
Bull. Aust. Math. Soc.
doi:10.1017/S000497271300049X

PRIMITIVE PERMUTATION GROUPS CONTAINING
A CYCLE
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Abstract

The primitive finite permutation groups containing a cycle are classified. Of these, only the alternating
and symmetric groups contain a cycle fixing at least three points. This removes a primality condition from
a classical theorem of Jordan. Some applications to monodromy groups are given, and the contributions
of Jordan and Marggraff to this topic are briefly discussed.
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1. Introduction

There is a long tradition, going back to Jordan, of proving that a primitive permutation
group of degree n, containing an element with a specific cycle structure, must
contain An. The following theorem of Jordan (see [10, Theorem 3.3E] or [25,
Theorem 13.9]) is typical.

T 1.1. Let G be a primitive permutation group of finite degree n, containing a
cycle of prime length fixing at least three points. Then G ≥ An.

This result has frequently been used to show that certain permutations generate
the alternating or symmetric group: see, for instance, Conder’s proof in [8] that
alternating groups of degree n > 167 are all Hurwitz groups. The following extension
of Theorem 1.1, removing the primality condition, is a response to a question raised by
Alexander Zvonkin in connection with his work with Fedor Pakovich on polynomials
and weighted plane trees, motivated by the Galois theory of pairs of polynomials with
a given factorisation pattern and with a minimal degree of their difference. The proof
is a surprisingly simple application of the classification of finite simple groups.

T 1.2. Let G be a primitive permutation group of finite degree n, not containing
the alternating group An. Suppose that G contains a cycle fixing k points, where
0 ≤ k ≤ n − 2. Then one of the following holds:
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(1) k = 0 and either:
(a) Cp ≤G ≤ AGL1(p) with n = p prime; or
(b) PGLd(q) ≤G ≤ PΓLd(q) with n = (qd − 1)/(q − 1) and d ≥ 2 for some prime

power q; or
(c) G = L2(11), M11 or M23 with n = 11, 11 or 23 respectively.

(2) k = 1 and either:
(a) AGLd(q) ≤G ≤ AΓLd(q) with n = qd and d ≥ 1 for some prime power q; or
(b) G = L2(p) or PGL2(p) with n = p + 1 for some prime p ≥ 5; or
(c) G = M11, M12 or M24 with n = 12, 12 or 24 respectively.

(3) k = 2 and PGL2(q) ≤G ≤ PΓL2(q) with n = q + 1 for some prime power q.

C 1.3. Let G be a primitive permutation group of finite degree n, containing
a cycle with k fixed points. Then G ≥ An if k ≥ 3, or if k = 0, 1 or 2 and n avoids the
values listed in parts (1), (2) or (3) of Theorem 1.2.

R 1.4. If a permutation g has a cycle of length coprime to all its other cycle
lengths, then some power of g is a cycle of the same length, so these results can be
applied to it.

R 1.5. It is straightforward to check that the groups G listed in Theorem 1.2 all
have elements with the appropriate cycle structures. Moreover, they are all primitive.
In fact, apart from proper subgroups of AGL1(p) in (1)(a), they are all doubly transitive.

R 1.6. In general, one cannot remove the hypothesis that G is primitive. For
instance, if m is a proper divisor of n then the imprimitive group S m o S n/m of degree n
contains a cycle g with k fixed points for k = m, 2m, . . . , n − 2m (permuting the blocks
nontrivially), and for n − m ≤ k ≤ n − 2 (leaving each block invariant). However, if k
is coprime to n and less than n/2, then any transitive group containing g is primitive,
so these results apply.

R 1.7. A similar result to Theorem 1.2, restricted to the case where n is prime
and k > 0, has been obtained by Bouw and Osserman [3, Proposition 3.1], who apply
it to covers of curves in positive characteristic. (Their proof can be simplified by using
the fact that the transitive groups of prime degree n are known: apart from S n and An,
they are the groups G in parts (1)(a) or (1)(c) of Theorem 1.2, together with those in
(1)(b) for which n is prime.)

R 1.8. As in the preceding comment, some of the motivation for results of this
type comes from covering space theory. The monodromy group of a covering is the
group of permutations of the sheets obtained by lifting closed paths. It is primitive if
and only if the covering is not a composition of coverings of smaller degrees. Local
branching information provides cycle structures for certain elements of this group, so it
is useful to know which primitive groups contain elements with given cycle structures.
An application of Theorem 1.2 is given in Section 3.

R 1.9. There is a similar situation in Galois theory: the Galois group G of a
polynomial f (t) ∈ Z[t] acts transitively on the roots if and only if f (t) is irreducible,
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and it acts primitively if and only if f (t) does not divide a composition g(h(t)) of
polynomials of smaller degrees, with g(t) irreducible. If p is a prime not dividing the
discriminant of f (t), then the degrees of the irreducible factors of the reduction modulo
(p) of f (t) give the cycle structure of an element of G. This information can help in
identifying G.

