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1. Introduction

Specialization is a technique to prove the existence of algebraic structures over a field
which has prescribed properties. More concretely, one starts with a module Mu with
certain properties over a polynomial ring Ru = k(u)[x], where k(u) is an extension of
a base field k by a finite set u = (u1, . . . , um) of parameters, and substitute u by a set
α = (α1, . . . , αm) of elements of k to obtain ideally a module Mα over R = k[x] with the
same properties.

The theory of specialization of ideals was introduced by Krull [4], (see also [11]).
Following [4], the specialization of an ideal I of a polynomial ring Ru with respect to
the substitution u → α was defined as the ideal Iα generated by elements of the set
{f(α, x) | f(u, x) ∈ I ∩k[u, x]}. For almost all substitutions u → α, that is for all α lying
outside a proper algebraic subvariety of km, specializations preserve basic properties and
operations on ideals, and the ideal Iα inherits most of the basic properties of I. In [6–8],
the authors developed the theory of specializations of finitely generated modules, and we
showed that basic properties and operations on modules are preserved by specializations.
An outstanding problem is how to specialize non-finitely generated modules. In this
paper, we propose a way to specialize modules that are direct limits of a direct system of
finitely generated modules in the case where the base field is uncountable. Our approach
can be applied to study specializations of local cohomology modules. We show that the
Buchsbaum property, the generalized Cohen–Macaulay property and the Castelnuovo–
Mumford regularity of a module are preserved by specializations.
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460 D. V. Nhi

2. Specializations of finitely generated modules

In this section we recall basic facts on specializations of finitely generated modules over
a local ring.

Let P be an arbitrary separable prime ideal of Ru. By [4, Satz 14], Pα is a radical ideal
of Rα for almost all α. Assume that p is an arbitrary associated prime ideal of Pα. In brief,
we will set S = RuP

and Sα = Rαp
. We denote PS and pSα by m and mα. An arbitrary

element f ∈ Ru may be written in the form f = p(u, x)/q(u) with p(u, x) ∈ k[u, x],
q(u) ∈ k[u] \ {0}. For any α such that q(α) �= 0, we define fα := p(α, x)/q(α). For every
element a = f/g ∈ S with f, g ∈ R, g /∈ P , we define aα := fα/gα if gα /∈ Pα. This
definition is valid for almost all α, i.e. it holds for all α except perhaps those lying on a
proper algebraic subvariety of km.

Let L be a finitely generated S-module. Let Sr φ−→ St → L → 0 be a finite free pre-
sentation of L, where φ is represented by a matrix A = (aij(u, x)) with aij(u, x) ∈ S.
Set Aα = (aij(α, x)), and let φα : Ss

α → St
α be the homomorphism represented by the

matrix Aα. The specialization of L with respect to the substitution u → α is defined as
Lα := Coker φα (see [8]).

This definition of Lα clearly depends on the chosen presentations of L. If we choose
a different finite free presentation we may get a different specialization L′

α of L, but Lα

and L′
α are canonically isomorphic for almost all α. For this we need to introduce the

specialization of a homomorphism of finitely generated S-modules.
Let v : L → M be a homomorphism of finitely generated S-modules. Consider a

commutative diagram

Sm φ−−−−→ Sn −−−−→ L −−−−→ 0⏐⏐�v1

⏐⏐�v0

⏐⏐�v

Sr ψ−−−−→ Ss −−−−→ M −−−−→ 0,

where the rows are finite free presentations of L and M , respectively. It is obvious that
ψα(v1)α = (v0)αφα, and that the diagram

Sm
α

φα−−−−→ Sn
α −−−−→ Lα −−−−→ 0⏐⏐�(v1)α

⏐⏐�(v0)α

Sr
α

ψα−−−−→ Ss
α −−−−→ Mα −−−−→ 0

is commutative for almost all α. Hence, there is an induced homomorphism vα : Lα →
Mα, which makes the diagram

Sm
α

φα−−−−→ Sn
α −−−−→ Lα −−−−→ 0⏐⏐�(v1)α

⏐⏐�(v0)α

⏐⏐�vα

Sr
α

ψα−−−−→ Ss
α −−−−→ Mα −−−−→ 0
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commutative for almost all α. The induced homomorphism vα is called a specialization
of v : L → M with respect to (φ, ψ) (see [8]). For almost all α, this definition does not
depend on the choice of v0 and v1. Indeed, if we are given two other maps w0 : Sn → Ss

and w1 : Sm → Sr which lift the same homomorphism v : L → M , then the maps (wi)α

induce the same map vα : Lα → Mα for almost all α. The specialization of idL with
respect to (φ, φ) is the identity map idLα

.
We shall need the following basic properties of specializations of finitely generated

modules over the local ring S.

Lemma 2.1 (Nhi and Trung [8, Lemma 1.4]). Let v, w : L → M and u : M → N

be homomorphisms of finitely generated S-modules. Then, for almost all α,

(v + w)α = vα + wα,

(uv)α = uαvα.

Lemma 2.2 (Nhi and Trung [8, Theorem 2.2]). Let 0 → L → M → N → 0 be
an exact sequence of finitely generated S-modules. Then the sequence 0 → Lα → Mα →
Nα → 0 is exact for almost all α.

By virtue of this lemma, one can identify each module Lα with its canonical image in
Mα when L is a submodule of M , and deduce the following results.

Lemma 2.3 (Nhi and Trung [8, Lemma 2.3]). Let M and N be submodules of a
finitely generated S-module L. For almost all α, there are canonical isomorphisms

(L/M)α
∼= Lα/Mα,

(M ∩ N)α
∼= Mα ∩ Nα,

(M + N)α
∼= Mα + Nα.

