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Is every isometry, or more generally, every affine transformation of a

Ka'hlerian manifold a complex analytic transformation ? The answer is certainly

negative in the case of a complex Euclidean space. This question has been

recently studied by Lichnerowicz [8] and Schouten-Yano [11] from the infini-

tesimal point of view they have found some conditions in order that every

infinitesimal motion of a Ka'hlerian manifold preserve the complex structure.

(As a matter of fact, [11] has dealt with the case of a pseudo-Kahlerian mani-

fold, which does not differ essentially from a Ka'hlerian manifold as far as the

question at hand is concerned.)

In the present paper, we generalize their results by a different approach.

In order to explain our main idea, we shall first give a few definitions (1 and

2) and state our main results (3). The proofs are given in the subsequent

sections.

1. Kahlerian structures

Let M be a complex analytic manifold of complex dimension n. Its complex

structure is defined by a real analytic tensor field 7 of type (1,1) with 72 = - 1 1 ]

on the underlying 2 w-dimensional real analytic manifold which satisfies the con-

dition of integrability IίX, Yl - LIX, Y] - IX, IYl - ILIX, IYl = 0 for all real

vector fields X and Y (for example, [1]). A differentiate transformation/ of

M is said to preserve the complex structure / if δf ° 1' = I ° δf, where δf denotes

the differential of /. This is equivalent to saying that / is a complex analytic

transformation. If δf ° I— — 7° δf, we say that / maps 7 into the conjugate

complex structure - 7 ; / i s then a conjugate analytic transformation.

A real analytic Riemannian metric g on a complex analytic manifold M is

called Ka'hlerian if it is hermitian, that is, g{IX, IY) = g{X, Y) for all real

vector fields X and Y, and if 7 is a parallel tensor field with respect to the

Received July 23, 1956.
X) Throughout the present note, 1 denotes the identity transformation.
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Riemannian connection arising from g. Likewise, given a real analytic manifold

M with Riemannian metric g, we shall say that a complex structure / on M is

Kahlerian if g is Kahlerian with respect to / in the above sense. Such a pair

(/, g) defines a Kahlerian structure on M. By an isometry (resp. aflfrne trans-

formation) of a Kahlerian manifold M, we understand of course an isometry (resp.

aίfine transformation) of the underlying Riemannian manifold. By an automor-

phism of My we mean an isometry which preserves the complex structure.

A Kahlerian manifold M (with complex structure / and Riemannian metric

g) will be called non-degenerate if the restricted homogeneous holonomy group

ax of the underlying Riemannian manifold contains the endomorphism Ix of the

tangent space Tx at x €Ξ M, where x is an arbitrary reference point for the

holonomy group and Ix is the value at x of the tensor field /. Note that the

condition Ix G ax is independent of the choice of a reference point x. For any

point y, let τ denote the parallel displacement: Tx-+ Ty along an arbitrary

curve from x to y. Since / is a parallel tensor field, we have Iy = τ Ix τ"1.

On the other hand, we have σy = τ σx r"1.

Finally, we shall say that a Riemannian manifold M of dimension > 1 is

irreducible if the restricted homogeneous holonomy group is irreducible, that is,

if it does not admit any non-trivial invariant subspace as a group of linear

transformations on the (real) tangent vector space.

2. Complex and quaternionian structures on a real vector space

In this section, we shall indicate an intrinsic way of defining real represen-

tations of GL(n, C), U(n), SU(n) or GL(n, Q), Sp(l), etc. such as described

in C. Chevalley: Theory of Lie Groups I, Chapter I. The exposition is quite

elementary but important for our purpose.

A complex structure / on a real ^-dimensional vector space T is, by defi-

nition, an endomorphism of T such that I2 = - 1 . It allows us to define the

set T as an ^-dimensional vector space over the field of complex numbers C,

where nt = 2n. More precisely, we define

for a, bE: R (field of real numbers) and I e T. We denote by T* the vector

space over C thus obtained.

If g is a positive definite inner product on T such that g(IX, IY) = g(X, Y)
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for all X, YΐT, then we may Refine a positive definite hermitian inner product

g* on Γ* by

g*{X, Y)=g{X9 Y)-ig{IX, Y)

for X, F e 71*, where X and Y are considered as elements of T on the right

hand side of the above equation.

