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Abstract

In developing countries, a significant amount of natural gas is used for household water heating, accounting for
roughly 50% of total usage. Legacy systems, typified by large water heaters, operate inefficiently by continuously
maintaining a large volume of water at a constant temperature, irrespective of demand. With dwindling domestic gas
reserves and rising demand, this increases dependence on expensive energy imports.

We introduce a novel Internet of Things (IoT)-inspired solution to understand and predict water usage patterns and
only activate the water heater when there’s a predicted demand. This retrofit system is maintenance-free and uses a
rechargeable battery powered by a thermoelectric generator (TEG), which capitalizes on the temperature difference
between the heater and its environment for electricity. Our study shows a notable 70% reduction in natural gas
consumption compared to traditional systems. Our solution offers a sustainable and efficient method for water
heating, addressing the challenges of depleting gas reserves and rising energy costs.

Impact statement

This work presents an innovative Internet of Things (IoT)-based retrofit solution for tank-based water heaters,
addressing energy inefficiencies prevalent in developing countries. By integrating a thermoelectric generator
(TEG) powered by waste heat, and employing machine learning to predict hot water demand, this system
significantly reduces natural gas consumption by about 70%. Its real-world application demonstrates a sustain-
able, cost-effective method for enhancing water heating efficiency, offering a significant impact on energy
conservation and cost reduction for households, while also addressing the challenges posed by depleting gas
reserves and the environmental impact of traditional energy sources.

1. Introduction

Numerous developing nations face an intensifying energy crisis, driven by rising dependence on imported
natural gas and significant inefficiencies in the residential sector, primarily due to the widespread use of
storage tank-based water heaters (Awan and Knight, 2020; Zahid et al., 2022). These devices, a notable
contributor to residential gas consumption, operate around the clock, using up energy to maintain the
temperature of water that often remains unused. While instant heaters present a potential alternative, market
preferences lean toward tank-based heaters. Their large capacity, utility during power outages, and the
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economic challenges tied to the installation of multiple instant heaters make them more desirable. This
trend transcends geographical boundaries, from developing nations to developed countries like the United
States, the United Kingdom, Canada, New Zealand, and Australia, where natural gas-driven, tank-based
water heating is dominant (Xie et al., n.d.).

A key contributor to the inefficient operation of tank-based water heaters is the persistent use of legacy
mechanical thermostats, designs of which have seen little to no change since the 1970s (Zaheen Machines,
2023). Given these inefficiencies, retrofitting solutions that aim to bolster the efficiency of water heating
systems emerge as a viable approach. Addressing these challenges, our research endeavors to present
advancements in retrofitted hardware and software solutions, specifically targeting the replacement of
these outdated mechanical thermostats.

From a hardware standpoint, we developed a retrofit thermal controller to replace traditional controls
in storage tank-based water heaters, enhancing control and leveraging machine learning for adaptable
operation based on user schedules or water usage patterns. Given the power challenges in developing
regions and the impracticality of using batteries in typical heater locations, such as backyards or side
alleys (due to safety reasons), we incorporated a thermoelectric generator (TEG) into the controller.
Leveraging the Seebeck effect, the TEG transforms the heater’s waste heat into electricity, guaranteeing
continuous and sustainable operation.

The software component of our solution is built around the intelligence hub, which is placed indoors to
utilize main power sockets for its functionality. The hub, equipped with BLE and Wi-Fi for communica-
tion, focuses mainly on data collection and processing. By receiving data from the thermal controller, the
intelligence hub uses machine learning to study patterns in hot water consumption. The insights obtained
from this preliminary analysis are sent back to the thermal controller, potentially aiding in refining its
operations. In addition to these analytical tasks, the intelligence hub also acts as an interface between users
and the system. It incorporates an Android application server, which offers users an opportunity to view
their consumption data and, if desired, adjust their heating preferences from a distance.

Overall, we make the following concrete contributions.

+ Innovative system architecture: This research presents a holistic system design that combines
hardware and machine learning techniques, refining energy management in tank-based water
heaters.

* Sustainable energy via TEGs: Addressing power consistency issues, this study integrates a TEG
into the system, tapping into waste heat for electricity generation and enhancing system resilience.