Lemma 2.4 (Nhi and Trung [8, Theorem 2.6]). Let L be a finitely generated
S-module. Then, for almost all α, we have AnnLα = (AnnL)α and dim Lα = dimL.

Lemma 2.5 (Nhi and Trung [8, Proposition 3.3]). Let L and M be finitely
generated S-modules. For almost all α, we have

Exti
Sα

(Lα, Mα) ∼= Exti
S(L, M)α, i � 0.

3. Specializations of direct limits

Modifying the well-known definition of specialization of a finitely generated S-module,
we will give the definition of specialization of an S-module which is a direct limit of a
direct system of finitely generated S-modules indexed by N.

Let {Li}i∈N be a family of finitely generated S-modules indexed by N. For each pair
i, j ∈ N such that i � j, let fij : Li → Lj be an S-homomorphism, and suppose that the
following conditions are satisfied:

(1) fii is the identity mapping on Li for all i ∈ N;

(2) fih = fjhfij whenever i � j � h.

https://doi.org/10.1017/S0013091505000891 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505000891


462 D. V. Nhi

Then we have a direct system {Li, fij} over N. Let C be the direct sum of the Li, and
identify each module Li with its canonical image in C. Let D be the submodule of C

generated by all elements of the form �i − fij(�i), where i � j, �i ∈ Li. Denote by f

the projection C → C/D and by fi the projection f |Li : Li → C/D for all i ∈ N. The
S-module C/D or the system {C/D, fi} is called the direct limit of the direct system
{Li, fij} and is written lim−→ Li (see [2, 5]). Let {Li, fij} be a direct system of finitely
generated S-modules over N. By the definition of specialization of a finitely generated
S-module, there is a polynomial ti(u) ∈ k[u] such that if ti(α) �= 0, then we have a
specialization (Li)α. Moreover, there are polynomials tij(u) ∈ k[u] such that if tij(α) �= 0,
then we have a homomorphism (fij)α : (Li)α → (Lj)α for each pair i, j ∈ N with j � i.
Therefore, there exists a countable family of non-zero polynomials such that if α is not
a zero of all these polynomials, then {(Li)α, (fij)α} is again a direct system of finitely
generated Sα-modules. In general, the set of all such α may be empty. However, if the
base field is uncountable, such a set is always non-empty due to the following observation.

Lemma 3.1. Let k be an uncountable field. Let {ti(u) | i ∈ N} be a family of non-zero
polynomials in indeterminates u1, . . . , um. Set Bi = {α | ti(α) �= 0} for all i ∈ N and
B =

⋂
i∈N

Bi. Then B is an uncountable set.

Proof. The claim will be proved by induction on m. We begin with the case m = 1.
The sets Ai = {α = (α1) | ti(α) = 0} are countable sets. Then the set A1 =

⋃
i∈N

Ai is a
countable set. Therefore, B1 = k \ A1 is an uncountable set, because k is uncountable by
assumption. In the case m = 2, the polynomials ti(u1, u2) are presented as polynomials
of u2:

ti(u1, u2) = ai0(u1)uhi
2 + ai1(u1)uhi−1

2 + · · · , ai0 �= 0, i ∈ N.

Since B1 is an uncountable set, there exists λ1 ∈ B1 such that ai0(λ1) �= 0 for all i ∈ N.
Then ti(λ1, u2) �= 0 for all i ∈ N. By applying the result of the case m = 1, it is easy to
show that the set of all λ2 ∈ k such that ti(λ1, λ2) �= 0 for all i ∈ N is an uncountable
set. Thus, the set B2 = {(λ1, λ2) | ti(λ1, λ2) �= 0 for all i ∈ N} is an uncountable set.
Now it will be assumed that Bm−1 is an uncountable set. For the case m > 2, note that
the polynomials ti(u1, . . . , um) are presented as polynomials of um:

ti(u1, . . . , um) = ai0(u1, . . . , um−1)uhi
m + ai1(u1, . . . , um−1)uhi−1

m + · · · , ai0 �= 0, i ∈ N.

Since Bm−1 is uncountable by the inductive assumption, there exists (λ1, . . . , λm−1) ∈
Bm−1 such that ai0(λ1, . . . , λm−1) �= 0 for all i ∈ N. Then ti(λ1, . . . , λm−1, um) �= 0 for
all i ∈ N. By applying the result of the case m = 1, it is easy to show that the set of all
λm ∈ k such that ti(λ1, . . . , λm−1, λm) �= 0 for all i ∈ N is an uncountable set. Hence,
Bm = {(λ1, . . . , λm−1, λm) | ti(λ1, . . . , λm−1, λm) �= 0 for all i ∈ N} is uncountable.
Because Bm ⊂ B, B is therefore an uncountable set. �

Let {Li, fij} be a direct system of finitely generated S-modules over N. This lemma will
be needed to show the existence of a direct system {(Li)α, (fij)α} of finitely generated
Sα-modules over N. Now we can modify the notion ‘almost all’ as follows.
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Definition 3.2. A subset V ⊆ km is called a quasi-closed set of km if V can be
represented as a union

⋃∞
i=0 V (ai), where each ai is an ideal of k[u] and V (a) = {P ∈

km | f(P ) = 0, for all f ∈ a}.

Lemma 3.3. The union of two quasi-closed sets is a quasi-closed set. The intersection
of a family of quasi-closed sets is again a quasi-closed set. The empty set ∅ and the whole
space km are the quasi-closed sets.

Proof. Assume that V1 =
⋃∞

i=0 V (ai) and V2 =
⋃∞

j=0 V (bj) are two quasi-closed sets.
Then

V = V1 ∪ V2 =
( ∞⋃

i=0

V (ai)
)

∪
( ∞⋃

j=0

V (bj)
)

=
∞⋃

i,j=0

V (ai ∩ bj)

is a quasi-closed set.
Assume that Vλ =

⋃∞
i=0 V (aλi), λ ∈ Λ, is a family of quasi-closed sets. Then

W =
⋂
λ∈Λ

Vλ =
⋂
λ∈Λ

( ∞⋃
i=0

V (aλi)
)

=
∞⋃

i=0

( ⋂
λ∈Λ

V (aλi)
)

=
∞⋃

i=0

V

( ∑
λ∈Λ

aλi

)
.