If τ is an endomorphism of T which commutes with /, then it may be con-

sidered as an endomorphism r* of T*, as is clear from τ(iX) = τ(IX) = I{τX)

= ixX. If furthermore r leaves # invariant, then r* leaves g* invariant.

We shall say that a group of linear transformations of a real vector space

T of dimension m~2n is contained in a real representation of Uin) if T admits

a complex structure / which commutes with every r G G and a positive definite

inner product g which is invariant by / and every r e G . In this case, G is

isomorphic with the subgroup G* = {r* r E G } (in the above notation) of the

unitary group on T1* with respect to g*. If furthermore det r* = 1 for every

r G G , then we say that G is contained in a real representation of SU(n).

By a quaternionian structure on a complex vector space T* of dimension

n, we shall mean a conjugate linear transformation / of V with / 2 = — 1, that

is, a 1 — 1 map of T* onto itself such that

, J{aX)=άJX and / 2 X = - Z

for all X, F e T * and β G C , where « denotes the complex conjugate of a. It

allows us to consider T* as a vector space T over the field of quaternions Q

in the following fashion. We represent every quaternion q in the form q-a + bj

(j being an element of Q such that i 2 = - 1 and ij = - #) and define the scalar

multiplication by

for all I G T*. As a vector space over 0, T is of dimension I where n = 2/.

If #* is a positive definite hermitian inner product on Γ* such that

, / Γ ) = £ * ( Γ ; JΓ)(=5p*(-X>, Γ)), then we can define a positive definite

symplectic inner product g in the vector space T over Q in the following fashion:

g(X, Y)=g*(X, Y)+g*(X,JY)J

for all -X", 7 e f . Namely, g is Q-valued and satisfies the following conditions:
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1) g(Y, X) is the symplectic conjugate of g{X, Y)

2) g{X+X', Y)=g(X, Y)+g(X', Y);

3) g(X, X) ^ 0 for every X and it is 0 if and only if X=0.

If r* is an endomorphism of T* over C which commutes with /, then it

may be regarded as an endomorphism ? of T over Q. If furthermore r* leaves

g* invariant, then τ leaves g invariant.

We say that a group G* of linear transformations of a complex vector

space T* of dimension n = 2l is contained in a complex representation of Sp(l)

if T* admits a quaternionian structure / and a positive definite hermitian inner

product g* such that

g*(JX,JY)=g*(Y,X), r* / = / τ * and £*U*X, τ*F) = £ * ( * , Y)

for all X, Y& T* and r* e G*. In this case, G* is isomorphic with a subgroup

of S/,(7) on the vector space T over Q with respect to the symplectic inner

product g.

Finally, we define a quaternionian structure on a real vector space T. It

is a pair of endomorphisms / and / of T such that I2 = J2 = - 1 and 7/ = - //.

Such a structure makes it possible to regard T as a vector space T over 0,

the scalar multiplication being defined by

(a + bi+ cj+ dk)X= aX+ HX+ cJX+

for a, b, c, d€Ξ R and X GΞ T. Another way of seeing this is to consider, first,

T with a complex structure I as a vector space T* over C and then consider

the given endomorphism / as a quaternionian structure on T*, which is obviously

possible.

This being said, we are able to use the following expression. We say that

a group of linear transformations G on a real m-dimensional vector space T is

contained in a real representation of Sp(l), with m-M, if T admits a quaterni-

onian structure (/, /) and a positive definite inner product g which are both

invariant by 7, / and every element of G. It is now easy to see that, in this

case, G is isomorphic with a subgroup of Sp(l) on the /-dimensional vector space

T over Q with a suitable symplectic inner product.

By using the fact that Sp(l) is connected, we can prove that if G is con-

tained in a real representation of Sp(l), then it is contained in a real represen-

tation of SU(n), where m^2n and n = 2l. We omit the detail of the proof.
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,3. Main results

THEOREM 1. Every simply connected and complete Kάhlerian manifold M

is a direct product MoXMi x . . . xM&, where Mo is a complex Euclidean space

of dimension ^ 0 and Mi, . . . , Mk are irreducible Kάhlerian manifolds. If M

is non-degenerate, Mo does not appear and Mi, . . . , Mk are all non-degenerate.

THEOREM 2.2) Let M be an irreducible Kάhlerian manifold whose restricted

homogeneous holonomy group is not contained in a real representation of Sp(l),

tvhere dimM=4/. Then every affine transformation of M preserves the com-

plex structure I or maps I into the conjugate complex structure. The largest

connected group of affine transformations A°(M) preserves the complex structure.

