ON AUTOMORPHISMS OF A KAHLERIAN STRUCTURE

SHOSHICHI KOBAYASHI and KATSUMI NOMIZU

Is every isometry, or more generally, every affine transformation of a
K#4hlerian manifold a complex analytic transformation? The answer is certainly
negative in the case of a complex Euclidean space. This question has been
recently studied by Lichnerowicz [8] and Schouten-Yano [11] from the infini-
tesimal point of view; they have found some conditions in order that every
infinitesimal motion of a Kihlerian manifold preserve the complex structure.
(As a matter of fact, [11] has dealt with the case of a pseudo-K#hlerian mani-
fold, which does not differ essentially from a Kihlerian manifold as far as the
question at hand is concerned.)

In the present paper, we generalize their results by a different approach.
In order to explain our main idea, we shall first give a few definitions (1 and
2) and state our main results (3). The proofs are given in the subsequent

sections.

1. Kihlerian structures

Let M be a complex analytic manifold of complex dimension n. Its complex
structure is defined by a real analytic tensor field I of type (1, 1) with I*= —1"
on the underlying 2#n-dimensional real analytic manifold which satisfies the con-
dition of integrability ILX, Y1—-[IX, Y1-[X, IY1—I[IX, IY]1=0 for all real
vector fields X and Y (for example, [11). A differentiable transformation f of
M is said to preserve the complex structure I if §f o I=1° df, where df denotes
the differential of /. This is equivalent to saying that / is a complex analytic
transformation. If §f e I= —I- §f, we say that f maps I into the conjugate
complex structure —I; f is then a conjugate analytic transformation.

A real analytic Riemannian metric £ on a complex analytic manifold M is
called Kihlerian if it is hermitian, that is, g(IX, 1Y) =g(X, Y) for all real
vector fields X and Y, and if I is a parallel tensor field with respect to the

Received July 23, 1956.
1 Throughout the present note, 1 denotes the identity transformation.
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Riemannian connection arising from g. Likewise, given a real analytic manifold
M with Riemannian metric g, we shall say that a complex structure I on M is
Kihlerian if g is K&hlerian with respect to I in the above sense. Such a pair
(I, &) defines a Ki#hlerian structure on M. By an isometry (resp. affine trans-
formation) of a Kihlerian manifold M, we understand of course an isometry (resp.
affine transformation) of the underlying Riemannian manifold. By an automor-
phism of M, we mean an isometry which preserves the complex structure.

A Kihlerian manifold M {with complex structure I and Riemannian metric
g) will be called non-degenerate if the restricted homogeneous holonomy group
gy of the underlying Riemannian manifold contains the endomorphism I, of the
tangent space T, at x & M, where x is an arbitrary reference point for the
holonomy group and I, is the value at ¥ of the tensor field 1. Note that the
condition I.€ o, is independent of the choice of a reference point x. For any
point y, let r denote the parallel displacement: T, - Ty along an arbitrary
curve from % to y. Since I is a parallel tensor field, we have Iy=t+ I, ¢ %
On the other hand, we have oy =t1*0s 7 "

Finally, we shall say that a Riemannian manifold M of dimension > 1 is
irreducible if the restricted homogeneous holonomy group is irreducible, that is,
if it does not admit any non-trivial invariant subspace as a group of linear

transformations on the (real) tangent vector space.

2. Complex and quaternionian structures on a real vector space

In this section, we shall indicate an intrinsic way of defining real represen-
tations of GL(n, C), U(n), SU(n) or GL(»n, @), Sp(l), etc. such as described
in C. Chevalley: Theory of Lie Groups I, Chapter I. The exposition is quite
elementary but important for our purpose.