Hence, W is a quasi-closed set. The empty set ∅ = V (1) and the whole space km = V (0)
are the quasi-closed sets. �

Definition 3.4. We define the Zariski topology on km by taking the quasi-open subsets
to be the complements of the quasi-closed sets.

Proposition 3.5. Let k be an uncountable field. If {Bh, h = 1, . . . , s} is a finite family
of quasi-open sets of the form Bh = km \

⋃∞
i=0 V (thi(u)), thi(u) ∈ k[u], then

⋂s
h=1 Bh is

an uncountable quasi-open subset of km.

Proof. Without loss of generality, we need only prove the proposition for s = 2.
The intersection B1 ∩ B2 is a quasi-open subset of km by Lemma 3.3. Suppose that
B1 = km \

⋃∞
i=0 V (ti(u)) and B2 = km \

⋃∞
j=0 V (pj(u)). Then

B1 ∩ B2 = km \
∞⋃

i,j=0

V (ti(u)pj(u)).

Thus, the quasi-open set B1 ∩ B2 is an uncountable set by Lemma 3.1. �

Let T be a property which can be asserted or denied for each α ∈ km. We shall say
that T holds for almost all α ∈ km if it holds for all α lying outside all the zeros sets of a
countable collection of polynomials. If k is assumed to be an uncountable field, then the
set of points P for which the property T holds should contain an uncountable quasi-open
subset of km. From now on, the base field k is assumed to be the uncountable and perfect
field. For the sake of simplicity, the phrase ‘for almost all α’ will be deleted in the proofs
of all results.

Let {Li, fij} be a direct system of finitely generated S-modules over N. One can raise
a question about the existence of lim−→(Li)α. The following result is an answer to this
question.
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Proposition 3.6. Let {Li, fij} be a direct system of finitely generated S-modules
over N. There exists lim−→(Li)α for almost all α.

Proof. From the definitions of specializations of a finitely generated S-module and
of a homomorphism, it was well-known that there are polynomials ti(u), tij(u) ∈ k[u]
such that if ti(α)tj(α)tij(α) �= 0, then we have the specializations (Li)α, (Lj)α and
homomorphisms (fij)α : (Li)α → (Lj)α. Since the set A = {ti(u), tij(u) | i, j ∈ N} is a
countable collection of polynomials, the set B = {α ∈ km | t(α) �= 0 for all t(u) ∈ A}
is countable by Lemma 2.1. Thus, the family {(Li)α, (fij)α} exists for almost all α.
Since (fii)α is the identity mapping on (Li)α for all i ∈ N and (fih)α = (fjhfij)α =
(fjh)α · (fij)α for all i � j � h by Lemma 2.1, therefore {(Li)α, (fij)α} is a direct system
of finitely generated Sα-modules over N. Therefore, lim−→(Li)α exists for almost all α. �

Definition 3.7. Let {Li, fij} be a direct system of finitely generated S-modules over
N. We call the direct system {(Li)α, (fij)α} of finitely generated Sα-modules over N a
specialization of {Li, fij}.

Definition 3.8. If L is an S-module and L = lim−→ Li, then we define Lα = lim−→(Li)α

for almost all α and call such a specialization of L (with respect to {Li, fi,j}).

We shall see that, up to an isomorphism, this definition does not depend on the cho-
sen direct system of finitely generated S-modules. First of all, we need to define the
specialization of a map of direct systems.

Let {Li, fij} and {Mi, gij} be direct systems of finitely generated S-modules over N.
Then a homomorphism φ : {Li, fij} → {Mi, gij} consists of a family of homomorphisms
{φi : Li → Mi} such that all diagrams

Li
φi ��

fij

��

Mi

gij

��
Lj

φj

�� Mj

are commutative for all pairs i, j ∈ N with i � j. Suppose that L = lim−→Li, M = lim−→Mi.
There is a unique homomorphism φ = lim−→φi : L → M (see [2, 5]). One can define spe-
cializations of homomorphisms between direct systems of finitely generated S-modules
over N.

Lemma 3.9. Let {Li, fij} and {Mi, gij} be direct systems of finitely generated
S-modules over N and consider a homomorphism φ = {φi} : {Li, fij} → {Mi, gij}. Then
there are homomorphisms {(φi)α} : {(Li)α, (fij)α} → {(Mi)α, (gij)α} and lim−→(φi)α :
lim−→(Li)α → lim−→(Mi)α for almost all α.

Proof. The homomorphism φ : {Li, fij} → {Mi, gij} consists of a family of homomor-
phisms {φi : Li → Mi}. By Proposition 3.5, there are specializations {(Li)α, (fij)α} and
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{(Mi)α, (gij)α} of {Li, fij} and {Mi, gij}, respectively. By Lemma 3.1 and by Proposi-
tion 3.5, there are homomorphisms (φi)α : (Li)α → (Mi)α such that all diagrams

(Li)α

(φi)α ��

(fij)α

��

(Mi)α

(gij)α

��
(Lj)α

(φj)α

�� (Mj)α,

are commutative for all pairs i, j ∈ N with i � j. Hence, we obtain a homo-
morphism {(Li)α, (fij)α} → {(Mi)α, (gij)α} consisting of a family of homomorphisms
(φi)α : (Li)α → (Mi)α, and a homomorphism lim−→(φi)α : lim−→(Li)α → lim−→(Mi)α for almost
all α. �

Definition 3.10. Let {Li, fij} and {Mi, gij} be direct systems of finitely generated
S-modules over N, respectively, and let {φi : Li → Mi} be a family of homomorphisms
determining a homomorphism φ : {Li, fij} → {Mi, gij}. We call the homomorphism

{(Li)α, (fij)α} → {(Mi)α, (gij)α}

defined by a family of Sα-module homomorphisms (φi)α for all i ∈ N a specialization of
φ, and it will be denoted by φα. The homomorphism lim−→(φi)α : lim−→(Li)α → lim−→(Mi)α is
called a specialization of ϕ = lim−→φi : lim−→Li → lim−→Mi with respect to the system {φi} and
is denoted by ϕα.