THEOREM 3. If M is a complete non-degenerate Kάhlerian manifold, then

the largest connected group of affine transformations A°(M) consists of auto-

morphisms.

If M is a pseudo-Kahlerian manifold, we can still define the notion of non-

degeneracy. If we replace "Kahlerian" by "pseudo-Kahlerian" and "complex

structure" by "almost complex structure" respectively, then all the results

stated above remain true.

It is of some interest to compare our problem with the following: is every

affine transformation of a Riemannian manifold an isometry? This question

has been settled by Hano and one of the authors as follows. Every simply con-

nected and complete Riemannian manifold M is a direct product of a Euclidean

space Mo and irreducible Riemannian manifolds Mi, . . . , Mk (the so-called de

Rham decomposition) [10]. The largest connected group of affine transfor-

mations A°(M) is naturally isomorphic with A\Mo) x A0(Mi) x . . . x A°(Mk)

[2]. On the other hand, every affine transformation of a complete irreducible

Riemannian manifold is an isometry [5]. It follows that, if M is a complete

Riemannian manifold whose restricted homogeneous holonomy group does not

leave any non-zero vector invariant, then A°(M) consists of isometries.

Our Theorem 1 corresponds to the de Rham decomposition of a Riemannian

manifold. By using the above result of Hano, our problem is reduced to the

case of an irreducible Kahlerian manifold, to which Theorem 2 is an answer.

Here we do not need the condition of completeness but require an assumption

2 ) A similar result has been obtained also by M. Obata.

https://doi.org/10.1017/S0027763000001999 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001999


120 SHOSHΪCHI KOBAYASHI AND KATSUMI NOMIZU

on the holonomy group. Now, what is a condition which assures that every-

component of the de Rham decomposition of a given Kahlerian manifold satisfies

the assumption of Theorem 2 ? The non-degeneracy is such a condition. The

following theorem shows the relationship of this notion to the known facts on

Ricci curvature, thus giving a heuristic interpretation of the results of Lichner-

owicz [7], [8].

THEOREM 4. Let M be a Kahlerian manifold of complex dimension n.

1) If M is irreducible and the Ricci curvature is not zero, then M is non-

degenerate.

2) If M is non-degenerate and n is not divisible by 4, then the Ricci curva-

ture of M is not zero.

3) If the Ricci curvature of M is non-singular at some point of M, then M

is non-degenerate.

Finally we add

COROLLARY. Let M be a 2 n-dimensional simply connected real analytic

Riemannian manifold which is irreducible. Then the following three cases are

possible:

1) If the restricted homogeneous holonomy group σ is not contained in a

real representation of U(n), there exists no Kahlerian structure at all on M.

2) If a is contained in a real representation of U(n) but not of Sp(l), n = 2l,

then there exist exactly two Kahlerian structures on M which are mutually conju-

gate.

3) If a is contained in a real representation of Sp(l), n = 2lf then there exist

continuously may distinct Kahlerian structures on M.

4. Proof of Theorem 1

The underlying Riemannian manifold of M admits the de Rham decompo-

sition M=M o xMiX . . . xMk It is not difficult (see [3]) to see that every

component Mi has a Kahlerian structure induced from that of M and that M is

the direct product of Mo, Mi, . . . , Mk as Kahlerian manifolds. The homogene-

ous holonomy group a(M) of M is decomposed into the direct product of the

homogeneous holonomy groups a(Mi) of Mi, i = 0, 1, . . . , k, where σ(Mo) con-

sits of the identity only. It follows that if M is non-degenerate, the Euclidean
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part Mo does not exist and the,irreducible components Mi, i - 1 , 2, . . . , k, are

all non-degenerate.

5. Proof of Theorem 2

Let / be an affine transformation of M and δf its differential. Then

Is = δf~x /• δf is a tensor field of type (1,1) which clearly satisfies the con-

dition If tf - - 1 . We show that it is a parallel tensor field. Let c be an

arbitrary curve from x to y and let τ be the linear mapping of Tx onto Ty de-

fined by parallel displacement along c. Let c* be the image curve of c by /

and let r* be the linear mapping of T/{X) onto T/w defined by parallel displace-

ment along c*. Since / is an affine transformation, we have δf r = τ* δf on

Tx [9]. On the other hand, we have I/{y) τ* = τ* If{x) since / is a parallel

tensor field. Therefore we get

I'y* T = δf'1 //(y, */• r = a/"1 IAy) r* δf

- S/"1 r* I/ιx) y = r 5/'1 //(Jf) 5/= r /{,

which proves our assertion. In particular, If

x commutes with every element of

<tx.

