . . . , M is accordingly at most # . Furthermore,
iiS = Sk = {h: \{Ameh, e*k)\ < \\Am\\S/D, m = 1 , . . . , M} then

M

\\dg,k - d'gk\\x — ̂ 2 X ! ^ B m e « ' e*^ ' (Ame>" eV>
heSi m-\

M „ M r.

< V~* ||Bme ||, • ||Am|| — < V^ \\Bm\\ • \\Am\\— < 8,
m=\ m=l

because X = / ' . Thus the lemma is proved. D
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We continue our examination of the special case when F2 is involved.

LEMMA 4.7. Let 8 > 0 and let E C F2. Let (TT,)|=1 be the special permutations
defined in Section 3. Let vectors ds 6 V(E) be given, for each g € E, with s(dg) >
1—8, and \\dg — dnifg)\\\ < 38 for all i = 1 , . . . , / and all g such that g, 7T,(g) € E.
Then for each nonempty finite subset S C E there is an h € E such that the linear
functional <ph &r(F2)*,

(4.3) <ph(x) =

satisfies \\<ph\\\ = 1, and writing S~ = S D 7r~'(5), we

(4-4) ^ J2 ! * < ) ^ ( ) l

PROOF. On the one hand,

4-eS.A€£ «e5

since | |^ | | i > \s(dg)\ > 1 - 8 for all g 6 E. On the other hand,

E E |(d, - dniW, e*h)\ - E E Hd« - d»><*>^
i = l g€S,h€E 1 = 1 ^e5

Choose, then, an h € E such that

Since for g e S~ we have

4>h(eg) -

it is easily seen that (4.4) is satisfied. •

LEMMA 4.8. Let us assume the hypotheses of Lemma 4.7, and assume E D Bn for
some n with fin > No. Suppose that for every h € F2, the number of g e F2 such
that {dg, el) ^ 0 is at most R < \ int Bn\/C. Let <p = 4>h £ lx(F2)* be the linear
functional given by Lemma 4.7 when the finite subset S involved is Bn. Then
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PROOF. For each i > 0, let R, = {g e dBn : <p(eg) e (2"', 21"']}, andletr, = |/?,-|
so that J^r' - R (after all, we have <p(eg) = 0 unless (ds, e*h) ^ 0, where h is the
element of F2 involved in the definition of <p in Lemma 4.7; so there can be no more
than R such values altogether).

Next, let T; be the set of y £ int Bn such that 4>(eY) e (2"'"1, 22~'], and let A be
the set of/ such that | r , | > r,(A. - l ) /4 . Now the intervals (2~'~', 22"'] overlap, but
no JC € (0, 1 ] lies in more than 3 of them, hence

1 °° A - 1
(4.6) £ j() £ ^ 0 W

ysintfl,, i = l yeP, ie/t

On the other hand, the number of y e int Bn with y = ygJ for some g, j with g 6 Rj
is equal to the total number of vertices covered by r, < R edges of the graph Gn in
Definition 3.2. Since # < | in tS n | /C , we know that any r, edges of Gn contain at
least (k — l )r , /2 vertices. So the number of such y is at least (X — l ) r , /2. If i £ A,
then at least (A. - l)r , /4 of these do not have <j)(er) e (2"'"1, 22"'], thus the distance
from (p(ey) to the interval (2~\ 21"'] is at least 2~'~\ so with y = ygj the 'error'

- 4>(eg)\ > 2~'~X. So, the sum

For each g e 3Sn, we have ^,(g) e Bn for i = 3 , . . . , Z, so in the notation of
Lemma 4.7, we have g e S~ = Bn n n~\Bn). Accordingly (4.4) tells us that the
left-hand side of (4.7) is at most 3/5/(1 — 8). Therefore,

(4.8) J2(X ~ !)r,2-'~3 < 3/5/(1 - 8).
iiA

But JZi 2~'r'•> d/2) E,£3B,, W . so

48 v ^ 48/5 48

by (4.6) and (4.8), and because ]T ,4>(eg) = 1. Thus the lemma is proved. •

COROLLARY 4.9. G/ven f/ie hypotheses of Lemma 4.8, we

A 3/5 192

* t T h +
1 = 1
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PROOF. By (4.4) we know that for n > yvo, the sum

1=1

because the left-hand side is the first two terms i = 1, 2 of the full sum (4.4) for the
functional 4>. Now if g £ Bn then 4>(eK) = 0; hence the full sum

i = l geF2

£ \(j)(eg)-<j>(eg,g)\ + J2 53
geB,\g-'B, geBn\K

3/<5 192 / IS+ (! +

by (4.5), as required. •

PROOF OF THEOREM 1.1. Suppose towards a contradiction that B(X) is amenable.
We may find a D > 0 and an approximate diagonal (da)aeA with 7r(Ja) = / and
||4»|| < D for all a. We may further assume that each da is equal to a finite sum of
tensors

M

(4.9) </ = £ Am ® flm

Pick 6 > 0 so small that 18/(1 — 8) < m i n ( l , e / 6 ) , and choose d from the

approximate diagonal in such a way that \d • T,• — T,• • d\\ < 8 for / = 1 , . . . , / . Let us

write d = E l , Am ® Bm as in (4.9), with £ " = 1 ||v4m||||flm|| < D.