Next, we want to prove the following proposition about specializations of direct systems
of finitely generated S-modules over the directed set N.

Proposition 3.11. Let {Li, fij}, {Mi, gij}, {Ni, hij} be direct systems of finitely
generated S-modules over the directed set N. If

0 → {Li, fij}
φ−→ {Mi, gij}

ψ−→ {Ni, hij} → 0

is an exact sequence, then the sequence

0 → {(Li)α, (fij)α} φα−−→ {(Mi)α, (gij)α} ψα−−→ {(Ni)α, (hij)α} → 0

is exact for almost all α.

Proof. Assume that the sequence 0 → {Li, fij}
φ−→ {Mi, gij}

ψ−→→ {Ni, hij} → 0 is an
exact sequence of direct systems of finitely generated S-modules over the same directed
set N. Then the sequences

0 → Li
φi−→ Mi

ψi−→ Ni → 0

are exact for all i ∈ N. By Lemma 2.2, the sequences

0 → (Li)α
(φi)α−−−→ (Mi)α

(ψi)α−−−→ (Ni)α → 0
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are exact sequences and all diagrams

0 �� (Li)α

(fij)α

��

(φi)α �� (Mi)α

(gij)α

��

(ψi)α �� (Ni)α

(hij)α

��

�� 0

0 �� (Lj)α

(φj)α �� (Mj)α

(ψj)α �� (Nj)α
�� 0

exist and are commutative for all i, j ∈ N with i � j by Lemma 2.1 and Proposition 3.5.
Therefore, the sequence

0 → {(Li)α, (fij)α} φα−−→ {(Mi)α, (gij)α} ψα−−→ {(Ni)α, (hij)α} → 0

is exact for almost all α. �

Corollary 3.12. Let {Li, fij} and {Mi, gij} be direct systems of finitely generated
S-modules over the same directed set N. Let φ : {Li, fij} → {Mi, gij} be a homomor-
phism. Then, for almost all α, φα is injective (surjective) if φ is injective (surjective).

Corollary 3.13. Let {Li, fij}, {Mi, gij}, {Ni, hij} be direct systems of finitely gen-
erated S-modules over the directed set N. If

0 → {Li, fij}
φ−→ {Mi, gij}

ψ−→ {Ni, hij} → 0

is an exact sequence, then

0 → lim−→(Li)α
ϕα−−→ lim−→(Mi)α

ψα−−→ lim−→(Ni)α → 0

is exact for almost all α, too.

Proof. The sequence

0 → {(Li)α, (fij)α} φα−−→ {(Mi)α, (gij)α} ψα−−→ {(Ni)α, (hij)α} → 0

is exact by Proposition 3.11, and by Lemma 3.9 there are homomorphisms

ϕα : lim−→(Li)α → lim−→(Mi)α,

ψα : lim−→(Mi)α → lim−→(Ni)α.

The exactness of the sequence 0 → lim−→(Li)α
ϕα−−→ lim−→(Mi)α

ψα−−→ lim−→(Ni)α → 0 follows
from [5, Theorem A2]. �

The following theorem shows that we may speak about a unique specialization of a
direct limit of a direct system of finitely generated S-modules.

Theorem 3.14. Let L be an S-module. Let {Li, fij} and {Mi, gij} be two different
direct systems of finitely generated S-modules over the same directed set N such that
lim−→Li = L = lim−→Mi. Denote by fi and gi the projections Li → lim−→Li and Mi → lim−→Mi,
respectively, for all i ∈ N. Then, for almost all α, we have lim−→ Im(fi)α = lim−→ Im(gi)α.
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Proof. By Proposition 3.5, there exist the Sα-modules (Li)α and (Mi)α for all i ∈ N.
By Proposition 3.6, there exist Lα = lim−→(Li)α and Mα = lim−→(Mi)α. Denote by gi the
projection Mi → L for all i ∈ N. For each r ∈ N there exist i, j ∈ N with i < j such
that Im fi ⊆ Im gr ⊆ Im fj and s > r such that Im gr ⊆ Im fj ⊆ Im gs. Consider two Sα-
modules P = lim−→(Im fi)α, Q = lim−→(Im gr)α. From Lemma 2.2, the module (Im gr)α is
considered as a submodule of (Im fj)α. Because the modules (Im fi)α are submodules of
P , there are the inclusions

(Im fi)α ⊆ (Im gr)α ⊆ (Im fj)α

in the module P . By an analogous argument, we have the inclusions

(Im gr)α ⊆ (Im fj)α ⊆ (Im gs)α

in module Q. Hence, P = Q. Consider the surjective maps fi : Li → Im fi and gr :
Mr → Im gr. We also have the surjective maps (fi)α : (Li)α → (Im fi)α and (gr)α :
(Mr)α → (Im gr)α by Lemma 2.2. Since Im(fi)α = (Im fi)α for each i ∈ N, we therefore
obtain lim−→ Im(fi)α = P by [2, Corollary 4.14]. Analogously, lim−→ Im(gr)α = P . Hence,
lim−→ Im(fi)α = lim−→ Im(gi)α. The claim is proved. �

Notice that our definition of Lα depends on the chosen direct system {Li, fij}. If we
choose a different specialization of {L′

i, f
′
ij} we may get a different specialization L′

α of
L. However, Lα and L′

α are canonically isomorphic for almost all α. To see this we need
to introduce the specialization of a homomorphism between two direct limits.

