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A SEMILINEAR DIRICHLET PROBLEM 

ALFONSO CASTRO 

Introduction and notations. Let 12 be a bounded region in Rn. In this 
note we discuss the existence of weak solutions (see [4, Section 2]) of the 
Dirichlet problem 

(I) Au(x) + g(x, u(x)) + f(x, u(x), Vu(x)) = 0 x G 12 

u(x) = 0 x G d!2 

where A is the Laplacian operator, g : 12 X R —> R and / : 12 X Rn+1 —> R are 
functions satisfying the Caratheodory condition (see [2, Section 3]), and V is 
the gradient operator. 

We let Xi < X2 ^ . . . ^ Xm ^ . . . denote the sequence of numbers for 
which the problem 

(II) Au(x) + \u(x) = 0 x G 12 

u(x) = 0 x G 12 

has nontrivial weak solutions. 
The main result of this paper is: 

Suppose the following two hypotheses hold. (1.1) The function g(x, u) admits 
a derivative with respect to u, àg/àu : 12 X R —» R, which satisfies the Caratheodory 
condition; furthermore, there exist a, ai G R and a positive integer N such that 

\N < a ^ àg/àu (x, u) ^ a\ < XN+1 for all (x, u) G 12 X R 

(1.2) There exist a constant (3 > 0 and a function c(x) G 1*2(12) such that 

|/(x,z*,;y)|2 ^ c{x) + P2\\y\\2 

for all (x, u, y) G 12 X R X Rw, where \\\\ denotes the usual norm in Kn. 

If 

(1.3) 0 < (min {1 - aiAy+i, «/X* - 1}) / \A7 

then (I) has a weak solution. 

As a corollary of our main result we obtain bounds for the eigenvalues on 
(\N} \N+i) of a class of non-selfadjoint problems of the form: 

(III) Au(x) + ((ai(x), . . . , an(x)), Vu(x)) + \u(x) = 0 x G 12 

u(x) = 0 x G dl2, 

where (, ) denotes the usual inner product in Kn and a1} . . . , an G Z,OÎ(Œ). 
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In [2, Theorem 1] and [4, Theorem 3.1] the problem (I) is considered and 
the existence of weak solutions is proved when f(x,u,y) = o(\\y\\) as 
\\y\\ —> +oo. In [3, Theorem 3.4] the problem (I) is studied when 12 C R and 
/ and g are permitted to depend on the second order derivatives. The results of 
[3] yield inequalities of the form (1.3) when ai < Xi. We denote in this paper 
by H1 the Sobolev space i70

1,2(£2) (see [1, p. 45]). We take as inner product in 
H1 the bilinear form defined by 

(u,v)i= I (Vwft),Vi;ft)>d£. 

We denote by || || the norm on H1 and by || ||0 the norm on L2(12). We let X 
denote the closed subspace of H1 spanned by the eigenf unctions of (II) corre­
sponding to eigenvalues X̂  with X* ^ X .̂ We use the symbol J to mean integral 
over 12. 

Proofs. From now on we assume that (1.1) and (1.2) hold. Let J:HlXHl->R 
be defined by 

J(y,u) =J{| |V«(£)| |72 -£(*,«<€)) - /&?($) , Vy ({))«(*)}#, 

where G : 12 X R—> Ris a continuous function such that àG/àu(x, u) = g(x, u) 
and G(x, 0) = 0. I t is not difficult to see that for y, u, v £ H1 

(2.1) l i m ^ (J(y, u +to)- J(y, u))/t =J{ (V«({), V^ft)> - *ft, *ft))i>ft) 

- / f t , y ft) » Vyft)>ft)}#. 
Therefore, by Vainberg's lemma (see [6, p. 63]), if (1.1) holds, the right hand 
side of (2.1) defines a continuous linear functional onzi f H1. Hence, for each 
(y, u) 6 HlX H1 there exist S(y, u) <E if1 such that 

(2.2) l imH 0J(3i , « + fa) — / (y , •#)/* = <«, «Oi + <5(y, w), i;)i. 

By (1.1), (1, 2) and Vainberg's Lemma (see [2, Proposition 4]) the functions 
^ft) ~~* &ft> ^ft)) a n d y{£) —» /ft , y ft), Vyft)) are continuous functions from 
if1 into Z,2(12). Since, by Rellich's principle, the inclusion of L2(12) into the dual 
space of H1 is compact, S(y, u) is a compact function. 

From (1.1) and the results of [5, Section 7] it follows that 

Au(x) + g(x, u(x)) + f(x, y{x), Vy(#)) = 0 x Ç 12 

w(x) = 0 x <E 512 

has a unique weak solution for each y G H1. Therefore, for each y G H1 there 
exists a unique v>60 € H1 such that 

(2.3) (<p(y) + S(y, <p(y)),vh = 0 for all v G H\ 
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LEMMA 1. The function cp : H1 —> H1 defined by (2.3) is compact. 

