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Abstract

Let K be a field of prime characteristic p and let G be a finite group with a Sylow p -subgroup of
order p. For any finite-dimensional K G-module V and any positive integer n, let L"( V) denote the nth
homogeneous component of the free Lie K-algebra generated by (a basis of) V. Then Ln( V) can be
considered as a K G-module, called the nth Lie power of V. The main result of the paper is a formula
which describes the module structure of L"( V) up to isomorphism.

2000 Mathematics subject classification: primary 17B01; secondary 20C20.

1. Introduction

Let G be a group and K a field. For any finite-dimensional K G-module V, let L (V) be
the free Lie algebra over K freely generated by any K -basis of V. Then L( V) may be
regarded as a K G-module on which each element of G acts as a Lie algebra automor-
phism. Furthermore, each homogeneous component Ln(V) is a finite-dimensional
submodule, called the nth Lie power of V.

In this paper we consider the case where K has prime characteristic p and G is a
finite group with a Sylow p-subgroup of order p. We give a formula which describes
L"( V) up to isomorphism for every finite-dimensional #" G-module V. The formula
has a strong resemblance to Brandt's character formula in characteristic zero [4], but
the proof is much deeper.

In [6] a similar (but slightly simpler) formula was obtained for the case where G
is cyclic of order p. The present paper builds on [6] and earlier papers by the author,
Kovacs and Stohr: particularly [9]. The results cover the symmetric group of degree r
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402 R. M. Bryant [2]

with p < r < 2p and the general linear group GL(2, p). These cases were studied
in [8, 17, 10], but closed formulae could not be given there except in special cases.
We shall examine some of the connections between these papers and the present paper
in Section 7 below.

For any group G and any field K, we consider the Green ring (representation
ring) RKG- This is the ring formed from isomorphism classes of finite-dimensional
K G-modules, with addition and multiplication coming from direct sums and tensor
products, respectively. For any finite-dimensional K G-module V we also write V for
the corresponding element of RKG. Thus V corresponds to the nth tensor power of
V, and L" (V) may also be regarded as an element of RKG.

In [5] it is shown that there exist 2-linear functions $>l
KG, ^2

KG, . . . on RKC such
that, for every finite-dimensional K G-module V and every positive integer n,

(1.1) L"(V) = -
n

(The sum on the right-hand side is divisible by n in RKc-) The functions <$n
KC are

called the Lie resolvents for G over K. As shown in [5],

(1.2) <!>n
KG

d\n

where \JL denotes the Mobius function. Furthermore,

(1.3) <$>\c = M(n)^5 when char(^) \ n;

here 1̂ 5 denotes the nth Adams operation on RKG formed by means of symmetric
powers (see Section 2 below). In particular, <t>̂ G is the identity function.

Let G be any group and let K be a field of prime characteristic p. Define Z-
linear functions ££G : RKG —*• RKG as follows. For n not divisible by p define
££ c = ix(n)^r^. In particular, i;l

KG is the identity function. Define f £ c = <£>P
KG, that

is, ££C(V) = pLp(V) - V for every finite-dimensional K G-module V. For it > 1,
with k even, define

(Note that functions are written on the left and o denotes composition of functions.)
For k > 1, with k odd, define

Finally, for n = pkm, where p \ m, define ££ c = f£G o f ™c. Thus the functions f£
are defined in terms of /?th Lie powers and Adams operations.
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[3] Modular Lie representations of finite groups 403

THEOREM 1.1. Let K be a field of prime characteristic p and let G be a finite
group with a Sylow p -subgroup of order at most p. Then, for every finite-dimensional
KG-module V,

Ln{V) = -
n «/,„

In other words, the Lie resolvents are given by <t> ĉ = ££G for all n. More can be
said in the cases where G is a p'-group and where the Sylow p-subgroup is normal:
see the beginning of Section 7 and the last part of Section 6, respectively.

COROLLARY 1.2. Let K, p, G and V be as in the theorem. Let n be a positive
integer, and write n = pkm where p \m. Then <t>"KG = $>P

KG o <t>£G and

L"{V) = —h
r i=0

The first statement comes from the fact that ££G = £P
KG o ££G, by definition of f £G.

The second statement then follows by (1.1): we write each divisor d of n as d = p 'q,
where 0 < i < k and q \ m, and use the facts that <t>d

KG = $>P
KG o <Pq

KG and each 4>^G

is linear. Hence the structure of arbitrary Lie powers is determined by the functions
<t>̂ G and mth Lie powers for integers m not divisible by p. It would be interesting to
know if the corollary is true for all groups.

If we wish to use Theorem 1.1 for a particular group G we need to be able to
calculate the functions f £G. Thus we need to be able to find ££G (or, equivalently, pth
Lie powers) and the Adams operations \fr^. In Sections 6 and 7 we discuss how this
might be done provided that enough information is available about the group G. The
calculation of the \J/^ is simplified a little by the fact that these functions are periodic in
n, as shown in Section 7. It is clear, however, that there will be significant difficulties
in practice except in small special cases such as where the Sylow p -subgroup of G is
normal and self-centralizing.

2. Preliminaries

Throughout this section K is any field. We start by considering an arbitrary group G,
but in the second half of the section G will be finite.

We have already mentioned the Green ring RKG. This is a free Z-module with a
basis consisting of the (isomorphism classes of) finite-dimensional indecomposable
AT G-modules. We write rKG for the Green algebra, defined by FKG = C <g>z RKG-
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Thus FKG is a commutative C-algebra. The identity element of rKG, denoted of
course by 1, is the isomorphism class of the trivial one-dimensional A^G-module.

For any extension field K of K there is a ring homomorphism i : RKG -*• /?£G

determined by V \-* K <S>K V for every finite-dimensional A"G-module V. It follows
from the Noether-Deuring Theorem (see [11, (29.7)]) that i is an embedding.