Now let A be the algebra (over the field of real numbers R) formed by

all endomorphisms of Tx which commute with every element of ax. Since ax

is irreducible, every non-zero element of A has an inverse, that is, A is a di-

vision algebra. By a well known theorem in algebra, A is isomorphic either

with the field of real numbers R, or the field of complex numbers C, or else

the field of quaternions Q. Since A contains an element Ix with l\ = — 1, it

cannot be isomorphic with R. If A were isomorphic with Q, it would follow

that σx is contained in a real representation of Sp(l)y with n = 2l; indeed, again

by the irreducibility of σXt we see that the inner product gx of Tx induced from

the Kέihlerian metric of M is invariant by the elements / and / of A which

correspond to the units / and j of Q. Hence A is isomorphic with C. The

only complex numbers whose square are - 1 are i and — /. Since If

x is in A

and Iχ lζ= — 1, we have either iζ = Ix or /{ = — Ix. Since / and I* are paral-

lel tensor fields, we have Is = / or I* - -I. This concludes the proof of the

first part of Theorem 2.

In order to prove the second part, let / be an element of A°(M). We take

a continuous 1-parameter family ft of affine transformations such that /0 = identi-
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ty transformation and fι =/. If we form Iύ = dfϊ1 I' δft, then we have lί - Ix

or - Ix from what we have seen. Since Ix is a continuous 1-parameter family

of endomorphisms of Tx such that Ix = Ix for f = 0, Ix must coincide with Ix for

every f. In particular, we have lf

x-IX} that is, If = I. This proves that

/ preserves the complex structure /.

6. Proof of Theorem 3

Let M be the universal covering manifold of M provided with a naturally

induced Kahlerian structure. It is easy to see that M is also complete and non-

degenerate. By the argument in [2], it is sufficient to prove Theorem 3 for M.

By Theorem 1, M=MχX . . . xMk where each Mi is irreducible and non-

degenerate. The homogeneous holonomy group σ(Mi) is not contained in a real

representation of Sp(ϊ), n — 2l. In fact, we show that the division algebra A

considered in the proof of Theorem 1 cannot be isomorphic with Q. If it were

so, the elements /, / and K of A corresponding to i, j and kEiQ must commute

with the element 70, /ξ= - 1 , of A determined by the given complex structure

of Mi, which is contained in A since Mi is non-degenerate. This is a contra-

diction. Hence Theorem 2 shows that A0(Mi) preserves the complex structure

of Mi. Since A°(M) is the direct product of A°(M7 ), *'=1, 2, . . . , k, we see

that A°(M) preserves the complex structure of M- On the other hand, we al-

ready know ([2] and [5]) that A°(M) consists of isometries. Hence A°(M)

consists of automorphisms of M.

7. Proof of Theorem 4

1) The complex structure Ix of the tangent space Tx is invariant by the

restricted homogeneous holonomy group ox operating on TXy we may consider

Oχ as a subgroup of U(n) as indicated in 2. Since the Ricci curvature is not

zero, oχ is not a subgroup of SU{n) ([7], see also [4] and [6]) which means

that oχ has a non-discrete center. ox being irreducible, the center must be of

dimension 1 by Schur's lemma. Hence ox contains the 1-parameter subgroup

{eicztr 1; r reals} of U(n), in particular, the transformation i 1. In real re-

presentation, this means that ox contains the endomorphism Ix, that is, M is

non-degenerate.

2) If we consider ox as a subgroup of U(n), then ox contains the transfor-

mation i 1 whose determinant, the w-th power of i, is not equal tp 1 sinςe n is.
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not divisible by 4. Hence ax is, not a subgroup of SU(n) and the Ricci curva-

ture is not zero.