Proof. First we show that <p is continuous. From the discussion in [5, Section 
7] we see that if Jv : H1 —» R is defined by Jy{u) = J(y, u) then Jy is of class 
C2. Let DJv(u) be the Hessian of Jv at u. An elementary computation show that 

(DJv(u)v, v)i=J{ \\W\\2 - àg/àu (f, «(f)) v\Z)}db 

Following the arguments of [4, Section 7} we see that DJy(u) is a nonsingular 
Fredholm operator. 

Let T : H1 X H1-^ H1 be defined by T{yr u) = u + S(y, u). Hence T is 
continuously difrerentiable with respect to u and àuT(y, u) = DJY(u). Thus, 
by (2.3), for any y0 £ H1 T(y0, <p(yo)) = 0. By the foregoing argument 
àuT(y0, <p(yo)) is nonsingular. Therefore, by the implicit function theorem 
there exist a neighborhood V of yo and a continuous function \p : V —> Hl such 
that T(y, \p(y)) — 0 for all y £V. Consequently, by the uniqueness of (p(y), we 
have (p(y) = ${y) on V, and this proves that y is continuous. 

Now we prove that cp is bounded on bounded sets. For y G H1, let <pi(y) be 
the orthogonal projection of <p(y) on X, and let v<i(y) be <p(y) — <p±(y). By 
(2.3) we have 

0 = {<f(y) + S(y, <p(y)).,.<p2(y) - <pi(y))i. 

Hence, 

(2.4) o = l\<p*(y)\\l - \Wi(y)\\l - fg& <p(y)(0)My)ti) - *>i(y)(£»d£ 

l / t t ^ f t ) , Vy{0)(<P2(y)(0 - <Pi(y)(t))di 

^ IM:y)||2i - lkiCy)llï - -\A7||g(£, o)||0- IkOOIIi - «i||^2Cy)l|o 

+ «lk>i(y)ll2- ( j /2(f ,y(a-Vyft))df)1 / 2-VxT- lk(y)li 

^ (1 - ai/XA,+i)||^2(3;)||î + (a/Xjv - l)||tf>i(30||î 

- Vx l Ik(€, o)l|o|k(^)IU - ( J/2(S,3^(J), v ^ ( « » ^ ) -VxMkOOIIi. 

Thus, if m = min {1 — ai/\N+\y a/\N — 1} then we have 

(2.5) v^||gft,0)||o + V^( / /* (£ , y (£), Vy (£))#) ̂  è HkWIIi. 

Since, by (1.2), the Nemytski operator y(£)—-> /(£, 3>(£)> V;y(£)) maps 
bounded sets of iJ1 into bounded sets of Z2(£2) we infer from (2.5) that <p is 
bounded on bounded sets. 

/ / 
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Suppose {yn} is a bounded sequence in Hl. Hence {S(yn, <p(yn)} contains a 
convergent subsequence [S(ynj, <p(ynj))}. By (2.3), - <p(ynj) = S(ynjJ <p(ynj)). 
Therefore, {<p(ynj)} is a convergent sequence. Consequently, <p is compact and 
the lemma is proved. 

THEOREM 2. If (1.1), (1.2) and (1.3) hold then the problem (I) has a weak 
solution. 

Proof. By (1.2), there exists K 6 R such that 

(2.6) ( / / f t , y ft), V y ( « ) # ) ^ # 2 |k (*) | |o + |82||y||? 

for all y G iï1. Combining (2.5) and (2.6) we have 

(2.7) «I^WIIx g VXlHf«, 0)||o + vOTIk(*)||olrt + /SVxilMli. 

Therefore, by (1.3), if R > 0 is big enough then the function <p maps the ball 
of center 0 and radius R into itself. Consequently, by Schauder's fixed point 
theorem, cp must have a fixed point. Since any fixed point of cp is a weak solution 
of (I) the theorem is proved. 

COROLLARY 3. / / (f(ai2(£) + . . . + a»2(ê))^)1 / 2 û P then the problem (III) 
does not have eigenvalues in the open interval 

(\N(1 + 0VXÏ), \N+1(l - £VXT)) = D. 

Proof. If X G D, then following the proof of Theorem 2 we see that for any 
c(x) G L2(fi) the problem 

Au(x) + ((ai(x), . . . , aw(x)), \7u(x)) + Xw(x) = c(x) x G 12 
w(x) = 0 x Ç ôlî 

has a weak solution. Therefore by the Fredholm alternative (see [2, Proposition 
1]) X cannot be an eigenvalue of (III) . 
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