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On Determinants of Symmetric Functions.

By Dr A. C. A I T K E X .

(Received 4th January 1927. Bead 1th January 1927.)

§ 1. INTRODUCTORY.

The result of dividing the al ternant ! a ' ¥ C .. . by the simplest
alternant ! a ° 6 1 c 2 . . . (the difference-product of a, b, c, . . .) is known
to be a symmetric function expressible in two distinct ways, (1) as a
determinant having for elements the elementary symmetric functions
C,. of a, b, c, . . . , (2) as a determinant having for elements the com-
plete homogeneous symmetric functions Hr. For example

| a0 b2 c6 d6
Ho H5

0 Hx Ht Hb
0 Ho H3 Ht
0 0 H9 H^

n n n
^0 °1 ^3

The formation of the (historically earlier) //-determinant is
evident. The suffixes in the first row are the indices of the alter-
nant; those of the other rows decrease by unit steps. This result
is due to Jacobi.1

A simple rule for obtaining the C-determinant has been given by
Muir,2 as follows: the indices which do not appear in the alternant are
1, 3, 4; their defects from the highest index 6 are 5, 3, 2; these, reversed
in order, are the suffixes in the first row of the C-determinant, the other
rows being formed as before. This result is due to Naegelsbach.3

Dismissing for the present the alternants, let us examine the
identity between the remaining determinants (called by Muir " bi-
alternants "). Since by convention Co= i / 0 = 1, we have

H,

0 H9
H,

C3
c2
c1

c\

(The determinants are not in general of the same order.)

1 De functionibus alternantibus. J. fur Math,, 22 (1841), pp. 370-371.
2 Theory of Determinants, vol. I l l , pp. 145-146.
3 Ueber eino Classe symmetrischen Functionen. Sch.-Programm, Zweibrii.ck.en, 1S7J.
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It will be seen that Muir's rule applies not only to first rows but
also to last columns, for e.g. the suffixes not appearing in 3, 4, 5 are
0, 1, 2 and their defects from 5, reversed, are 3, 4, 5.

A second relation was observed and proved by Kostka.1 The
diagonal suffixes in the //-determinant are 1, 3, 3, a "part i t ion" of
the integer 7 which may be represented by a Ferrers-Sylvester
diagram of rows of asterisks, as in Fig. I.

* * *
* * *

Fig. T.

* *

* *

* * *

Fig. II.

The "conjugate partition," obtained as in Fig. II by inter-
changing axes, is 2, 2, 3, and these are the suffixes in the diagonal of
the equivalent C-determinant. This important fact links up the
determinantal theory of symmetric functions with the combinatory
theory.

Conjugacy of the kind described is of course a reciprocal
property, so that any identity between bi-alternants remains an
identity when C's and // 's are interchanged. (This is also evident
from other considerations, such as the symmetry in H and C of
Wronski's well-known recurrence relations, or the fact that the
generating functions of Cr and Hr are reciprocal.)

Finally we refer to a type of ordered partition introduced by
MacMahon2, and called by him a " composition " of an integer. These
are represented by zigzag diagrams of asterisks, the "conjugate com
position" being obtained as before by interchange of axes. Here
again MacMahon1 finds important identities between C-determinants
and //-determinants, e.g.

#i H3

0 Hn

Cn (/.

0 Co C2 C4

0 0 C'o C2

1 Bemerkungen uber symmetrischen Funktionen.
pp. 159, 161.

" Combinatory Analysis, vol. I, p. 205.

J. fiir Math. 132 (1907),
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The diagonal suffixes 1, 2, 3 and 1, 1, 2, 2 are conjugate composi-
tions of the integer 6. (Figs. I l l , IV.)

* * *

Fig. III.

*

* *

Fig. IV.

Inspection of the determinants shows that here again Muir's rule
holds for first rows and last columns.

§ 2. A GENERAL IDENTITY.

It is natural to suspect the existence of a more general identity
including the preceding as special cases and involving partitions of a
wider kind. If in the bi-alternants we remove the restriction that
suffixes from row to row are to move by unit steps, we obtain the
more general determinant

H,,

where a > j8 > y > . . . , a'< jS'< y'< . . . This determinant is also of
importance in the theory of symmetric functions.

First of all it will be shown that Muir's rule continues to hold.
For example we shall have

c2
Co
0

c3
c.

H2
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0
0
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H2

Ho

0

H*
H2

Ho

He

Hb

H3

H,

As for Kostka's observation on partitions, and MacMahon's on
compositions, we have now new forms; e.g. the identity just given
will refer to the conjugacy of diagrams like Figs. V and VI.

* *
* * *

* *
* *

*
Fia. V. Fig. VI.
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The diagonal suffixes are still represented by rows of asterisks,
but where the suffixes in any row of the determinant are less by r
than those of the preceding row, the left asterisk of the corresponding
row in the diagram is placed beneath the rth from the left of the
preceding row. The new diagrams are conjugable and give rise to
the same conjugate arrays of suffixes as Muir's rule. They also have
some intrinsic interest.