A complex structure 7 on a real m-dimensional vector space T is, by defi-
nition, an endomorphism of 7 such that I”= —1. It allows us to define the
set T as an zn-dimensional vector space over the field of complex numbers C,

where m =2n. More precisely, we define

(@a+bi)X=aX+bIX

for a, b & R (field of real numbers) and X& 7. We denote by T* the vector

space over C thus obtained.
If g is a positive definite inner product on T such that g(IX, IY)=g(X, Y)
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for all X, Y& T, then we may define a positive definite hermitian inner product
g% on T* by

gi (X, Y)=g(X, Y)—ig(IX, Y)

for X, Ye T* where X and Y are considered as elements of T on the right
hand side of the above equation.

If v is an endomorphism of T° which commutes with J, then it may be con-
sidered as an endomorphism * of T'* as is clear from ©(iX) = ¢(IX) = I(zX)
=4rX. If furthermore r leaves g invariant, then «* leaves g* invariant.

We shall say that a group of linear transformations of a real vector space
T of dimension m = 2% is contained in a real representation of U(n) if T admits
a complex structure / which commutes with every r € G and a positive definite
inner product g which is invariant by I and every r& G. In this case, G is
isomorphic with the subgroup G*={*; r & G} (in the above notation) of the
unitary group on T with respect to g*. If furthermore det *=1 for every
v € G, then we say that G ¢s contained in a real representation of SU(n).

By a quaternionian structure on a complex vector space T* of dimension
n, we shall mean a conjugate linear transformation J of V with J*= —1, that

is, a 1—1 map of T* onto itself such that
J(X+Y)=JX+JY, J(aX)=aJX and J’X=-X

for all X, Y= T* and ¢ € C, where @ denotes the complex conjugate of a. It
allows us to consider T as a vector space T over the field of quaternions
in the following fashion. We represent every quaternion ¢ in the form q=a+ bj
(7 being an element of @ such that 7= —1 and ¢j= — ji) and define the scalar

multiplication by
q*X=aX+bJX

for all Xe T*. As a vector space over Q, T is of dimension I where n = 21.
If g% is a positive definite hermitian inner product on 7% such that
g*(JX, JY) =g"(Y, X)(=g*(X, Y)), then we can define a positive definite

~

symplectic inner product £ in the vector space 1" over @ in the following fashion:
FX V) =g"X, Y)+&%X, JY)Jj

forall X, yeT. Namely, Z is @-valued and satisfies the following conditions:
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1) (Y, X) is the symplectic conjugate of g(X, Y);
2) F(X+X,Y)=8(X, Y)+2(X, Y);
3) g(X, X) =0 for every X and it is 0 if and only if X=0.

If * is an endomorphism of T over C which commutes with J, then it
may be regarded as an endomorphism 7 of T over Q. If furthermore =* leaves
g™ invariant, then 7 leaves Z invariant.

We say that a group G* of linear transformations of a complex vector
space T* of dimension 7z =21I is contained in a complex representation of Sy(1)
if T* admits a quaternionian structure J and a positive definite hermitian inner
product g* such that

gEJX, JY)=g"(Y, X), F+J=J % and g*(*X, *Y)=g%(X, V)

for all X, Y& T* and «* € G*. In this case, G* is isomorphic with a subgroup
of S,(I) on the vector space T over @ with respect to the symplectic inner
product 2.

Finally, we define a quaternionian structure on a real vector space T. It
is a pair of endomorphisms I and J of T such that I’=J?= —1 and IJ= —JL
Such a structure makes it possible to regard T as a vector space T over @,

the scalar multiplication being defined by
(a+bi+cj+dk) X=aX+bIX+cJX+d(INX

for a,b,¢,dE R and X& T. Another way of seeing this is to consider, first,
T with a complex structure I as a vector space T* over C and then consider
the given endomorphism J as a quaternionian structure on 7, which is obviously
possible.

This being said, we are able to use the following expression. We say that
a group of linear transformations G on a real m-dimensional vector space T is
contained in a real representation of Sy(l), with m =41, if T admits a quaterni-
onian structure (I, J) and a positive definite inner product g which are both
invariant by I, J and every element of G. It is now easy to see that, in this
case, G is isomorphic with a subgroup of Sy(/) on the /-dimensional vector space
T over @ with a suitable symplectic inner product.