By Lemma 4.5, the vectors dg_g satisfy \\dg,g — dni(g)^j(g)\\i < 8. By Lemma 4.6,

we can pick vectors d'sg = £ / , d'ghseh with \\dg,g - d'gJ\x < 8, (so certainly \\dg_g-

d'7T.{i,)nAg)\\\ < 35) yet for all h e F2 the number of g with d'ghg ^ 0 is at most

R = DM/8.
Writing dg = d'g and E = F2, we find that the conditions of Lemma 4.7 are

satisfied. If we choose n so large that j3n > No and R/C < pn, then so also are the
further conditions of Lemma 4.8. By Corollary 4.9, the sum

^ 3/5 192
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because X was chosen such that 192/ (X-1) < e /4 , and /5 / ( l -5 ) < min( l ,e /6) . This
contradicts the definition of e (Definition 3.1) so no such d can be found, hence B(/')
is not amenable. •

Note that non-amenability is witnessed to by testing \\d • Tt• — T,• • d|| for the specific
sequence (7j)!=1 that we defined; hence the subalgebra B generated by (7})'=1 is indeed
relatively non-amenable in A.

5. Proof of Theorem 1.3

In this section, we vary the arguments of the previous section so as to obtain our
second result, Theorem 1.3. As claimed in the Abstract, this implies the corollary.

COROLLARY 5.1. Let 1 < p < oo, p ^ 2. Then the l°° direct sum of matrix
algebras A = 0 ^ , B(l?) is not amenable

This result is interesting and suggestive because the C*-algebras proof that B(l2)
is not amenable 'goes via' a proof that the direct sum of matrix algebras © ^ 1 , B{l2

n)
is not amenable. So this corollary hints strongly that B{lp) is probably not amenable.

PROOF OF THEOREM 1.3. Let us begin with a minor simplification. Since
is isometrically anti-isomorphic to B(X*), the algebra A is amenable if and only if
B = 0 ^ 1 , B(X*) is amenable; hence we may assume (with the notation of (1.1))
that lim sup M, = oo, rather than lim inf M, = 0. Further, since amenability passes to
quotient algebras such as 0 , e £ B(Xt) for a subset E c N, it is enough to show that
A cannot be amenable in the case when M, actually tends to infinity.

In order to prove Theorem 1.3, let us take the sequence of dimensions («,-), and
relate them to the sizes of the balls B^ of radius /x in F2. Since (as we noted after
Definition 3.1) the size of such a ball is 2 • 3M — 1, it makes sense to pick integers /̂ ,
such that n, e [2 • V' — 1, 2 • 31+Mi — 1). Quotienting out unneeded Xt as required,
we can also assume that the sequence /A, is strictly increasing, and all ixt > No.

DEFINITION 5.2. For each i, let us choose an injective map et : {1,...,«,-} —*• F2

such that fi(yM., /it;) C Ime, c fi(yM,, 1 +Mi) for each /, where y, e F2 is the sequence
chosen in Definition 3.1 (so that the balls B(yk, k + 1) are disjoint).

DEFINITION 5.3. Let (TTJ) be the permutations of Section 3. We define some
operators Tj e A, closely related to the permutation operators Tj e B(X), as follows:
T'j is an element of A = ( 0 ° 1 , A ) ^ . whose ith element is a permutation operator
Tj,i : X, -> X, such that r, . ,(e^) = e^ whenever ^(£, (m)) = e,-(n).
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Note that the permutation operators T,, are not unique because the original per-
mutations nj on F2 do not map the finite sets Im e, to themselves (for example, 7r, is
multiplication by a generator of F2, and as such it does not map any finite set to itself).
So, we pick our elements T. in a slightly arbitrary way. But we pick them now, once
and for all, for each X > 0.

DEFINITION 5.4. We let PK be the natural map A = ® ° 1 , Aj -> AK and PK =

PK <S> PK the natural norm 1 linear map A <8> A —> AK <8> AK such that PK{a ®b) =

PK{a) <g> PK(b) for all a and b in A.

Now suppose that, contrary to Theorem 1.3, the algebra A is amenable. Let (da)aeA

be an approximate diagonal for A with da e A <8> A, n(da) = / and, say \\da\\ < D
for every a. We may assume that each da is a finite sum of tensors £m=i «̂> ® ^m
withEl.llAJI-IIBJI <D.

As before, pick 8 > 0so/<5/(l — 5) < min( l , e /6) and choose <i from the diagonal,
rf = E » = i A - ® B »" s o t h a t Wd • Tj - Tj • d\\ <& for j = l,...,I. Then for all K,

\PK{d) -Tj,K -Tj,K • PK{d)\AK <S.