If 9 : A —> Bis a homomorphism of groups, thenevery ATB-module V can be made
into a KA -module by taking the action of each element g of A on V to be the same as
the action of 9{g). Thus 9 determines a ring homomorphism 9* :RKB^-RKA.lf9'\s
surjective then 9* is an embedding. If A is a subgroup of B and 9 is the inclusion map
then 6* is called restriction from B to A and, for V e RKB, we sometimes write ViA

instead of 9 *(V).
If V is a finite-dimensional ATG-module then, for every positive integer n, Ln(V)

denotes the nth Lie power of V, as already defined. Similarly, f\"(V) denotes the nth
exterior power of V, and 5"( V) the nth symmetric power of V. All of these are finite-
dimensional K G-modules and may be regarded as elements of RKG. The exterior and
symmetric powers may be encoded by their Hilbert series /\( V, t) and S( V, t). These
are the power series in an indeterminate t with coefficients in RKG defined by

S(V,t) = l + Sl(V)t +

We shall need to use the two types of Adams operations on RKG defined by means
of exterior powers and symmetric powers. Following [5] and [6] we denote these by
t/f" and Vs> respectively. We summarise the basic facts and refer to [5] for further
details. In the ring of all symmetric functions in variables x\,x2,..., the nth power
sum may be written as a polynomial in the elementary symmetric functions and as a
polynomial in the complete symmetric functions:

(2.1) x l + x n
2 + --- = p m ( e u . . . , e n ) = t T n ( h u . . . , h H ) .

For each positive integer n, ^ " and ^J are Z-linear functions on RKG such that, for
every finite-dimensional K G-module V,

(2.2) s

(2.3) ^A(V) - +l(V)t + irl{V)t2 - •• • = |-logA(V, t),
t

(2.4) x/,ls(V) + Vl(V)r + fl(V)t2 + • • • = ± logS(V, t).
at

Also, T̂ A = V*s when char(AT) f n. Furthermore, the following result was established
in [5, Theorem 5.4].
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LEMMA 2.1. Letq and n be positive integers such that q is not divisible by char(K).
Then flofl = yjrT and ^j o f»s = ff.

In Section 1 we described the basic properties of the Lie resolvents <&"KG- Like
the Adams operations, these are 2-linear functions on RKG- Also, in Section 1, we
defined 2-linear functions ££G on RKG in the case where K has prime characteristic
p. We shall establish some elementary properties of these various functions on RKG-
Whenever we discuss %KG we assume implicitly that K has prime characteristic p.

LEMMA 2.2. Let 0 : A —> B be a homomorphism of groups, yielding the ring
homomorphism 9* : RKB -*• RKA- Then, for every positive integer n and every
finite-dimensional KB-module V,

L"(8*(V))=e*(Ln(V)), /\"(8\V)) = 9*(An(V)), Sn(6*( V)) = 0*(S"( V)).

PROOF. This is straightforward. •

LEMMA 2.3. Let 6 : A —> B be a homomorphism of groups, yielding the ring
homomorphism 6* : RKB ->• RKA- Then, for every positive integer n,

x/,nA o e* = e* o v^, Vs°o* = o*°Vs,

PROOF. The results for V", fn
s and <f>n

KG follow from (2.2), (1.2) and Lemma 2.2.
The result for ££G follows from its definition. •

LEMMA 2.4. Let i : RKG ~+ RKG be the ring embedding associated with an ex-
tension field K of K. Then, for every positive integer n and every finite-dimensional
K G-module V,

= i o

PROOF. This is similar to the proof of Lemmas 2.2 and 2.3. •

LEMMA 2.5. Let V be a finite-dimensional K G-module, and I a one-dimensional
K G-module. Then, for every positive integer n,

Ln(IV) = InLn(V), An(IV) = In/\"(V), S"(IV) = InSn(V),
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PROOF. This is mostly straightforward. For the statement about <&"KC(I), note that
Ld(r/d) = 0 for divisors d of n such that d > 1. The statement about ££G(/) comes
easily from its definition, using the results for i/rj(/) and <&P

KC(I)- D

From now on in this section, assume that G is finite, and write p — char(A"). (We
are particularly interested in the case where p ^ 0.) Let K be the algebraic closure
of K and let Gp> be the set of all elements of G of order not divisible by p. Let A
be the C-algebra consisting of all class functions from Gp> to C, that is, functions S
such that S(g) — S(g') whenever g and g' are elements of Gp> which are conjugate
in G. Let c be the least common multiple of the orders of the elements of Gp,
and choose and fix primitive cth roots of unity £ in K and co in C. Then, for every
finite-dimensional K G-module V we may define the Brauer character of V to be the
element Br( V) of A such that if g 6 GP' has eigenvalues £* ' , . . . , £*' in its action
on V then Br( V)(g) = cokl H 1- cokr. (See [3, Section 5.3].) Furthermore, we
may extend the definition linearly so that Br( V) is defined for an arbitrary element V
of TKG. Then Br : TKG -> A is a C-algebra homomorphism.

For each positive integer n, define a function Vo : A -> A by ir^{^)(g) — &(g")
for all 8 e A and g e Gp>. Clearly y^ is an algebra endomorphism of A and

(2.5) K°K = K\

for all positive integers m and n.

LEMMA 2.6. Let V be a finite-dimensional K G-module. Then, for all n,

PROOF. This is well known: however, for the reader's convenience we sketch a
proof. If g e Gp> has eigenvalues £* ' , . . . , £*' on V, then, for i = 1 , . . . , n,

Br(A'( V))(g) = et(cok\ . . . . cok'), Br(5'( V))(g) = /z, V , . . . , a*).

Thus, by (2.2) and (2.1),

BrW(V)Hg) = pn {ex{<ok\ ..., <ok'),..., en(a>k\ • • •, ook'))

= a/"1 + • • • + cok'n = Br(V)(g") = W(Br(V))(g).

This gives the result for ^"- The result for \jr^ is similar. •

The following result is Brandt's character formula [4], as generalised to Brauer
characters (see, for example, [7, (5.4)] or [17, (2.11)]).
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LEMMA 2.7. Let V be a finite-dimensional KG-module. Then, for all n,

Br(Ln(V)) = - yV(rfWo(Br( V"'d)).

We can now calculate the Brauer characters associated with $>n
KG and ££G.