By using the fact that S,(!) is connected, we can prove that if G is con-
tained in a real representation of Sp(7), then it is contained in a real represen-

tation of SU(#n), where m=2# and »=2]. We omit the detail of the proof.
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.3. Main results

Turorem 1. Every simply connected and complete Kdihlervian manifold M

is a direct product MoX My X . .. X Mg, where M, is a complex Euclidean space
of dimension =0 and M,, . .., My are irreducible Kdahlerian manifolds. If M
is non-degenerate, M, does not appear and M,, . . ., My are all non-degenerate.

Tueorem 2.2 Let M be an irreducible Kéhlerian manifold whose restricted
homogeneous holonomy group is not contained in a real representation of Sp(l),
where dim M =41. Then every affine transformation of M preserves the com-
plex structure I or maps I into the conjugate complex structure. The largest

connected group of affine transformations A"M) preserves the complex structure.

Tueorem 3. If M is a complete non-degenerate Kdiihlerian manifold, then
the largest commected group of affine transformations A"(M) consists of auto-

morphisms.

If M is a pseudo-Kihlerian manifold, we can still define the notion of non-
degeneracy. If we replace “Kihlerian” by “pseudo-Kihlerian” and “complex
structure” by “almost complex structure” respectively, then all the results
stated above remain true.

It is of some interest to compare our problem with the following: is every
affine transformation of a Riemannian manifold an isometry? This question
has been settled by Hano and one of the authors as follows. Every simply con-
nected and complete Riemannian manifold M is a direct product of a Euclidean
space M, and irreducible Riemannian manifolds M, ..., M: (the so-called de
Rham decomposition) [10]. The largest connected group of affine transfor-
mations A°(M) is naturally isomorphic with A°(Mp) x A%(M) % . .. x A"(Mp)
[2]. On the other hand, every affine transformation of a complete irreducible
Riemannian manifold is an isometry [5]. It follows that, i M is a complete
Riemannian manifold whose restricted homogeneous holonomy group does not
leave any non-zero vector invariant, then A"M) consists of isometries.

Our Theorem 1 corresponds to the de Rham decomposition of a Riemannian
manifold. By using the above result of Hano, our problem is reduced to the
case of an irreducible Kihlerian manifold, to which Theorem 2 is an answer.

Here we do not need the condition of completeness but require an assumption

2) A similar result has been obtained also by M. Obata.
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on the holonomy group. Now, what is a condition which assures that every
component of the de Rham decomposition of a given Kihlerian manifold satisfies
the assumption of Theorem 2? The non-degeneracy is such a condition. The
following theorem shows the relationship of this notion to the known facts on
Ricci curvature, thus giving a heuristic interpretation of the results of Lichner-
owicz [7], [8].

THEOREM 4. Let M be a Kdéhlerian manifold of complex dimension n.

1) If M is irreducible and the Ricci curvature is not zero, then M is non-
degenerate.

2) If M is non-degenerate and n is not divisible by 4, then the Ricci curva-
ture of M is not zero.

3) If the Ricci curvature of M is non-singular at some point of M, then M

is non-degenerate.
Finally we add

CoroLLARY. Let M be a 2n-dimensional simply connected real analytic
Riemannian manifold which is irreducible. Then the following three cases are
Dossible :

1) If the restricted homogeneous holonomy group o is not contained in a
real representation of U(n), there exists no Kéihlerian structure at all on M.

2) If o is contained in a real representation of U(n) but not of Sp(l), n=2I,
then there exist exactly two Kdihlerian structures on M which are mutually conju-
gate.

3) If ¢ is contained in a real representation of Sp(1), n =21, then there exist

continuously may distinct Kdhlerian structures on M.