We turn to the definition of specializations of homomorphisms between direct limits.
Let L and M be the S-modules with L = lim−→ Li and M = lim−→ Mi and a homomorphism

φ : L → M . The projections Li → lim−→Li and Mi → lim−→ Mi will be denoted by fi and
gi, respectively. Then L = lim−→ Li = lim−→ Im fi, M = lim−→ Mi = lim−→ Im gi, and φ can be
considered as a homomorphism

φ : lim−→ Im fi → lim−→ Im gi.

Now Im fi ⊆ Im fj and Im gi ⊆ Im gj for j � i. We write

πij : Im fi → Im fj and δij : Im gi → Im gj

for the natural inclusions. For each i ∈ N there exists p(i) such that φ(Im fi) ⊆ Im gp(i),
φ(Im fi) �⊆ Im gp(i)−1. Set φi := φ|Im fi . Then {φi(Im fi), δp(i)p(j)|φi(Im fi)} is a direct sub-
system of submodules of {Im gi, δij}. We have a homomorphism φ = lim−→φi : lim−→ Im fi →
lim−→φi(Im fi). By the definition of specialization of a limit-homomorphism, there is a
homomorphism

lim−→(φi)α : lim−→(Im fi)α → lim−→φi(Im fi)α.

Because
{φi(Im fi), δp(i)p(j)|φi(Im fi)}

is a direct system of submodules of {Im gp(i), δp(i)p(j)j}, therefore lim−→φi(Im fi)α is a sub-
module of lim−→(Im gi)α. Hence, there is a homomorphism

lim−→(φi)α : lim−→(Im fi)α → lim−→(Im gi)α.

https://doi.org/10.1017/S0013091505000891 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505000891


468 D. V. Nhi

Definition 3.15. Let L, M be S-modules and consider a homomorphism φ : L →
M , where L = lim−→Li, M = lim−→Mi. Let the projections Li → lim−→Li and Mi → lim−→Mi be
denoted by fi and gi, respectively, and set φi := φ|Im fi . The homomorphism φα :=
lim−→(φi)α : lim−→(Im fi)α → lim−→(Im gi)α is called a specialization of φ for almost all α.

As a consequence of the above definition we have the following corollary.

Corollary 3.16. Let L, M and N be S-modules and consider homomorphisms φ :
L → M and ψ : M → N . Then, for almost all α, (ψ · φ)α = ψα · φα.

Lemma 3.17. Let L, M be S-modules and φ : L → M a homomorphism, where
L = lim−→Li, M = lim−→Mi. Let the projections Li → lim−→Li, Mi → lim−→Mi be denoted by fi

and gi, respectively. Then, for almost all α,

(i) each homomorphism (fi)α is a projection (Li)α → lim−→(Li)α,

(ii) lim−→(Li)α = lim−→ Im(fi)α,

(iii) (φ · fi)α = φα · (fi)α.

Proof. (i) Assume that {Li, fij} and {Mi, gij} are direct systems of finitely gener-
ated S-modules over the directed set N, where L = lim−→Li, M = lim−→Mi. Denote the
homomorphism φ · fi : Li → lim−→Mi by di for each i ∈ N. Since Li is a finitely generated
S-module, di(Li) is also a finitely generated S-module. Therefore, di(Li) may be spe-
cialized. Since di(Li) = φ(Im fi) ⊂ Im gp(i), in the notation introduced after the proof of
Theorem 3.14, di(Li)α can be considered as a submodule of lim−→(Im gi)α by Lemma 3.3.
On the other hand, since fi = fj ·fij for all pairs i, j with j � i, we have di = dj ·fij , and
(di)α = (dj)α · (fij)α by Lemma 2.1. Thus, by the universal property of lim−→(Li)α, there
exists a unique homomorphism lim−→(Li)α → lim−→(Im gi)α which will be denoted by ϕα and
which satisfies (di)α = ϕα · πi or (φ · fi)α = ϕα · πi for all i ∈ N, where πi is the projec-
tion (Li)α → lim−→(Li)α. It is easy to show that if φ = id, then ϕα = id by Theorem 3.14.
Hence, (fi)α = πi, and the homomorphism (fi)α is a projection (Li)α → lim−→(Li)α.

(ii) Consider the epimorphism fi : Li → Im fi. The homomorphism (fi)α : (Li)α →
(Im fi)α is an epimorphism by Lemma 3.3. Then Im(fi)α = (Im fi)α for each i ∈ N.
Because (fi)α is the projection (Li)α → lim−→(Li)α by (i), we therefore obtain

lim−→(Li)α = lim−→ Im(fi)α.

(iii) Since (φ · fi)α = (φ · fi)α = (φi)α · (fi)α for each i ∈ N, by Lemma 2.1, (φi)α ·
(fi)α = ϕα · (fi)α. Thus, φα = lim−→(φi)α = ϕα, and then (φ · fi)α = φα · (fi)α for almost
all α. �

Corollary 3.18. Let L be an S-module. If {Li, fij} and {Mi, gij} are direct systems
of finitely generated S-modules over the directed set N and lim−→Li = L = lim−→Mi, then
lim−→(Li)α = lim−→(Mi)α for almost all α.
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Proof. The projections

Li → lim−→Li and Mi → lim−→Mi

will be denoted by fi and gi, respectively. Then lim−→(Li)α = lim−→(Im fi)α and lim−→(Mi)α =
lim−→(Im gi)α by Lemma 3.17 (ii). Since lim−→(Im fi)α = lim−→(Im gi)α by Theorem 3.14,
lim−→(Li)α = lim−→(Mi)α for almost all α. �

Corollary 3.19. If L is a finitely generated S-module, then Lα is also a finitely
generated Sα-module for almost all α.