Certain simple relations between diagram and determinant are
evident on inspection but important. A diagram has a northeast
and a southwest border, each being a zigzag line of asterisks, in fact
a diagram of compositions. If either border be removed, the part
remaining represents the minor obtained by deleting the first row
and the last column of the determinant. Conjugate diagrams remain
conjugate after borders have been removed.

Diagrams identical with their conjugates may be called self-
conjugate. Thej* represent an interesting type of determinant which
is invariant with respect to the interchange of Cr and Hr, e.g.

C'.2
Cj

0

04

c3
c\

c-a.

ct

\H2

Hi
0

Hi

Hz

H,

H5

H-i

§3. PROOF OF THE IDENTITY.

Let (A) and (A)' represent arrays of suffixes conjugate in the
sense of § 2, C(x) and H^y determinants of C's and H's having those
suffixes. Let the minors obtained by deleting first rows and last
columns be C\x) and H\xy, the second minors obtained by further
deletion be C'\x) and H'\xy, and so on.

The proof for general arrays becomes prolix. It will be sufficient
to indicate the steps by the example given in § 2.

Let Wronski's recurrence relation

0 = C0Hr- CxHr_x+ C2#,._2- ... + (-YCrH0

he denoted by {r}. Take {6}, {5}, {3}, {1}, the numbers being the
suffixes in the last column of H(xy. Eliminate between these the C's,
excepting Co, which do not occur in the first row of Cw, namely
C1, C3, C4. The eliminant has the form

0 = H(\y — CJHM— C3^?w— C6//'(x). (1)
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B u t Wronski 's relations remain valid when the suffixes of C's
are all diminished by the same integer. Hence we annex to (1) two
other equat ions corresponding to the remaining rows of C,

0 ^ Q Q JJ C H C H' (2V

0 = 0 - 0 - CJl^y- C\H(X) (3)

Solving now from (1), (2), (3), we have

Hence the identity of C(X) and H(xy depends on that of 6"(x) and
H\xy, always provided the latter are not zero. (We have seen that they
are conjugate.) This identity in its turn depends, with the same
provision, on the identity of C"w and H"(xy, and so on. Thus the
validity of the theorem depends ultimately on the case when one of
the minors reduces to a single element, such as H3. But then it is a
well-known result, e.g.

"3 — °o W ^
! 0 Co C

or say

H{* * *}=*C\ *
[ * J

In the case excepted, where C(x) is such that C"(x) is zero, inspec-
tion shows that then both C(x) and H{xy are factorizable into two
or more determinants, the diagrams of which, when juxtaposed,
constitute the complete diagram. The separate factors are conjugate
in pairs, and their identity follows as before.

Thus the theorem is established.

§ 4. DETERMINANT FACTORS.

A trivial example of factorization has just been noticed,
sufficiently indicated by such a diagram as

rij * * * I _ /"r / 1 rir* *i

* *
\-
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It simply involves a block of zero elements immediately below the
principal diagonal.

In a more important case, considered for 17-determinants by
Segar1, Nanson2 and Muir3, the possibility of factorization depends
on the number of variables a, b, c, . . . k entering into the symmetric
functions. For example, if there are m variables, Segar's theorem is
essentially that when the order of H(x) equals or exceeds m, then H{X) is
composed of simpler bi-alternant factors.4 Now this becomes almost
obvious if we examine the conjugate determinant C^y.

Consider for example a determinantal symmetric function of
three variables, a, b, c,

#4 #5 #7 |

TT TJ TT i

i/0 iij il3 I

Ci 0

0 C.

Co
0

0
0

c3
Ci
0

0
0
0

c2
c«

0
0
0

cs
Ci

Since there are only three variables, C,.= 0 for r > 3, and so the
G'-determinant has blocks of zeros above the principal diagonal,
causing it to break up into the factors

c3
c1

. C3
2. Ci, or H2 ft

0
. H,.

From this point of view, which is quite general, Segar's theorem
is a simple consequence of the vanishing of the higher C's.

The diagrammatic interpretation of the factorization of
be of interest. In the example before us it is

may

H
* * * *

* * *
* * * r:) * H ! * H{*}.

1 On a determinantal theorem due to Jacobi. Messenger of Math. 21 (1892),

pp. 148, 150.
2 On a theorem of Segar's. Messenger of Math. 36 (1906), pp. 77-78.
3 Note on a determinant whose elements are aleph functions. Messenger of Math.

46 (1916), pp. 108-110.
4 In this form the theorem had really been given by Naegelsbach, up. cit., in 1871.

Of. Muir's History, Vol. I l l , p. 147.
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The rule is easily seen to be as follows: if the diagram can be
dissected by drawing vertical lines which just cover all the asterisks on
either side of them and have a vertical span equal to or exceeding the
space of m asterisks, then H(^ has factors, one for each dissected part.

Thus in the example given m = 3, and we make dissections

* * *
*
*

*
*
*
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