4. Proof of Theorem 1

The underlying Riemannian manifold of M admits the de Rham decompo-
sition M=MyxXx Myx ... XM, It is not difficult (see [3]) to see that every
component M; has a Kihlerian structure induced from that of M and that M is
the direct product of My, M, . .., My as Kidhlerian manifolds. The homogene-
ous holonomy group (M) of M is decomposed into the direct product of the
homogeneous holonomy groups o(M;) of M;, i=0, 1, . .., k, where o(M,) con-

sits of the identity only. It follows that if M is non-degenerate, the Euclidean
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part M, does not exist and the,irreducible components M;, ¢=1, 2, ..., &, are

all non-degenerate.

5. Proof of Theorem 2

Let f be an affine transformation of M and of its differential. Then'
I'=6f'+1+5f is a tensor field of type (1, 1) which clearly satisfies the con-
dition '+ I'= —1. We show that it is a parallel tensor field. Let ¢ be an
arbitrary curve from x to y and let r be the linear mapping of 7' onto T, de-
fined by parallel displacement along c. Let ¢* be the image curve of ¢ by f
and let * be the linear mapping of Trx, onto Ty defined by parallel displace-
ment along ¢*. Since f is an affine transformation, we have of * r=c* + §f on
T, [9]. On the other hand, we have Iy * " =<*+ Is, since I is a parallel
tensor field. Therefore we get

I{z' TZO“]‘MI’If(y)' of - T:5f—1'lﬂy> ‘T*'Bf
=0f e e I f=v0f e Ipmc f =1 I,

which proves our assertion. In particular, I} commutes with every element of
Ox.

Now let A be the algebra (over the field of real numbers R) formed by
all endomorphisms of T which commute with every element of ¢;. Since oy
is irreducible, every non-zero element of A has an inverse, that is, A is a di-
vision algebra. By a well known theorem in algebra, A is isomorphic either
with the field of real numbers R, or the field of complex numbers C, or else
the field of quaternions @. Since A contains an element I, with Iy= —1, it
cannot be isomorphic with R. If A were isomorphic with &, it would follow
that o, is contained in a real representation of Sp(I), with # =2[; indeed, again
by the irreducibility of s, we see that the inner product gy of T induced from
the Kihlerian metric of M is invariant by the elements I and J of A which
correspond to the units 7 and 7 of @ Hence A is isomorphic with C. The
only complex numbers whose square are —1 are i and —i. Since I is in A
and I+ IL= —1, we have either =1, or I%= —1I,. Since I and I are paral-
lel tensor fields, we have I’=17 or /= —1 This concludes the proof of the
first part of Theorem 2.

In order to prove the second part, let f be an element of A"(M). We take

a continuous 1-parameter family f: of affine transformations such that f, = identj-
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ty transformation and f;=/. If we form I‘ =of7'+ I+ 6f;, then we have It=1I,
or — I, from what we have seen. Since I% is a continuous 1-parameter family
of endomorphisms of T, such that =1, for t= 0, I must coincide with I, for
every t. In particular, we have F= I, that is, =1 This proves that

f preserves the complex structure I.

6. Proof of Theorem 3

Let A7 be the universal covering manifold of M provided with a naturally
induced Kahlerian structure. It is easy to see that Af is also complete and non-
degenerate. By the argument in [2], it is sufficient to prove Theofem 3 for M.
By Theorem 1, A= M;X ...x M, where each M; is irreducible and non-
degenerate. The homogeneous holonomy group o(M;) is not contained in a real
representation of S,(I), »=2]. In fact, we show that the division algebra A
considered in the proof of Theorem 1 cannot be isomorphic with . If it were
so, the elements [, J and K of A corresponding to 7, 7 and k2 € @ must commute
with the element I, I;= —1, of A determined by the given complex structure
of M;, which is contained in A since M; is non-degenerate. This is a contra-
diction. Hence Theorem 2 shows that A°(M;) preserves the complex structure
of M;. Since A“A7) is the direct product of A%M;), i=1,2, ..., k we see
that A°(A7) preserves the complex structure of A7. On the other hand, we al-
ready know ([2] and [51) that A%AZ) consists of isometries. Hence A°(A7)

consists of automorphisms of A7.