Proof. Assume that L is a finitely generated S-module. By Theorem 3.14, we need
only construct a direct system of the form {L, fij : L → L is the identity map} such that
L = lim−→L. The projections L → lim−→L are given by fi = id. By Lemma 3.17 (ii), we have
Lα = lim−→Lα. Hence, Lα is also a finitely generated Sα-module for almost all α. �

From this corollary we see that the above definition of Lα is of course an extension of
the definition of specialization of finitely generated modules in [8].

The following theorem states one of the most important properties of specializations.

Theorem 3.20. Let L, M and N be S-modules with L = lim−→Li, M = lim−→Mi and
N = lim−→Ni. If the sequence 0 → L

φ−→ M
ψ−→N → 0 is exact, then the sequence

0 → Lα
φα−−→ Mα

ψα−−→ Nα → 0 is also exact for almost all α.

Proof. The projections Li → lim−→ Li, Mi → lim−→ Mi and Ni → lim−→ Ni will be denoted
by fi, gi and hi, respectively. The exact sequence

0 → L
φ−→ M

ψ−→ N → 0

can be replaced by the exact sequence

0 → lim−→ Im fi
φ−→ lim−→ Im gi

ψ−→ lim−→ Im hi → 0.

Because φ is injective, φi = φ|Im fi
is injective and then (φi)α is also injective for all i ∈ N,

by Lemma 3.3. Thus, the homomorphism φα = lim−→(φi)α : lim−→(Im fi)α → lim−→(Im gi)α is
an injective map by Corollary 3.13.

Set ψi := ψ|Im gi , for all i ∈ N. We have a homomorphism

ψ = lim−→ψi : lim−→ Im gi → lim−→ Im hi.

Since each ψi : Im gi → ψ(Im gi) is a surjective map and ψ is surjective,

lim−→ Im hi = ψ(lim−→ Im gi) = lim−→ψ(Im gi) = lim−→ψi(Im gi).

By virtue of Theorem 3.14 one can obtain lim−→(Im hi)α = lim−→ψi(Im gi)α. By the def-
inition of specialization of a limit-homomorphism, there is a homomorphism ψα =
lim−→(ψi)α : lim−→(Im gi)α → lim−→ψi(Im gi)α. Similarly, we have the homomorphism (ψ · φ)α.
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Since each ψi : Im gi → ψ(Im gi) is a surjective map, the homomorphism (ψi)α is an epi-
morphism by Lemma 3.3 and ψα = lim−→(ψi)α is also an epimorphism by Corollary 3.13.
Since (ψi)α((Im gi)α) = ψi(Im gi)α, ψα : lim−→(Im gi)α → lim−→(ψi)α((Im gi)α) is an epimor-
phism.

From Corollary 3.13 we have

lim−→(Im hi)α = lim−→{(ψi)α((Im gi)α)} = lim−→(ψi)α(lim−→(Im gi)α) = ψα(lim−→(Im gi)α).

Hence, the homomorphism ψα : lim−→(Im gi)α → lim−→(Im hi)α is also an epimorphism. Since
φ = lim−→φi and ψ = lim−→ψi, we have Im φ = lim−→φi(Im fi) and Kerψ = lim−→ Ker ψi. By the
universal property for direct limits there is ψ · φ = lim−→ψi · φi. Now (ψ · φ)α = ψα · φα by
Corollary 3.16. By Definition 3.15 we have

(Im φ)α = lim−→φi(Im fi)α = φα(lim−→(Im fi)α) = Im φα,

(Ker ψ)α = lim−→(Ker ψi)α = lim−→ Ker((ψi)α) by [7, Corollary 2.5]

= Ker(lim−→(ψi)α) = Kerψα.

Since Im φ = Ker ψ, (Im φ)α = (Kerψ)α by Theorem 3.14 so Im φα = Ker ψα. Hence, the
sequence

0 → lim−→ Im(fi)α
φα−−→ lim−→ Im(gi)α

ψα−−→ lim−→ Im(hi)α → 0

is an exact sequence, so the sequence 0 → Lα
φα−−→ Mα

ψα−−→ Nα → 0 is exact for almost
all α. �

4. Specialization of local cohomology

We will study first the relation between Extj
S and direct limits under specializations.

Proposition 4.1. Let L be the direct limit of a direct system of finitely generated
S-modules over the directed set N. Let M be a finitely generated S-module. Then, for
almost all α, we have Extj

S(M, L)α
∼= Extj

Sα
(Mα, Lα), j � 0.

Proof. Let L = lim−→Li. Since

Extj
S(M, L) = Extj

S(M, lim−→Li) = lim−→ Extj
S(M, Li), j � 0,

by [9, Lemma 3.3.7], for almost all α, we have

Extj
S(M, L)α = lim−→ Extj

S(M, Li)α.

Since Extj
S(M, Li)α

∼= Extj
Sα

(Mα, (Li)α) by Lemma 2.5, for almost all α, there are iso-
morphisms

Extj
S(M, L)α

∼= lim−→ Extj
Sα

(Mα, (Li)α) = Extj
Sα

(Mα, Lα), j � 0,

by Theorem 3.20. �
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Since Hj
a(M) = lim−→ Extj

S(S/ai, M) and Extj
S(S/ai, M) is a finitely generated S-module,

Hj
a(M) may be specialized and Hj

a(M)α = lim−→ Extj
S(S/ai, M)α by the above definition.

Thus, we can specialize local cohomology modules of finitely generated S-modules, even
when they themselves are not finitely generated modules.