LEMMA 2.8. Let V be a finite-dimensional KG-module. Then, for all n,

PROOF. By(l.l),Br(Z/I(V)) = ^ E r f , n B r ( ^ G ( V"/d)). Hence, by Lemma 2.7 and
induction on n, we have Br(4>^.G( V)) = fj,(n)\lr^ (Br( V)). It remains to prove that
Br(f£c( V)) = A£(n)Vro"(Br( V)) for all n.

If p \ n then ££G(V) = /x(n)^(V) and the result follows by Lemma 2.6. Also,
££G = <t>p

KG, so the result for £P
KG follows from the first part. This implies that

(tf)) = -V0
P(Br(60) for all U e RKG.

Suppose that k > 1 and k is even. Then, by the definition of ££G,

Hence, by Lemma 2.6 and the result for f ££c,

Therefore, by (2.5), B r ( ^ G ( V)) = 0 = M(p*)^ ' (Br( V)). Thus the result holds for

££G. The result for $P
KG when /: > 1 and A: is odd is proved in a similar way using the

results for f£G and ££c .

Now suppose that n = pkm, where p f w. Then, by the definition of ££G,

Br(f"c( V)) = '

This is the required result. D

Recall that RKG has a 2-basis consisting of the finite-dimensional indecomposable
K G-modules. Let (RKG\mi and (̂ ArG)nonp be the Z-submodules spanned, respectively,
by the projective and the non-projective indecomposables. Then, for V e RKG, we
can write V = Vproj + Vnonp, uniquely, where Vproj e (RKG)ptoi and Vnonp e (RKc)nonP-

LEMMA 2.9. Let U, V e /?JCG- (T t4onP = Kemp and Br(U) = Br( V) then U = V.
In particular, if G is a p'-group and Br( U) = Br( V) then U = V.

PROOF. The hypotheses yield Br(f/proj) = Br(Vprcij). However, if W and W are
finite-dimensional projective A" G-modules such that Br(W) = Br( W) then W = W
(see [3, Corollary 5.3.6]). Thus U^ = Vproj, and so U = V. •
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3. Exterior and symmetric powers

Throughout this section, let K be a field of prime characteristic p and let G be a
finite group with a normal Sylow p-subgroup of order p. As we shall see, there are
certain basic indecomposable ATG-modules Ju J2,..., Jp. The main purpose of this
section is to give formulae for the power series f\(Jr, t) and S(Jr, t). The formula for
f\(Jr, t) is due to Kouwenhoven [15] and was also proved by Hughes and Kemper [14].
The formula for S(Jr, t) is a corollary of a result in [14].

Kouwenhoven's results are primarily concerned with GL(2, p) and go beyond what
is required here. In order to keep the treatment as simple as possible we have therefore
chosen to follow [14]. However, we use slightly different notation and we consider
right KG-modules instead of left /^G-modules. If V is a left /<: G-module then V
becomes a right AT G-module by defining vg = g~lv for all v e V, g e G. This
gives a one-one correspondence between left and right £G-modules. We shall use
this correspondence in order to interpret the results of [14] as results about right KG-
modules, noting that the correspondence commutes with taking direct sums, tensor
products, exterior powers and symmetric powers.

Let P be the (normal) Sylow p -subgroup of G. Thus P has a complement
in G, and G is a semidirect product, G = HP, where H is a p'-group. Let
P = [I, a, ... ,ap~1}. There is a right action of P on the group algebra KP given
by multiplication and a right action of H given by a' h-> h~xa'h for all h e H and
/ = 0, . . . , p — 1. In this way KP becomes a right £ G-module. For r = I,... ,p,
the rth power of the augmentation ideal is KP{a — l ) r , and this is invariant under
the action of G. Thus, for r = 1 , . . . , p, we obtain a right # G-module Jr defined by
Jr = KP/KP(a — l)r. It is easily verified that Jr has dimension r and corresponds
to the left module Vr of [14]. (Also, the isomorphism class of JT does not depend on
the choice of complement H.) Furthermore, Jx = 1 in the Green ring RKG.

For each h e / / , let m(h) be the element of {1, ...,p — 1} determined by
hrxah = amW, and let m(h) also denote the corresponding element of the prime sub-
field of K. There is then a homomorphism a : H ->• K \ {0} given by a(h) = m(h)
for all h. This yields a one-dimensional right K//-module, which we also denote
by a. Furthermore, we regard a as a right K G-module, by means of the projection
G -> H. It is easily verified that this module corresponds to the left K G-module
denoted by Va or a in [14]. In RKG, as in RKH, we have ap~l = 1. Indeed, a has
multiplicative order q where q = \H/CH(P)\-

As shown by the pullback construction described in [14], there exists a finite p ' -
group H and an extension field K of K with homomorphisms 0 : H -*• H and
P : H -+ K \ {0} such that 6 is surjective and P(h)2 = a(9(h)) for all h e H. Let G
be the semidirect product HP with P normal such that, for all h € H, the action of
h on P by conjugation is given by the action of 6{h). Thus 0 extends to a surjective
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[9] Modular Lie representations of finite groups 409

homomorphism 9 : G —> G which is the identity on P.
We regard the ring /?n-casa subring of RgG by means of the embedding i : R^c ~+

RKC described at the beginning of Section 2. Also, we regard RgG as a subring of /?£g
by means of the embedding 9* obtained from 9 : G —> G, as described in Section 2.
Thus RKG is a subring of R%G- It is easily verified that the images under 9* o i of the
K G-modules Jr and a are isomorphic to the K G-modules defined in the same way for
G over K. Thus there is no conflict of notation. By Lemmas 2.2 and 2.4, the exterior
and symmetric powers of Jr in RKG are the same as the exterior and symmetric powers
of Jr in RgG. Thus we may use RgG in order to find expressions for f\(Jr, t) and
S(Jr, t).

We regard R^a as a subring of RgG by means of the embedding given by the
projection G -> H. Clearly a e RKH- The homomorphism ft : H -> K \ {0} yields
an element of Rgfj which we also denote by ft. From the properties of ft we see that
ft2 = a. Hence /52p~2 = 1 and ft~x exists. Note that if p = 2 we have a = 1 and
char(K) = 2: thus the definition of ft gives ft = 1 in this case.