» Empirical validation: The paper undertakes a comprehensive empirical evaluation, comparing the
proposed system’s efficacy against conventional water-heating methods.

We designed our solution in accordance with industrial standards, ensuring that a trained installer can set
up the system on-site in less than an hour. Local industries in the water-heating sector have swiftly taken
interest in our innovation, initiating studies on its technical and economic feasibility through an early
adopters program. Should these evaluations prove positive, we anticipate a swift rollout.

2. Related work

Numerous solutions have been proposed and developed to enhance the energy efficiency of water-heating
systems. However, these solutions have not effectively replaced legacy water-heating systems, mainly
due to their failure to address the unique challenges faced by developing countries, such as Bangladesh,
India, and Pakistan. One significant challenge is the large average household size in these countries, which
ranks among the highest globally (Bongaarts, 2001). The economic viability of legacy water heaters with
their large storage tanks remains favorable for the majority of the population. Attempts to replace them
with smaller instant water heaters have proven unsuccessful, primarily due to the capital costs associated
with providing the same level of comfort for typical households. Moreover, instant water heaters often
suffer from low water pressure, further complicating their adoption.
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Solar water-heating systems have been introduced as an alternative to fossil fuel reliance for water
heating. Extensive research (Ibrahim et al., 2014; Jamar et al., 2016; Minoli et al., 2017) has explored
various solar power-based water-heating solutions. These range from passive designs that directly harness
solar heat to active designs that utilize photovoltaic panels to convert solar energy into electricity for water
heating. The latter approach offers the advantage of energy storage for use during periods when solar
power is unavailable, such as at night or on cloudy days. However, these designs typically involve high
initial costs and may not be feasible for existing structures. Additionally, the efficiency of solar collectors
and the economic viability of utilizing incident solar energy for water heating remain areas of concern
(Gautam et al., 2017).

Numerous studies have focused on minimizing energy consumption for hot water provision during
winter. One example is the Circulo system (Frye et al., 2013), which learns patterns of hot water usage
within a household and circulates hot water only when it is most likely to be used. This approach has
shown a 30% reduction in hot water circulation costs without increasing water wastage. However, such
circulation rates require energy-intensive devices like water circulation pumps, leading to significant
annual energy costs (Deck, 2023). Consequently, water circulation pumps are not a practical option in the
regions considered in this paper.

Similarly, the concept of a smart water heater (SWH) (Sun et al., 2015) has been proposed to minimize
heat losses through piping by delivering lower-temperature water whenever possible. By learning models
for each fixture, the SWH system solves an optimization problem to determine when and at which
temperature water should be delivered, aiming to reduce energy consumption without compromising user
thermal comfort. SWH has demonstrated energy cost reductions of 8 to 14% in residential water heating.

Considering the enduring prevalence of tank-based water heating systems, our proposed solution
recognizes the need for retrofitting these legacy systems at an affordable price to enhance their efficiency
and mitigate the impact of rising energy prices on households.

3. Background: tank-based water heater

Figure 1 illustrates the basic architecture of a typical water heater, commonly referred to as storage water
heaters or geysers. Used extensively for residential and commercial purposes worldwide, these water
heaters operate by storing a large volume of water and keeping it heated to a desired temperature over an
extended period.

In a typical setup, cold water enters the tank through a water inlet, while hot water is discharged through
an outlet when a hot water tap is opened by the user. The water temperature is maintained by a manually
configured mechanical thermostat, which controls the gas supply to the burner based on the set
temperature. A pilot flame is always lit, providing the ignition source for the burner when it needs to
be activated, typically when the water temperature falls below the set point.

While these systems are effective in providing a steady supply of hot water, their operation is
predominantly mechanical and heavily reliant on user intervention. Users manually configure the
mechanical thermostat, often controlled using an analog dial with vague temperature descriptions. This
lack of precision and responsiveness to changes in household consumption patterns leads to energy
inefficiencies. Moreover, considering their design to accommodate large households, the water heaters
feature substantial storage tanks. Maintaining the water temperature in these extensive tanks, irrespective
of the immediate hot water demand, can potentially contribute to significant energy wastage.