Theorem 4.2. Let L be a finitely generated S-module and let a be an ideal of S.
Then, for almost all α, there is

Hj
a(L)α

∼= Hj
aα

(Lα), j � 0.

Proof. Since Hj
a(L) = lim−→ Extj

S(S/ai, L), j � 0, we have

Hj
a(L)α = lim−→ Extj

S(S/a
i, L)α.

Since Extj
S(S/ai, L)α

∼= Extj
Sα

(Sα/ai
α, Lα) by Lemma 2.5, we obtain

Hj
a(L)α

∼= lim−→ Extj
Sα

(Sα/a
i
α, Lα) = Hj

aα
(Lα)

for almost all α. �

We use E(S/m) to denote the injective envelope of S/m. Since E(S/m) = Ht
m(S),

E(S/m) can be specialized. We shall see that forming the injective envelope commutes
with a specialization.

Corollary 4.3. For almost all α, we have E(Sα/mα) ∼= E(S/m)α.

Proof. Set dim S = t. Then dimSα = t by Lemma 2.4. Since S and Sα are Goren-
stein rings, E(S/m) = Ht

m(S), and E(Sα/mα) = Ht
mα

(Sα) by [9, Corollary 10.1.10]. By
Theorem 4.2, E(S/m)α = Ht

m(S)α = Ht
mα

(Sα) = E(Sα/mα) for almost all α. �

Now k will be assumed to be a perfect field. The preservation of the Buchsbaum
property of modules by specialization was proved in [8, Corollary 3.8] by using its char-
acterization in terms of systems of parameters. This result will be now reproved by using
Theorem 4.2.

Theorem 4.4. Let L be a Buchsbaum S-module. Then Lα is a Buchsbaum Sα-module
for almost all α.

Proof. By [10, Corollary 2.16] the Buchsbaum property of L means that the canon-
ical map φi

L : Exti
S(S/m, L) → Hi

m(L) is surjective for all i < dim L. We have dimLα =
dim L by Lemma 2.4. Since Exti

S(S/m, L)α
∼= Extj

Sα
(Sα/mα, Lα) by Lemma 2.5 and

Hi
m(L)α

∼= Hj
mα(Lα) by Theorem 4.2, φi

Lα
are surjective for all i < dim Lα by Theo-

rem 3.20. Thus, Lα is a Buchsbaum module. �

Recall that, more generally, a non-zero finitely generated module L of dimension d > 0
is said to be a generalized Cohen–Macaulay module if Hi

m(L) is finitely generated for all
i = 0, . . . , d − 1 (see, for example, [12]).
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Theorem 4.5. Let L be a generalized Cohen–Macaulay S-module. Then Lα is also a
generalized Cohen–Macaulay Sα-module for almost all α.

Proof. Assume that L is a generalized Cohen–Macaulay S-module of dimension d >

0. We have dimLα = d by Lemma 2.4. Since Hi
m(L) is finitely generated for all i =

0, . . . , d − 1, Hi
m(L)α is also finitely generated for all i = 0, . . . , d − 1 by Corollary 3.19.

But Hj
mα(Mα) ∼= Hj

m(L)α by Theorem 4.2, so Hj
mα(Mα) is finitely generated for all i =

0, . . . , d− 1. Thus, Lα is also a generalized Cohen–Macaulay Sα-module for almost all α.
�

In [1], the ith pseudo-support Psuppi(L) and ith pseudo-dimension psdi(L) of L are
defined as follows:

Psuppi(L) = {p ∈ Spec(S) | H
i−dim S/p

pSp
(Lp) �= 0},

psdi(L) = sup{dim S/p | p ∈ Psuppi(L)}.

Let q be an m-primary ideal of S. The multiplicity of local cohomology modules is defined
by

e′(q, Hi
m(L)) =

∑
p∈Psuppi(L),

dim S/p=psdi(L)

�Sp
(Hi−dim S/p

pSp
(Lp))e(q, S/p).

We shall see that the pseudo-dimension and the multiplicity of local cohomology modules
of L are preserved under specializations.

First recall that a sequence of elements a = a1, . . . , ap in m is a multiplicity system of
L if λ(L/(a)L) is finite, where λ is the length of modules. Let q = (a1, . . . , ap)S, an ideal
of S. Let d denote the dimension of L. We know that the multiplicity of L with respect
to q is defined as the number

e(q, L) = lim
h→∞

λ(L/qhL) · d!
hd

.

Note that e(q, S) will be denoted by e(q). The following lemma shows that the multiplicity
of L with respect to q is unchanged by a specialization.

Lemma 4.6. Let L be a finitely generated S-module of dimension d and let

q = (y1, . . . , yd)S

be a parameter ideal on L. Then e(qα; Lα) = e(q; L) for almost all α.

Proof. Since y1, . . . , yd ∈ PS, for almost all α there are (y1)α, . . . , (yd)α ∈ PαSα.
By Lemmas 2.3 and 2.4, dim Lα/((y1)α, . . . , (yd)α)Lα = dimL/(y1, . . . , yd)L = 0. Then
(y1)α, . . . , (yd)α is a system of parameters on Lα. Since

λ(L/q
hL) = λ(Lα/q

h
αLα), for all h ∈ N,

by [8, Proposition 2.8] and by Lemma 3.1, e(qα; Lα) = e(q; L) for almost all α. �
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Set Ki
L = HomS(Hi

m(L), E(S/m)), i = 0, . . . , d. The modules Ki
L are again finitely

generated S-modules. Clearly, Ki
L = 0 for all i < 0 and i > dim L. We often write KL

instead of Kd
L. This module KL is called the canonical module of L (see [1,10]).

Lemma 4.7. Let L be a finitely generated S-module. Then (Ki
L)α

∼= Ki
Lα

, i = 0, . . . , d,
for almost all α.