As in [14], but using A instead of /x to avoid the notation for the Mobius function,
we extend R%G by an element X. satisfying A.2 — ft~' 72^ + 1 = 0 to form a commutative
ring /?£g[A.]. Note that this is a free RgG-modu\e: RggM = ^jf c © RKG^- Also, A. is
invertible in RKGM- We shall find expressions for /\(Jr, t) and 5(7r, t) as elements
of the power series ring /?/?g[^-][[?]]-

By [14, Lemma 1.3],

r - l

(3.1) J^p'-^k1-1-*,

for r = I,..., p. Also, by [14, Theorem 1.4], Rj(G[X] is generated by RgR and A,
that is, /?j?gW = RKHM- Tensoring with C we obtain Fjfg[A.] = FKHM, where
Tifg = C <g> RgG and r ^ = C <g> R^g.

By [12, (81.90)], the algebra T^g is semisimple. Thus it is isomorphic to the direct
sum of m copies of C, where m is the number of indecomposable K G-modules. Thus
there are exactly m non-zero algebra homomorphisms F^g -*• C. The restrictions to
RjcG of these homomorphisms are called the 'species' of fljfg. Note that if U, V e R^G

and </>([/) = <p (V) for every species <j> then U = V.
Let Mlp denote the subset of C consisting of all 2/?th roots of unity except for 1

and - 1 . Thus y2p~2 + y2p~4 + • • • + Y2 + 1 = 0 for all y e M*lp. By the proof of
[14, Theorem 1.6], for each y e [ft, ft'1} U Mi there is a C-algebra homomorphism
4>r • FKGW -> r j?£ given by <f>Y(x) = X for all x e T ^ and <py(X.) = y.

Also, for each h e H there is a C-algebra homomorphism eh : T^H ->• C such
that, for all x 6 ^KH< £*(X) is the value at h of the Brauer character of x , that is,

= Br(x)(A). For y e { ,̂ ^ - ' } U M*p and h e H, let </>A,y = eA o 0 y . Thus
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(j>h,y is a C-algebra homomorphism <phy : F^g[X] -> C. The following result is [14,
Theorem 1.6], apart from minor notational differences.

LEMMA 3.1. For each y € {/3, /?""'} U M\p and each h e H, the restriction of(phy

to RKG is a species of Rjcc- The homomorphisms (j>h,Y and 4>h',y' restrict to the same
species if and only ifh and h' are conjugate in H and y' e [y, y~l}. Every species of
Rj(G arises as the restriction of some </>h,y.

In particular, <f>h,p gives the same species as 4>h,p->- Since elements of R^c are
determined by their images under the species, we obtain the following result.

COROLLARY 3.2. Let U, V e RJCC- If<t>h,y(U) = </>/,,y( V) for all y e {0} U M*p

andallh e H, or if<f>Y{U) = (py(V) for all y e {p}UM*p, then U= V.

The description of /\(Jr, t) is as follows.

THEOREM 3.3 ([15, Lemma, page 1709]; [14, Theorem 1.10]). For r = 1, . . . , p,

r-l

j=0

We write W — Jp - aJp_i and a = 1 + a H (- ap~2, recalling that ap~] = 1.
By direct calculation from (3.1) we get the following result.

LEMMA 3.4. For the homomorphisms (pp and <py, where y e Af£ , we have

</>,(/„) = 0, <Py(JP-i) = - Y " ^ - \ <PY(W) = y"

For r = 1, . . . , p, write

xr = (i - i r -vxi - tpy\i - /\\jr)t + A2(jr)t
2 —

Thus, by Theorem 3.3,

r-\

Let the homomorphisms 0^ and <py act on I>g[A.][[r]] by action on coefficients. Then
it is easily verified that 4>p(Xr) = Y\j^o(l ~ a} t)~x and, for y e M*p,\j^o(l ~ a} t) and, for y e Mp,

r—l

7=0

https://doi.org/10.1017/S1446788700014531 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700014531


[11] Modular Lie representations of finite groups 411

Replacing a by Br(a)(h) and /S by Br(/J)(/i), for h e H, we obtain expressions for
4>h,p(Xr)and<t>h,y(Xr). Comparison with [14, Proposition 1.13] shows that 4>h,p(Xr) =
<t>h.fi(S(Jr>')) and (pH,y(Xr) = <ph,y(S(Jr, 0). Therefore, by Corollary 3.2, Xr =
S(Jr, t). Thus we have the following result.

THEOREM 3.5 (based on [14, Proposition 1.13]). For r = 1 , . . . , p,

s(jr, t) = (i - (jp - a v . r V ' x

r-\

= a - (/p -oyp_,r-y)(i - f)-1 ]~[a - ^- 'A. ' - 1-^)-1 .
7=0

4. Adams operations

We continue to use all the notation of Section 3. In particular, G is a finite group
with a normal Sylow p-subgroup of order p. We shall find expressions for the
elements irn

A{Jr) and ^(Jr) of RKG- By Lemmas 2.3 and 2.4, it suffices to find such
expressions within RKG- Recall that ap~l = 1 and ft2 — or, so that f}2p~2 = 1. For
r e { 1 , . . . , p) , we write a r = 1 + a + • • • + orr~1. Of particular importance is ap-\,
which we also denote by a, as in Lemma 3.4 above. For each non-negative integer /,
we have a ' a = a. Thus ctra = ra. The identity element of RKGM is denoted by 1
or Ju as convenient. As in Section 3, let W = Jp — aJp_\.

LEMMA 4.1. For every non-negative integer n,

wn = \-P>+1JP-i + JP if n is odd;

\pnJi + (l-Pn)JP if n is even.

PROOF. We use the homomorphisms (j>fi and <j>Y, for y € M\p, as defined in Sec-
tion 3. Note that these homomorphisms fix a and ft. Suppose that n is odd. Then, by
Lemma 3.4, we find <j>fi{ W) = 1 = <pp(-p

n+ljp^ + Jp) and

<(>Y{Wn) = ypp"+p-i = 0 , (-£"+'yp_, + Jp).