3) -Let x be a point of M where the Ricci curvature is non-singular. Let

U be a properly chosen neighborhood of x which is isometric to the direct

product UoxUΊx . . . x Z7&, where Uo is locally a complex Euclidean space and

U1} . . . , Uk are irreducible Kahlerian manifolds (the argument is similar to that

in the proof of Theorem 1). We may consider Uo, Uu . . . , Ur as submanifolds

of U passing through x. Then the Ricci curvature of U at x is the direct sum

of the Ricci curvatures of Uo, Uu . . . , Uk. Therefore the Ricci curvature of

each Ui is non-singular at x. It follows that there does not exist UQ and that

Uu . . . , Uk are non-degenerate by 1) of Theorem 4. Since σx(M) contains

ax(U) = σx{Ui) x . . . Xσx(Uk), we see that ax(M) contains the endomorphism Ix.

8. Proof of Corollary

At any reference point x, we consider the division algebra A formed by

all endomorphisms of Tx commuting with every element of ax. If A is iso-

morphic with R, then there is no element / G i with I2 - — 1 there is no

Kahlerian structure on M. If A is isomorphic with C, then let Ix be an element

of A with l\ = — 1. By parallel displacement of Ix, we get a parallel tensor

field / of type (1, 1) such that / 2 - - 1 and g(IX, IY)=g(X, Y). It is known

that an almost complex structure which is parallel with respect to a Riemannian

connection (or, more generally, an afnne connection without torsion) is integrable

[1]. Hence / is a Kahlerian structure. It is clear that / and its complex conju-

gate structure - / are the only Kahlerian structures on M.

If A is isomorphic with Q, then it contains continuously many elements S

with S2 = — 1. Namely, if /, / and K are the elements of A which correspond

to i, j and k of Q respectively, then we may take S = bl> c]'+ dK> where b> c

and d are real numbers such that b2 + c2 + d2 = l. For any such element S of

Ay we get a Kahlerian structure on M by the same argument as before. Hence

M has continuously many distinct Kahlerian structures.

9. Remarks

In the case of a compact Kahlerian manifold M, the largest connected

group of affϊne transformations A°(M) consists of isornetries (theorem of Yano,
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which has been generalized in [7]) and preserves the complex structure of M,

as is remarked in [8]. Indeed, the form F associated to the Kahlerian structure

of M : F(Xf Y) = g(IX, Y) is harmonic and invariant by every 1-ρarameter

group of isometries. It follows that / is also invariant by the 1-parameter group.

The above statement is no longer true for the total group A(M) of affine

transformations. For example, in a complex projective space Pn with usual

Fubini-Study metric, the transformation defined by (z°y z
1, . . . , zn) -> (Ϋ, ~zι,

. . . , ~zn) in terms of homogeneous coordinates z°, . . . , zn is isometric but not

complex analytic.

BIBLIOGRAPHY

[ 1 ] Eckmann, B., Sur les structures complexes et presque complexes, Colloque de Gέo-

mέtrie Differentielle, Strasbourg (1953), 151-159.

[ 2 ] Hano, J., On affine transformations of a Riemannian manifold, Nagoya Math. J. 9

(1955), 99-109.

[ 3 ] Hano, J. and Matsushima, Y., Some studies on Kahlerian homogeneous spaces, this

journal.

[ 4 ] Iwamoto, H., On the structure of Riemannian space whose holonomy groups fix a

null-system, Tohoku Math. J. 2nd ser. 1 (1950), 109-125.

[ 5 ] Kobayashi, S., A theorem on the affine transformation group of a Riemannian mani-

fold, Nagoya Math. J. 9 (1955), 39-41.

[ 6 ] Kobayashi, S., Principal fiber bundles with the 1-dimensinal toroidal group, to appear

in Tohoku Math. J.
[ 7 ] Lichnerowicz, A., Espaces homogenes kahleriens, Colloque de Geometrie Diffόrentielle,

Strasbourg (1953), 171-184.

[ 8 ] Lichnerowicz, A., Sur les groupes d'automorphismes de certaines variόtes kahlerien-

nes, C. R. Acad. Sci. Paris, 239 (1954), 1344-1345.

[ 9 ] Nomizu, K., Studies on Riemannian homogeneous spaces, Nagoya Math. J. 9 (1955),

43-56.

[10] de Rham, G., Sur la reductibilitό d'un espace de Riemann, Comm. Math. Helv. 26

(1952), 328-344.

[11] Schouten, J. A. and Yano, K., On pseudo-Ka'hlerian spaces admitting a continuous

group of motions, Indagationes Math. 17 (1955), 565-570.

University of Washington

Nagoya University

https://doi.org/10.1017/S0027763000001999 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001999