The problem is exacerbated when these heaters are installed in areas with limited power availability,
such as backyards, where there is no easy access to power sockets. This limits the potential for
incorporating more efficient and intelligent electronic control systems.

The challenge, therefore, lies in devising a solution that can address these inefficiencies in a cost-
effective and sustainable way, specifically for tank-based water heaters. A solution that can intelligently
adjust the water heater’s operations based on usage patterns and minimize wastage, while also being
resilient to power availability challenges, could significantly improve the efficiency of energy consump-
tion in the residential sector.
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Figure 1. Architecture of a conventional, tank-based water heater.

4. System design and implementation

Our system aims to develop an intelligent, cost-effective, and energy-efficient solution for managing
traditional tank-based water heaters. It employs an Internet of Things (IoT)-based retrofit controller that
learns a household’s water usage patterns using sensor data to optimize energy consumption. The
architecture of this solution is centered around two key modules: the thermal controller and the
intelligence hub, as shown in Figure 2.

4.1. Thermal controller

The thermal controller system is based on the ARM Cortex nRF51 System-on-a-Chip (SoC) (ARM
Cortex nRF51, 2023), which acts as the central unit for data processing and communication. All sensors
and actuators in the system are linked to this microcontroller, enabling it to sense important parameters,
analyze them, and make decisions accordingly. These parameters are measured by four distinct sensors
integrated into the system. The first sensor is a thermocouple probe, specifically designed to measure the
temperature of the water tank. The MAX6675 digital amplifier (MAX6675, 2023), interfacing through
the Serial Peripheral Interface (SPI), is connected to this probe. These amplifiers enhance the accuracy of
the temperature measurements, and SPI, a well-established protocol for data communication, allows for a
higher data transfer rate.

In addition to temperature monitoring, our system also integrates a water-flow sensor designed to learn
the water usage pattern by measuring the water flow rate. It does so by recording the rate at which water is
consumed, which is then used to anticipate future water usage patterns.

The safety of the system is fortified by a natural gas leakage detector, the MQS5 sensor (Zainuddin et al.,
2022). This sensor can identify gas leaks and also detect a complete loss of gas pressure. Upon detecting a
gas concentration that exceeds the safe limit, the system autonomously shuts down the gas supply to
prevent any potential mishaps. Additionally, a flame sensor (IR Sensor, 2023) is incorporated to detect the
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Figure 2. System architecture diagram highlighting interaction and data flow between the thermal
controller and intelligence hub, sensor/actuator connections, and enabling of remote monitoring via
internet and Android app.

presence of a flame. Once a flame is detected, indicating that the burner has been ignited, a set of
predefined actions is initiated to ensure the system is functioning as intended.

4.1.1. Power optimization and wake-up strategies

The nRF51 SoC employs a duty-cycled operation strategy to optimize power consumption. It, along with
sensor nodes and the RF radio, is activated only when necessary and transitions to a low-power or sleep
state during periods of inactivity, especially when no active BLE connection is present.

To wake up the nRF51 from its sleep state, our system employs a multi-pronged wake-up strategy.
First, the nRF51 uses the directed advertising mechanism in the BLE protocol. Here, the nRF51
intermittently wakes up to broadcast its availability via advertising events. If the intelligence hub wants
to establish a connection during one of these advertising events, it sends a connection request, prompting
the nRF51 to fully wake up and establish the connection. Second, the integrated sensors operate in a low-
power monitoring mode, ensuring they consume minimal power while still being responsive to significant
events. For instance, the water flow sensor can trigger an interrupt when water flow is detected, waking up
the SoC. Third, for scheduled events like turning on the burner, we use a timer-based wakeup. A timer is
configured to wake up the nRF51 SoC at specific times based on the learned schedule.