Thus, by Corollary 3.2, W = - £ " + 1 Jp^ + Jp. The proof for even n is similar. •

By Theorem 3.3 and (2.3),

r - l

J=O
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Hence, as stated in [15, page 1720],

r - l

(4.1) fn
A(Jr) = /S('-1)n ] T k{r-x~li)n for all r and n.

THEOREM 4 . 2 . Let k be a positive integer and let r € [ 1 , . . . , p } . If r is odd,

= 2,

(2(72-7,) ifk = \;

//"p is odd and r is even,

, p* . _ | - ry3ryp_, + arjp if k is odd;

' ~ | - r / 3 r + " - ' / ,_ , + arJp if k is even.

PROOF. We assume that p is odd, noting that the proof for p = 2 is similar but
much easier. Suppose first that r is odd. By (4.1),

j=0 j =0 ; =0

Also, by Lemma 3.4,

4>fi(rpr-\jx - Jp) + arjp) = -ryS'-'a + ar( l + a) = -ra + ar + ra = ar.

For y e M\p, (4.1) gives

Also, by Lemma 3.4, <j>Y(rp-\jx - Jp) + arjp) = rp"-1. Thus, for r odd, the result
follows by Corollary 3.2.

Now suppose that r is even. Note that r + p — pk = r (mod 2p - 2) if k is odd,
and r + p— pk = r + p — 1 (mod 2p — 2) if it is even. Thus it suffices to show that

By (4.1), 0/J(VA (-A-)) = a r , just as for r odd. Also, by Lemma 3.4,

rpr+p-pkJp_x + arjp) = -ra + a,(l + a) = -ra +ar + ra = ar.
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For y € M^, (4.1) gives

7=0

Also, by Lemma 3.4,

4>Y(-rpr+l'-''t Jp., +arjp) = rPr+'-'kY
p^-2 = r^y".

Thus the result again follows by Corollary 3.2. •

LEMMA 4.3. Let n be a positive integer and r e { l , . . . , p ) . Then

W A (p(y, - we-""/*) i / n s O (modp).

PROOF. By (2.4) and Theorem 3.5,

Hence, by (2.3) and multiplication by t,

= -pwr-ltp(i - wr-ltpyl +ptp(i -tpy\

The result follows by comparing coefficients. •

THEOREM 4 .4 . Let k be a positive integer and l e t r e { l , . . . , p } . I f r i s odd,

pk ,

V*S ("̂ r) = (P ~~ (P ~~ r)P ){J\ ~~ Jp) + arJp-
Ifr is even,

\p{J\-JP) + (p-r)pr+p-xJp-l+arJp if k is even.

PROOF. This holds for both p odd and p = 2. It follows by straightforward
calculations from Lemma 4.3, Theorem 4.2 and Lemma 4.1. •

LEMMA 4.5. For all k, i and r, ffia'Jr) = a '>f(7 r) .

PROOF. This follows from Lemma 2.5, since aipk = a'. •
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The following lemma is proved by direct calculation from Theorem 4.4 and
Lemma 4.5, using the linearity of \jrp and Vs •

L E M M A 4 . 6 . Let r e {I,... , p } . I f r i s odd,

(fp o tf)(J,) = (rjrf o VS
2)Ur) = (Vs2 o Vs)(Jr) = (fp o Vf )(•/,)

- r)pr~x + pctr){Jx - Jp) + arjp.

If r is even,

- r)pr + af)(J, - Jp)

- Jp)

(irf o 1rp
s)(Jr) =p(l-p + (p- rW + «r){Jx - Jp)

+ (p -r)PrJp_x+arJp,

Ws o ff)Ur) =pd-p + (p- r)^r+"-' + ar)Ui - JP)
+ (p -r)prjp_x+arjp.

The remaining lemma of this section follows easily from Theorem 4.4 and Lem-
ma 4.6. It is required for the calculations in Section 5.

LEMMA 4.7. Let r e {I,..., p}. Ifr is odd,

i-Vs + Vs ° Vs2 +PVS)Ur) = (~Vs + VS O Vs+PVs)Vr) = P^rh-

If r is even,

(-Vs + Vs o Vs +pVs)Ur) =p(p- r)pr(A + Pp-xJP-i - Jp)+parJu

i-Vs + Vs O Vs+pVsWr) =P(P~ rWVl + Jp-l ~ Jp)+P<*rJu

i-Vs2 + Vs ° Vs2 +pVs)Ur) =P(P~ O/T+'-Vi + p-lJP-x - JP)+parJx,

(-Vs + Vs°Vs2+pVs2)Ur)=p(p - r)fir+p-l{Jx + /,_, - Jp)+parJ{.

5. The key special case

Let K be a field of prime characteristic p, and let Q be a group of order p (p — 1)
generated by elements a and b with relations ap = 1, bp~l = 1 and b~xab = a1,
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where / is a positive integer such that the image of / in K has multiplicative order
p — 1. In other words, Q is isomorphic to the holomorph of a group of order p. In
this section we shall prove Theorem 1.1 for Q by proving the following result.

THEOREM 5.1. Let K be afield of prime characteristic p and let Q be isomorphic
to the holomorph of a group of order p. Then ^"KQ = ^qfor all n.

The K Q-modules Ju ..., Jp and a are defined as in Section 3. When convenient we
also use p such that /82 = a, as in Section 3. There are, up to isomorphism, precisely
pip — 1) indecomposable K Q-modules. In [6, Section 4] these were denoted by J, r,
for i = 0 , . . . , p — 2 and r = 1, . . . , p, and further details can be found there. It is
easily checked that, in the notation of the present paper, Jir — a'Jr.

By [6, Theorem 4.4] with i = 0, combined with [6, Lemma 4.1], we have

Jr for n = 1;

(5.1) y.(<t>£o o fs/d)(Jr) = -pUP ~ <*Jp-\ ~ J\) for n = p;
d\n 0 f o r n ̂  l , p ,

for r = 2, . . . , p. Also, by Lemma 2.5,

(5.2) ®"KQUI) = fi(n)Ju for all n, and

(5.3) <t>"KQ(a'jr) =am<i>n
KQ(Jr), for all n, i and r.