7. Proof of Theorem 4

1) The complex structure I of the tangent space Ty is invariant by the
restricted homogeneous holonomy group ¢, operating on 7%, we may consider
gr as a subgroup of I/(») as indicated in 2. Since the Ricci curvature is not
zero, oy is not a subgroup of SU(n) ([7], see also [4] and [6]) which means
that o, has a non-discrete center. o, being irreducible, the center must be of
dimension 1 by Schur’s lemma. Hence o, contains the 1-parameter subgroup
{e*™" «1; r reals} of Uln), in particular, the transformation 7 1. In real re-
presentation, this means that ¢, contains the endomorphism I,, that is, M is
non-degenerate.

2) If we consider s, as a subgroup of U( ne), then . contains the transfor-

mation ¢ 1 whose determinant, the #-th power of 4, is not equal to 1 since # is
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not divisible by 4. Hence ¢, is not a subgroup of SU(%) and the Ricci curva-
ture is not zero.

3) Let x be a point of M where the Ricci curvature is non-singular. Let
U be a properly chosen neighborhood of x which is isometric to the direct
product Uyx Uy %X . .. x Uk, where U, is locally a complex Euclidean space and
Uy, ..., Up are irreducible Kéhlerian manifolds (the argument is similar to that
in the proof of Theorem 1). We may consider Us, Ui, . . ., U, as submanifolds
of U passing through x. Then the Ricci curvature of U at x is the direct sum
of the Ricci curvatures of U,, Ui, ..., Ur. Therefore the Ricci curvature of
each U; is non-singular at x. It follows that there does not exist U, and that
Oy, ..., Uy are non-degenerate by 1) of Theorem 4. Since ¢x(M) contains

a(U) = 0,(Uy) X . . . Xa:(Up), we see that o,(M) contains the endomorphism 7.

8. Proof of Corollary

At any reference point x, we consider the division algebra A formed by
all endomorphisms of 7% commuting with every element of o.. If A is iso-
morphic with R, then there is no element 7€ A with I’= —1; there is no
Kéhlerian structure on M. If A is isomorphic with C, then let I, be an element
of A with I%= —1. By parallel displacement of I,, we get a parallel tensor
field I of type (1, 1) such that I*= —1 and g(IX, IY) =g(X, Y). It is known
that an almost complex structure which is parallel with respect to a Riemannian
connection (or, more generally, an affine connection without torsion) is integrable
[1]. Hence I is a K&hlerian structure. It is clear that I and its complex conju-
gate structure — I are the only Kahlerian structures on M.

If A is isomorphic with @, then it contains continuously many elements S
with S?= —1. Namely, if I, J and K are the elements of A which correspond
to 7, 7 and % of @ respectively, then we may take S=5bI+ c¢J+ dK, where b, ¢
and d are real numbers such that *+c*+d*=1. For any such element S of
A, we get a Kihlerian structure on M by the same argument as before. Hence

M has continuously many distinct K#hlerian structures.

9. Remarks

In the case of a compact Kihlerian manifold M, the largest connected

group of affine transformations A°(M) consists of isometries (theorem of Yano,
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which has been generalized in [7]) and preserves the complex structure of M,
as is remarked in [8]. Indeed, the form F associated to the Kihlerian structure
of M: F(X, Y) = g(IX, Y) is harmonic and invariant by every l-parameter
group of isometries. It follows that I is also invariant by the 1-parameter group.

The above statement is no longer true for the total group A(M) of affine
transformations. For example, in a complex projective space P, with usual
Fubini-Study metric, the transformation defined by (2%, 2, ..., 2") - (2°, 7,
..., Z") in terms of homogeneous coordinates 2% ..., 2" is isometric but not

complex analytic.
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