R 1.10. There is an infinite analogue of Corollary 1.3: [10, Theorem 3.3D]
shows that a primitive group on an infinite set, containing a cycle of finite length (or
indeed any permutation with nonempty finite support), contains the alternating group,
consisting of all the even permutations with finite support.

R 1.11. Finally, it should be emphasised that the proof of Theorem 1.2 relies
heavily on the classification of finite simple groups—in particular, on the resulting
classification of doubly transitive groups. It seems hopeless to expect proofs of results
such as this using only the methods available to Jordan and his contemporaries.

2. Proof of Theorem 1.2

The case k = 0 has been dealt with by the author in [12], completing work of
Feit [11], while the case k = 1 has been dealt with by Müller in [19, Theorem 6.2]
(see also Theorem 3.2 of [20, 21], and [4]). Both results can be deduced from the
classification of doubly transitive groups, stated in [6, 10] for instance. Thus we may
assume that k ≥ 2.

A theorem of Jordan, often attributed to Marggraff (see Section 3) shows that
G, being primitive and containing a cycle with k fixed points, is (k + 1)-transitive;
since k ≥ 2, G is at least 3-transitive. As a result of the classification of finite simple
groups, the multiply transitive finite permutation groups are known. In particular, the
3-transitive groups G 6≥ An are as follows:

(1) various groups G such that L2(q) ≤G ≤ PΓL2(q), with n = q + 1 for some prime
power q;

(2) various subgroups G ≤ AGLd(2) with n = 2d and d ≥ 3;
(3) M11 with n = 11 or 12, M12 with n = 12, M22 and Aut M22 with n = 22, M23 with

n = 23, M24 with n = 24.

All these groups appear in their natural representations, apart from M11 acting on the
n = 12 cosets of a subgroup L2(11). Of these groups, only M11, M12, M23 and M24 in
their natural representations are 4-transitive, only M12 and M24 are 5-transitive, and
none are 6-transitive. Thus 2 ≤ k ≤ 4.

The groups in (3) can be eliminated since inspection of the groups or of their
character tables in [9] shows that they do not contain (n − k)-cycles for such values
of k. The groups G in (1) and (2) are only 3-transitive, so k = 2.

If G ≤ AGLd(2) as in (2), the subgroup G0 fixing 0 contains a cycle g of length n − 2,
so h := g(n−2)/2 is an involution in GLd(2) fixing just two points. Thus (h − 1)2 = 0 and
dim ker(h − 1) = 1, so d ≤ 2, contradicting (2).
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Finally, let G ≤ PΓL2(q) as in (1). We can take the (q − 1)-cycle to fix 0 and ∞.
Their stabiliser in PΓL2(q) consists of the semilinear transformations g : t 7→ atγ,
where a ∈ F∗q and γ ∈ Gal Fq. This has a normal subgroup N = {g | γ = 1} � F∗q �Cq−1,
complemented by a subgroup {g | a = 1} � Gal Fq �Ce, where q = pe with p prime.
Replacing g with a suitable power of the same order, we may assume that γ : t 7→ tp f

for some f dividing e, so γ has order d := e/ f . Then

gd : t 7→ a1+p f +p2 f +···+p(d−1) f
t

is an element of N, and if this has order m then g has order dm. Now 1 + p f + p2 f +

· · · + p(d−1) f divides pe − 1 = q − 1, so m divides

q − 1
1 + p f + p2 f + · · · + p(d−1) f

.

Clearly 1 + p f + p2 f + · · · + p(d−1) f ≥ d, so dm ≤ q − 1, with equality only if d = 1,
that is, g ∈ N. It follows that the only (q − 1)-cycles g ∈ PΓL2(q) are those in PGL2(q);
since they satisfy 〈L2(q), g〉 = PGL2(q), the only groups G containing (q − 1)-cycles
are those containing PGL2(q).

3. Application to monodromy groups

Let X be a projective algebraic curve over C (equivalently a compact Riemann
surface), and f : X→ P1(C) a rational function of degree n which is indecomposable
as a composition, so that its monodromy group G is a primitive subgroup of S n

(see Remark 1.8 in Section 1). Suppose that f has k simple poles, and one of
multiplicity m = n − k. Then the corresponding monodromy element g∞ ∈G, induced
by analytic continuation around ∞, is a single cycle of length m, with k fixed points,
so Theorem 1.2 applies to G. In particular, if G 6≥ An then k ≤ 2 and G is one of the
groups listed there.

For each of these listed groups G, and for each integer r ≥ 3, one can extend g∞
to a set of r generators for G with product (in some order) equal to 1. It is sufficient
to prove this when r = 3: the maximal subgroups of each G are known, and those
containing g∞ do not cover G; one can therefore choose any g1 not in their union
and define g0 = (g1g∞)−1, so that G = 〈g0, g1, g∞〉 with g0g1g∞ = 1. The Riemann
existence theorem then implies that for any r-element subset R ⊂ P1(C) there is a
covering f : X→ P1(C) by some curve X, ramified over R, with the chosen generators
as the local monodromy permutations.