Equations (5.2)-(5.3) yield <J>^e(a'J,) for all n and all i. For r > 2, (5.1) and (5.3)
yield <$>"KQ(a'Jr) in terms of Adams operations and values of the functions ^d

KQ for
proper divisors d of n. Thus $>\Q, ^>2

KQ, • • • are the unique linear functions on RK0

satisfying (5.1H5.3).

LEMMA 5.2. Ifn = pkm where p \m, then <t>"KQ = Q>P
KQ o ix(m)rjf™.

PROOF. By [6, Theorem 4.4, Lemma 4.6 and Lemma 5.1 (ii)], we have ^n
KQ =

®"KQ ° ®KQ- The result follows by (1.3). •

By (5.1) with n = p, yjrp
s{Jr) + <t>"KQ(Jr) = -p(Jp - aJp^ - J,), for all r > 2.

However, KKQ = ^ C by m e definition of ££ e . Thus, for all r > 2,

(5.4) SP
:Q(Jr)=pJl+paJp_l-pJp - Vs{Jr).

Also, by Lemma 2.5,

(5.5) SK
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From the definition of ££ e , if n = pkm where p \ m, then

The following result is easily obtained from (5.5), (5.4) and Theorem 4.4. (Recall
that ft2 = a and a = 1 + a H h ap~2.)

LEMMA 5.3. Wehave Z;P
KQ(J\) — -J\ andi;p

KQ{Jp) — paJp^ - (1 + a)Jp. Also,
for p odd, ^ g ( 7 p _ i ) = (pa — y8p~')7p_i — a.Jp.

Since RKQ is spanned by the modules a'Jr, Theorem 4.4 and Lemma 4.5 give

(5.7) \lrp
s = Vs = ifPs = • • • and 1̂ 5 = \jfp = \j/p = • • • on RKQ-

LEMMA 5.4. Let m be a positive integer, where m > 3. Then

[ —V̂ S ~^~ V̂ S ° ^ 5 "I" P^frs 1—0.

P R O O F . Let x and x ' be the linear functions on RKQ defined by

-2 ~ -2 ~ ( _ I P2 , ; P I P

By (5.7), it suffices to prove that x = * ' = 0. By Lemma 4.5, \lrf(a'Jr) =<*'>£* (Jr)
for all k, i and r. Similarly, by Lemma 2.5, ^Q(a'Jr) = a'^Q(Jr). Hence it suffices
to show that xUr) = x'Ur) = 0 for all r. This follows by direct calculation from
Lemmas 4.7 and 5.3. •

COROLLARY 5.5. For all k>3, f£g = PKKQ-

PROOF. By (5.7) and the definition of ££*c, we have ££g = P2KKQ
 f « r all k > 4.

Thus it suffices to prove that ££ e = PKKQ- However,

L.O , P^ / I D , t.P I D\ I P , / I P^ , l _ D I P \

~~ %KQ° VS ~^~ \rS ~f~ S K O ° YS ) ° H ~t" P (rS ~^~ %K O ° ^ 5 )

This is equal to 0, by Lemma 5.4. Therefore KKQ = P^KQ-

LEMMA 5.6. For k>2, £ * = 0 zgQ o ff'' = 0.
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PROOF. For k = 2, the result follows from the definition of f £ e . Suppose that
m > 3 and that the result holds for k = m — 1. Then, by Corollary 5.5,

7=0 7=3

7=2

By definition, f£2
fi = - ( ^ " + ^ e o i / r s

f ) . Therefore ^ m
= 0 ?jfg ° Vs" ' is equal to

Vs + Vs o ^ " 2

This is equal to 0, by Lemma 5.4. Hence the result holds for k = m. By induction,
the result holds for all k > 2. •

PROOF OF THEOREM 5.1. We need to prove that <Z>n
KQ = ££ g for all n. By (5.6)

and Lemma 5.2, it suffices to prove that <t>p
KQ = i;p

KQ for all k > 0. We consider
(5.1)—(5.3) restricted to values of n which are powers of p. These equations uniquely

determine the linear functions ®1
KQ, Q'KQ.' ®PKQ< Hence it suffices to show that

the functions ^X
KQ, ££ e , £ £ e , . . . satisfy the same equations. Equations (5.2) and (5.3)

for the %P
KQ are given by Lemma 2.5. This leaves (5.1). For n = 1 the required result

is clear. For n = p it is given by (5.4). Finally, for n = pk with k > 2, the result is
given by Lemma 5.6. •

6. Normal Sylow subgroup

In this section we prove Theorem 1.1 for the case in which the Sylow p -subgroup
of G has order p and is normal. It suffices to prove the following result.

THEOREM 6.1. Let K be afield of prime characteristic p and let G be a finite group
with a normal Sylow p-subgroup of order p. Then 4>^G = ££Gfor all n.

We use the notation of Section 3. In particular, G = HP, where P is the Sylow
p-subgroup of G and H is a p'-group. We consider the ATG-modules J\,..., Jp

and a. When convenient we also use K, G, fi and k, as in Section 3.

LEMMA 6.2. The isomorphism classes of finite-dimensional indecomposable K G-
modules are represented by the modules I <8> Jr, where 1 < r < p and I ranges over
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a set of representatives of the isomorphism classes of irreducible K H -modules, these
being regarded as KG-modules through the projection G —* H.

PROOF. This is given by [14, Proposition 1.1], where it is not necessary to assume
that the field is a splitting field. See also [16, Proposition 4.4]. •

LEMMA 6.3. Let U and V be elements of RKG such that UIHoP = V\.HaP for every
cyclic subgroup HQ of H. Then U = V.