Now each AK = B(XK), Y — XK a Banach space with given symmetric basis as
in Definition 4.1. So we may write

as in Definition 4.1, where PK(d) = YH=\ p«Am ® Pn^m- By Lemma 4.5, we
have II^J^ — ^^' l l i < 5 whenever T,Kej = ek, in particular, whenever eK(j) — g,
eK(k) = 7ti(g) for some / e [1,/] .

At this point we need a finite dimensional version of Lemma 4.6 that works for
Banach spaces X other than X = / ' . It is as follows:

LEMMA 5.5. Let X be a finite dimensional normed space of dimension n, let 8 > 0

and let d e B(X) <§> B(X) be a finite sum YH=\ A»< ® B>» with

M

Let X have normalised {-symmetric l-unconditional basis (e,-)"=1, let

m=\
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and let dik = £ " _ , dijkes € l\. Then for every i, k the vector dik can be approximated
by d'ik, \\dik — d'ik\\\ < 8, in such a way that for each j = I,... ,n the number ofk
with d\ j k ^ Ofor any i, is at most R = M • F^D | YH—< e

greatest integer m such that | 5Z';"=i e* 1 x — ce> or n tf
the number ofk with (dkk, e*) ^ 0 is at most R.

l 1 x./
s)< where F(a)is the

< a. In particular,

PROOF. Define d'ijk = dijk if for any m = 1, . . . , M we have

\(Ame,,et)\>
\\Am\\&

Otherwise, define d'ljk = 0. Now ||Ame;||x < ||Am|| so for fixed j , m the number
j

of k with \{Amer e*k)\ > \\Am\\Z/(D\ L. < -) is at most F(D\
=1 eh xJ8).

So the number of k such that this happens for any m = 1, 2, . . . , M is at most

*=i e * l lx -

then

m = \

M M

\\Am\\^ < \\Am\ \\Bm\\^ < 8. D

We now apply Lemma 5.5 once for each K > 0, with X = XK, n — nK, and Pn(d),
Pi(Bm, PKAm substituted for d, Bm, Am respectively. We find there are vectors d't[

K\
\\d[{

k
K) — rf/flh < &, d[{

k
K) = Yl^Li duVej' s u c n m a t for each j = 1, . . . , nK the

number of k w i t h ^ j f ^ Ofor any i is at most RK — M • Jr
K(D\\e* + • • - + e*K \\x'K/8),

where TK(a) is the greatest integer m such that \\e\ -\ + em\\xK < a.

The vitally important fact is that we know \\el + • • • + enK\\Xlt/*/h~K~ —> oo as
K -> oo, so RK — o(nK) as K - • oo.

Let us therefore pick a large enough K that \x K > N0&nd RK/nK < 1/17C. Define
the set E = \m£K C B(yUt, 1 + fiK), and for g e E define the vector dg € / ' ( £ ) by
{dg, eh) — (d'i\K)', e 7 ) , w h e r e / = e~K

x(g) a n d j = £^\h). N o w n/c € [\BllK |, | 5 i+^ k . I),

where |BM| is the size of a ball of radius JX in F2- Since for /x > 1 we have

(5.1)
RK

I int
< C.
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The conditions of Lemma 4.7 are satisfied with S, E, dg e / ' ( £ ) as above, and (7Tj)'=I

the usual permutations 7r,. The further conditions of Lemma 4.8 are satisfied with
n = fiK and R = RK. That lemma tells us that

48 / IS
E »c.)i s —

where <p is the linear functional obtained from Lemma 4.7 when S = BilK. Corol-
lary 4.9 then tells us that

318 192
< £.

1 — 0 A — 1
i = l

So as with the algebra B(X), we conclude that if our algebra A — ( 0 ° ^ , Xt) were
amenable, so also the free group F2 would be amenable (or at least, our particular
constant e > 0 could not be a 'witness' to its nonamenability as required by Defi-
nition 3.1). This contradiction shows that A — ( 0 ^ B{X{)) is not an amenable
Banach algebra, and once again, we have a finitely generated subalgebra of A (the
one generated by the operators 7") that is not relatively amenable in A. •

6. Conclusion

It is remarkable how difficult it is to resolve the question of whether certain well-
known Banach algebras are amenable. When the Banach algebra is B(X) (for an
infinite dimensional Banach space X), intuition suggests that it is most unlikely to
be amenable; the counterexample, if any, likely to be a really weird Banach space X
with relatively few operators on it. Here we show B(X) is non-amenable when
X — / ' . Recently Ozawa [5] has generalised our methods to prove non-amenability
results for some further Banach algebras. Pisier [6] has also provided a variant of the
present proof, in which he shortens the graph theory involved by making reference
to the work of Lubotzky et al. on 'expanding graphs', work which was unknown to
the present author. So this construction, and its generalisations, provides slow but
genuine progress in a difficult area.
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