Proof. By Lemma 2.4, dim Lα = dimL = d for almost all α. Since Hj
mα(Lα) ∼=

Hj
m(L)α by Theorem 4.2 and E(Sα/mα) ∼= E(S/m)α by Corollary 4.3,

HomS(Hi
m(L), E(S/m))α

∼= HomSα(Hi
mα

(L), E(Sα/mα))

by Proposition 4.1 and so (Ki
L)α

∼= Ki
Lα

for almost all α. �

Proposition 4.8. Let L be a finitely generated S-module and q an m-primary ideal
of S. Set n = mα. Then, for almost α, we have

(i) an ideal b of S with Psuppi(L) = V (b) such that Psuppi(Lα) = V (bα),

(ii) e′(qα, Hi
n(Lα)) = e′(q, Hi

m(L)),

(iii) psdi(Lα) = psdi(L).

Proof. (i) By [1, Proposition 1.2 (iii)], Psuppi(L) = Supp(Ki
L) = V (b), where

b = AnnKi
L. Since (Ki

L)α
∼= Ki

Lα
by Lemma 4.7 and bα = (AnnKi

L)α = AnnKi
Lα

by
Lemma 2.4, Psuppi(Lα) = Supp(Ki

Lα
) = V (bα).

(ii) By [1, Proposition 1.2 (ii)], we know that

e′(q, Hi
m(L)) = e(q, Ki

L) and e′(qα, Hi
n(Lα)) = e(qα, Ki

Lα
).

Since (Ki
L)α

∼= Ki
Lα

by Lemma 4.7 and e(qα, (Ki
L)α) = e(q, Ki

L) by Lemma 4.6,

e(qα, Ki
Lα

) = e(q, Ki
L).

Hence, e′(qα, Hi
n(Lα)) = e′(q, Hi

m(L)).

(iii) By [1, Theorem 2.4], we know that psdi(M) is equal to the dimension of Hi
m(L).

Since AnnHi
n(Lα) = AnnHi

m(L)α by [8, Lemma 3.5], upon simple computation, we get
dim Hi

n(Lα) = dimHi
m(L). Hence, psdi(Lα) = psdi(L) for almost all α. �

We want to prove again that specializations of graded modules preserve the Castel-
nuovo–Mumford regularity (see [3,6]).

For a finitely generated graded R-module L =
⊕

t∈Z
Lt, we set

a(L) =

{
max{t | Lt �= 0} if L �= 0,

−∞ if L = 0,

reg(L) = max{a(Hi
m(L)) + i | i � 0}.

The number reg(L) is called the Castelnuovo–Mumford regularity of L.
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In [6] it is known that if F =
⊕s

j=1 R(−hj) is a free graded R-module, then its spe-
cialization Fα =

⊕s
j=1Rα(−hj) is again a free graded R-module and if

φ :
s1⊕

j=1

R(−h1j) →
s0⊕

j=1

R(−h0j)

is a graded homomorphism of degree 0, then the homomorphism

φα :
s1⊕

j=1

Rα(−h1j) →
s0⊕

j=1

Rα(−h0j)

is also a graded homomorphism of degree 0. Therefore, Lα is a graded Rα-module for
almost all α if L is a finitely generated graded R-module, and if

F• : 0 → F�
φ�−→ F�−1 → · · · → F1

φ1−→ F0

is a minimal graded free resolution of L, then the complex

(F•)α : 0 → (F�)α
(φ�)α−−−→ (F�−1)α → · · · → (F1)α

(φ1)α−−−→ (F0)α → Lα → 0

is a minimal graded free resolution of Lα with the same graded Betti numbers for almost
all α. Now we shall see that the Castelnuovo–Mumford regularity of a graded R-module
is preserved under specializations.

Proposition 4.9. Let L be a finitely generated graded R-module. For almost all α,
we have reg(Lα) = reg(L).

Proof. The equality a(Hi
m(L)α) = a(Hi

m(L)) follows from the definition of Hi
m(L)α.

Since Hi
a(L)α

∼= Hi
aα

(Lα) by Theorem 4.2, a(Hi
mα

(Lα)) = a(Hi
m(L)α) for most all α.

Hence, reg(Lα) = reg(L) for almost all α. �

Acknowledgements. The author is grateful to N. V. Trung for his guidance and
encouragement during the preparation of this paper and to Iain Gordon (an editor of the
journal) and the referee for suggestions.

References

1. M. Brodmann and R. Y. Sharp, On the dimension and multiplicity of local cohomology
modules, Nagoya Math. J. 167 (2002), 217–233.

2. S. Eilenberg and N. Steenrod, Foundations of algebraic topology (Princeton Univer-
sity Press, 1952).

3. D. Eisenbud and S. Goto, Linear free resolutions and minimal multiplicity, J. Alg. 88
(1984), 89–133.

4. W. Krull, Parameterspezialisierung in Polynomringen, Arch. Math. 1 (1948), 56–64.
5. H. Matsumura, Commutative ring theory (Cambridge University Press, 1986).
6. D. V. Nhi, Specialization of graded modules, Proc. Edinb. Math. Soc. 45 (2002), 491–506.
7. D. V. Nhi and N. V. Trung, Specialization of modules, Commun. Alg. 27 (1999),

2959–2978.

https://doi.org/10.1017/S0013091505000891 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505000891


Specializations of direct limits and of local cohomology modules 475

8. D. V. Nhi and N. V. Trung, Specialization of modules over a local ring, J. Pure Appl.
Alg. 152 (2000), 275–288.

9. J. R. Strooker, Homological questions in local algebra (Cambridge University Press,
1990).

10. J. Stückrad and W. Vogel, Buchsbaum rings and applications (Springer, 1986).
11. N. V. Trung, Spezialisierungen allgemeiner Hyperflächenschnitte und Anwendungen,
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