PROOF. This is given by [16, Corollary 4.4]. It can be obtained by applying
Lemma 6.2 to G and to the subgroups H0P. •

LEMMA 6.4. Let U be afinite-dimensional KH-module, regarded as a KG-module.
Then, for r = 1 , . . . , p and every positive integer n,

PROOF. By Lemma 2.4, we may assume that K is algebraically closed. By Lem-
mas 6.3 and 2.3 it suffices to prove the corresponding results for the subgroups HQP,
where Ho is a cyclic subgroup of H. Thus we may assume that H is cyclic. There-
fore U is isomorphic to the direct sum of one-dimensional modules, and it suffices
to consider the case where U is one-dimensional. Let \jfn denote either \fr", tff^, <£>n

KG

or ££c. Thus, by Lemma 2.5, f{UJr) = U"fn(Jr) and U" = fn
A(U) = irn

s{U).
The result follows. •

L E M M A 6.5. For r = l,...,p and all n, $>"KG(Jr) = ££c(. /r)-

PROOF. Let Q be the holomorph of P, identified with the group Q of Section 5.
Thus Q = Aut(P)P where P is generated by a and Aut(P) is generated by b. The
action of H on P by conjugation gives a homomorphism H —• Aut(P). This extends
to a homomorphism r : G —> Q which is the identity on P and gives a homomorphism
r* : RKQ —> RKG- It is easy to check that r*(7r) = Jr (using the same notation Jr

in connection with both Q and G). By Theorem 5.1, $>"KQ(Jr) = ^Q(Jr). Hence
f ( * J e ( / , ) ) = r*(rKQUr)). Therefore <t>"KG(Jr) = ? £ c ( / r ) , by Lemma 2.3. •

PROOF OF THEOREM 6.1. By Lemma 6.2, it suffices to show that we have

for r = l,...,p and all irreducible K//-modules / . However, by Lemma 6.4,
VKG(Ur) = K(O*>n

KG(Jr) and # c ( / 7 , ) = TK(DSn
KGUr). Thus the result follows

from Lemma 6.5. •
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If we wish to apply Theorem 1.1 for our group G with a normal Sy low p -subgroup
we need to know the Adams operations on RKG and the functions ££G (or, at least,
£P

KG). By Lemmas 6.2 and 6.4, these can be obtained from the Adams operations on
RKH and the values of the Adams operations and the functions %P

KG on the modules
Jr. These values of t,pKG are given by the following result, in the notation of Section 3.
(Recall that fi1 = a. and ar = 1 + a + \- ar~~\)

LEMMA 6.6. We have $P
KG(J\) = — J\ andi;p

K'G{Jx) = 0. For r > 2,

I paJp-\ + (p — r)j3r~l(Jl — Jp) — arjp if r is odd;

paJp-i — (p — r)fir Jp-\ — arJp if r is even,

r _ \pa(p - (p - r)Pr~l - a r ) / p_i if r is odd;

[ - (p - r)/3r - ar)Jp_i if r is even.

Furthermore, %p
KG(Jr) = P?ifc Ur) for all r and k > 3.

PROOF. Weusethehomomorphismr* : RKQ—* RKG, as in the proof of Lemma 6.5.
As observed there, r*(Jr) = Jr. It is also easy to verify that r*(a) = a (using the
same notation a in connection with both Q and G). The powers of ft in the formulae
of the lemma are actually powers of a, since £2 = a. Thus, by Lemma 2.3, it suffices
to prove these formulae for Q instead of G. The results for f £ e are obtained by
straightforward calculations from (5.4), (5.5) and Theorem 4.4. Also, by definition,
KPKQ(Jr) = -VsUr) - ttaiVsUr))- This allows the calculation of K"KQ- T h e l a s t

statement of the lemma is given by Corollary 5.5. •

As far as Adams operations on RKG are concerned, we only need finitely many
because of the periodicity given by the following result.

LEMMA 6.7. Let q = \H/CH(P)\ and let e be the least common multiple of2pq
and the orders of the elements ofH. Then, for all n, fn

A = fA
+e and ^ = fs+e-

PROOF. This was proved in [16, Proposition 4.7], using results for GL(2, p). We
sketch an independent proof.

By Lemma 6.2 it suffices to show that we have \J/"(IJr) = Tjf"+e(IJr) and
fn

s{Ur) = t"s+
e{Ur) for r = 1 p and all irreducible K//-modules / . By

Lemma 2.6 and the choice of e, the elements f^l), f"+e(I), fs(V a n d V^+e(J) of
RKH have the same Brauer character. Thus they are equal, by Lemma 2.9. Therefore,
by Lemma 6.4, it suffices to prove that ^ ( 7 r ) = ^"+e(Jr) and rfr^(Jr) = ffUr)-
In fact we prove the stronger result that, for all n, iA"(/r) = ilf"+2pg(Jr) and
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fn
s(Jr) = V r ^ V r ) - For this we may assume that K = K and G = G, in the

notation of Section 3. By (4.1),

r-\ r-\

J ) = flt'-On V^^(r-l-2/)n ^/n+2P1(J ) = a(r-l)(n+2pq) V"* ^(r-

j=0 7=0

However, £(r~1>n = (̂»--i)(«+2p9)j s j n c e fy* = 1. Also, from the formula for Jp

given by (3.1), k2p - 1 = (A2 - l)A/'-10-''+1y;, e fi, where fi is the ideal of fl*:G[A]
generated by Jp. Therefore ^"+2pq(Jr) = f"(Jr)+ U, where £/ e nn / ?* G . However,
£2 n /?jfC = RKGJP- Thus £/ e (/?ĵ G)proj. in the notation at the end of Section 2.
Also, by Lemma 2.6, Br(\fc+2pq(Jr)) = B r ( ^ ( 7 r ) ) . Thus 1/"+2pq(Jr) = ifn

A(Jr) by
Lemma 2.9. From this we obtain Vfs+2/>*("A-) = V*s(-A-) by Lemmas 4.3 and 4.1. •

The values of the Adams operations on the Jr can, at least in principle, be calculated
using (4.1) and Lemma 4.3. (See [1] for corresponding calculations for the group of
order p.)

7. The general case

Let K be a field of prime characteristic p . If G is a finite p'-group then 4>^G = f£G

for all n, by Lemmas 2.8 and 2.9. (Indeed, we also have <i>̂ G = /j.(n)rjr^ by
Lemmas 2.6 and 2.8). Thus, to complete the proof of Theorem 1.1, we only need
consider the case where G is a finite group with a Sylow p-subgroup P of order p.
We write Af for the normalizer of P in G. Thus N is a finite group with a normal
Sylow p -subgroup of order p, and the results of Sections 3-6 apply (with N replacing
G). We write N = HP, where H is ap'-group.