If r = 3 then by applying a Möbius transformation one can assume that R =

{0, 1,∞}, with g0, g1 and g∞ the monodromy permutations at these points. In this
case, Belyı̆’s theorem [2] implies that X and f are defined over an algebraic number
field, though in practice it is rarely possible to find explicit equations for them.

E 3.1. Let k = 0, n = p and G ≤ AGL1(p) as in part (1)(a) of Theorem 1.2, where
p is an odd prime. Then G is a semidirect product of Cp by Cq for some divisor q
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of p − 1. If q > 1 then in order to generate G we must take g1 and hence also g0 to have
order q, so they each have one fixed point and (p − 1)/q cycles of length q. Thus 0
and 1 are each covered by one simple point in X and (p − 1)/q points of multiplicity q.
The total order of branching of f is therefore

B = 2
(p − 1)

q
(q − 1) + (p − 1) =

(p − 1)(3q − 2)
q

,

so the Riemann–Hurwitz formula implies that X has genus

1 − p +
B
2

=
(p − 1)(q − 2)

2q
.

For instance, if q = 2 then X = P1(C) and f = (1 + Tp)/2, where Tp is the Chebyshev
polynomial z 7→ cos(p cos−1 z) of degree p, while G is the dihedral group of order 2p.

E 3.2. Let k = 1, n = 24 and G = M24, as in part (2)(c) of Theorem 1.2. The
maximal subgroups of M24 have been determined by Choi [7], and they are also given
in [9]. The only maximal subgroups containing elements g∞ of order m = 23 are
isomorphic to M23 or L2(23); these have no elements of order 10, so if we take g1 ∈G to
be any element of order 10 then G = 〈g1, g∞〉, as required. Since g1 has cycle structure
22 102, the resulting function f takes the value 1 at four points in X, with multiplicities
2, 2, 10 and 10. The Frobenius triple-counting formula [24, Theorem 7.2.1] shows that
one can choose g1 and g∞ as above so that g0 is any nonidentity element of G, allowing
various different ramification patterns for f over 0. For instance, an involution g0 ∈G
is a product of eight or twelve transpositions as it is in the conjugacy class 2A or 2B
respectively, so f has either eight double and eight simple zeros, or twelve double
zeros; the Riemann–Hurwitz formula then shows that X has genus 2 or 4, respectively.

4. Jordan and Marggraff

Following Burnside [5, Section 159] and Wielandt [25, Theorem 13.8], the result
that a primitive permutation group containing a cycle with k fixed points must be
(k + 1)-transitive has often been attributed to Marggraff (or Marggraf or Marggraaf).
Both authors state the result without proof, referring to his dissertation [17]. Dixon and
Mortimer [10, Exercise 7.4.11] set it as an exercise, without attribution or solution,
though in a later hint they refer to a proof by Levingston and Taylor [16]. In his
scholarly review of that paper, Neumann [22] points out that an earlier paper by
Atkinson [1] contains a similar proof due to Alan Williamson.

In fact Neumann, clearly one of the few who have read Marggraff’s dissertation or
his subsequent paper [18], argues in [22] and in more detail in [23] that this theorem
should really be attributed to Jordan. Here is Jordan’s Théorème I from page 384
of [13] (see also [15, page 314]), with the incorrect ‘n − p − 2q + 3 fois primitif’ in his
first sentence amended to ‘n − p − 2q + 3 fois transitif’, the phrase he surely intended.
(See [23, page 272] for Neumann’s comments on this, including an English translation
of Théorème I using modern terminology.)
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Si un groupe G, primitif et de degré n, contient un groupe Γ dont les substitutions ne
déplacent que p lettres et les permutent transitivement (p étant un entier quelconque),
il sera au moins n − p − 2q + 3 fois transitif, q étant le plus grand diviseur de p tel
que l’on puisse répartir les lettres de Γ de deux manières différentes en systèmes de q
lettres jouissant de la propriété que chaque substitution de Γ remplace les lettres de
chaque système par celles d’un même système.

Si aucun des diviseurs de p ne jouit de cette propriété (ce qui arrivera notamment
si Γ est primitif, ou formé des puissances d’une seule substitution circulaire), G sera
n − p + 1 fois transitif.

Note in particular the last sentence, which includes the case where Γ is generated
by a cycle. Neumann also finds no clear justification for the date of 1892 assigned
by Burnside and Wielandt to Marggraff’s dissertation, arguing that the rather sketchy
evidence available suggests that it was probably written in 1889 or 1890. Again,
see [23] for more on Marggraff’s work and its relationship with that of Jordan.

Concerning Jordan’s Theorem 1.1, although Wielandt [25, Theorem 13.9] refers
to [14], it is not explicitly stated there. However, it follows easily from [13,
Théorème I], stated above, together with [14, Théorème I]:

Soit p un nombre premier impair. Un groupe de degré p + k ne pourra être plus de
k fois transitif, si k > 2, à moins de contenir le groupe alterné.
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