The subgroup P of G is a trivial-intersection set, so a simple form of the Green
correspondence applies (see [2, Theorem 10.1], where the field does not need to be
algebraically closed): there is a one-one correspondence between finite-dimensional
non-projective indecomposable X"G-modules and finite-dimensional non-projective
indecomposable ATM-modules. Here, if V corresponds to V* then V\,N is the direct
sum of V* and a projective module. It follows that if V, V e RKG and ViN = V'iN

then Vnonp = Vn'onp. The proof of Theorem 1.1 is completed by the following result.

THEOREM 7.1. Let K be afield of prime characteristic p and let G be a finite group

with a Sylow p-subgroup of order p. Then ®n
KG = ^Kcfor a^ n-

PROOF. Let V be a finite-dimensional AT G-module. Then, by Theorem 6.1 and
Lemma 2.3, ^ctVO-l-Ar = £ £ G ( ^ H W Hence, by the Green correspondence,
**<;( VOnonp = & c ( V W However, Br (*J c (V) ) = Br«£ c (V)) , by Lemma 2.8.
Therefore <t>J-G( V) = ££c( V), by Lemma 2.9. This gives the required result. •
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By Theorem 1.1 we can calculate all Lie powers L" (V) if we can find tensor powers,
Adams operations and the pth Lie powers of all indecomposables. By the next result,
only finitely many Adams operations need to be found. With H as defined above, let
q — \H/ CH{P)\ and let e be the least common multiple of 2pq and the orders of the
p '-elements of G.

THEOREM 7.2. Let K be a field of prime characteristic p and let G be a finite
group with a Sylow p -subgroup of order p. Let e be as defined above. Then, for every
positive integer n, fl — \j/"+e and ^ = iff-

PROOF. (For G = GL(2,p), this is given by [15, Proposition 3.5].) Let V be a
finite-dimensional £ G-module. Then, by Lemma 6.7, \lr"(V)lN = f"+e(V)iN.
Hence, by the Green correspondence, ^"(^Ononp = if"+e(V)nmp- However, by
Lemma 2.6 and the definition of e, B r ( ^ ( V)) = Br(^" + ' ( V)). Thus, by Lemma 2.9,
irn

A(V) = fl+e(V). Similarly, i/r£(V) = fs
+e(V). This gives the result. •

If we have detailed information about the indecomposable K G-modules and K N-
modules, the Green correspondence, and the Brauer characters of G, we can hope
to find the Lie powers of a finite-dimensional K G-module V from Lie powers of
K//-modules as follows. Since Ln{V)iN = Ln{ViN), by Lemma 2.2, L"(V)iN can
be calculated by the methods described at the end of Section 6. Thus, by the Green
correspondence, we can determine £n(V)nonp and hence Br(L"(V)B0Bp). However,
Br(L"(V0) is given by Brandt's character formula (Lemma 2.7). Thus we can find
Br(L"( VOproj)- Therefore L"( V)proj can be found, at least in principle, by the modular
orthogonality relations. Hence we can find L"( V).

The connection between Lie powers of K G-modules and Lie powers of KN-
modules was a key factor in obtaining the results of [8, 17] and [10]. The following
theorem generalises one of the main qualitative results of [10]. Recall that the (p — 1)-
dimensional KN -module Jp-\ is as defined in Section 3.

THEOREM 7.3. Let K be afield of prime characteristic p and let G be a finite group
with a Sylow p -subgroup of order p. Let V be a finite-dimensional K G-module and let
n be a positive integer. Then, in the notation established above, every non-projective
indecomposable summand ofL"(V) is either a summand of the nth tensor power V
or is the Green correspondent of a KN-module of the form I <g> 7p_i, where I is an
irreducible KH-module.

PROOF. We give a sketch only. Note that L"(V)lN = Ln(VlN) and V"iN =
(V\,N)n. By the Green correspondence it suffices to show that every non-projective
indecomposable summand of L"(Vi.N) is either a summand of (V-lN)n or has the
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form / <g) Jp-i, where / is an irreducible K H-module. Thus we may assume that 
G = N = HP. 

Write n = pkm where p \ m. By Theorem 1.1 and Corollary 1.2, 

1 * 

However, for i = 0 , . . . , k, Lm(Vpk") is a summand of Vmpk", since p \ m (see, 
for example, [13, Section 3.1]). Hence it suffices to show, for i > 0, that if Y is a 
finite-dimensional indecomposable ATG-module then £ £ G ( J 0 is a linear combination 
of projective K G-modules, summands of Yp', and modules of the form / <g> y p _ t , where 
/ is an irreducible K//-module. By Lemma 6.2, Y = U®Jr where 1 < r < p and U 
is an irreducible K//-module. By Lemma 6.4, £ £ C ( J 0 = irp {U)^p

KG{Jr). However, 
by (2.2) or (2.3), (£/) is a linear combination of modules which are homomorphic 
images of LP'. Thus, since / / is a p'-group, VA ( ^ 0 is a linear combination of 
summands of t/p'. It therefore suffices to prove that £ £ G ( / r ) is a linear combination 
of projective modules, summands of J?', and modules of the form / ® 7p_i. This is 
trivial for i = 0 and, by Lemma 6.6, it is clear for i > 2. Suppose then that i = 1. By 
Lemma 6.6, the result is clear for r even, r = 1 and r = p. By the same lemma, it is 
true for r odd with 1 < r < p provided that / T - 1 Jx is a summand of J?. This can be 
proved as follows, using the notation of Section 3. 

It is sufficient to consider the case where K — K and G = G. Let Q' be the 
ideal of RKGW generated by pR/ccM and JP. Then, as in the proof of Lemma 6.7, 
A2" - 1 6 fl'. Also, = 0r- 1 . However, by (3.1), 

r-l 

JP = pir-i)p ^r-l-2J)p (mod Q'). 

Hence = rfir~1Jl (mod ^ ' D ^ c ) . However, S2'n/? K G = PRKG + RKGJP- Since 
r is not divisible by p it follows that yt is a summand of y^. • 
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