4.1.2. Thermal energy harvesting and conversion
Battery is the component with the shortest lifespan and highest maintenance requirement in most similar
systems. They typically require regular maintenance, replacement, and recycling, which can be a
significant hassle and an environmental hazard due to battery waste. In our design, we have minimized
the reliance on frequent battery replacements, thus significantly reducing maintenance needs and
environmental impact. We have integrated an energy-harvesting system using a TEG that leverages the
Seebeck effect (Chen et al., 2018; Jouhara et al., 2021). Inside the water heater’s chamber, we placed a
5-W TEG module (SP1848-27145 TEG Peltier Module, 2023) with both heating and cooling blocks. The
hot side of the TEG faces the burner, while we connect its cold side to a heat sink. This setup provides a
5.2-W output that efficiently charges the onboard Li-ion battery. We use a DC-DC Cuk converter to
process this power, with the converter being controlled by the microcontroller employing the maximum
power point tracking (MPPT) algorithm (Omairi et al., 2017). We chose the Cuk converter for its ability to
handle continuous current, ensuring optimal power delivery to the 3.6 V Li-ion battery (Haq et al., 2021).
The output power generated by the TEG depends on the temperature difference (AT =Ty, - T,.) between
the hot (Ty,) and cold (T,) sides of the module, exhibiting a nonlinear [-V characteristic. Figure 3 illustrates
the relationship between AT and the generated output power. The average Ty, in our deployment fluctuates
around 250°C, while T, is maintained at 30°C, resulting in an average output power of 4 W.
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Figure 3. The power output of the TEG plotted against the temperature difference (T}) under various
cold-side temperatures (T,). The curve demonstrates the nonlinear nature of the TEG's power output.
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Figure 4. The circuit diagram of the Cuk converter used in our system for power conversion.

4.1.3. MPPT using the P&O algorithm

The implementation of the proposed system involves utilizing a DC-DC Cuk converter to extract
electrical energy from the TEG module. This converter operates in the continuous conduction mode
and integrates the MPPT algorithm. A switch, denoted as Sy, is responsible for the frequency switching at
50 kHz. The schematic diagram of the Cuk converter is depicted in Figure 4.

We use the perturbation and observation (P&O) method as our MPPT algorithm (Femia et al., 2004).
This method perturbs the TEG’s terminal voltage to find its optimal operating point based on the
derivative of power with respect to voltage (dP/dV). If dP/dV > 0, the algorithm moves closer to the
maximum power point; if dP/dV < 0, it reverses direction. We illustrate this in Figure 5, where the
parameter N represents the modulation value for the duty cycle or pulse width.

The P&O algorithm offers simplicity, leading to reduced design costs and minimal computational
demands during runtime. Despite its limitations, such as slow responses to dynamic changes and
oscillations during steady-state operation (Brambilla et al., 1999; Femia et al., 2004), they do not impact
our use case, which focuses on battery charging. The combination of the TEG-to-DC converter and the
P&O MPPT algorithm is vital to our system, facilitating efficient energy harvesting and charging.
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operation of the Cuk converter and maximize power delivery from the TEG to the battery.

A practical representation of the thermal controller’s implementation can be seen in Figure 6, which
shows the retrofit controller installed on a water heater at the deployment site.

4.2. Intelligence hub

This module serves as the brain of our system. It is based on the Raspberry Pi 4 Model B (Rasperry Pi
4 (model B), 2019), which offers both BLE and Wi-Fi connectivity, enabling our system to serve as a
bridge between the thermal controller and the internet. With the intelligence hub acting as a server for the
accompanying Android application, users can remotely monitor and control their water heaters.

The hub operates as a server with a registered domain name, employing a DDClient to routinely update
the domain name to point toward Cloudflare’s DNS (Cloudflare, 2023). This ensures a reliable and
continuous connection between the hub and the internet, providing an efficient way for users to remotely
interact with the system.

Additionally, we have developed an accompanying Android application, enabling users to remotely
monitor their water heaters and update schedules according to their needs, as shown in Figure 7. The
intelligence hub serves as the server for this application, facilitating two-way communication for real-time
control and monitoring.

The intelligence hub further harnesses the power of machine learning to anticipate future hot water
demand based on household water usage patterns and the time of day. The system incorporates a dual
approach to scheduling to meet the varied user preferences, employing both automatic and manual
scheduling features.

4.2.1. Automatic scheduling

The automatic scheduling mechanism is built around a machine learning model known as the Mixture of
Gaussian Hidden Markov Models (MoGHMM). This algorithm studies water usage patterns based on two
inputs: instantaneous water usage and corresponding time of day. Designed to adapt to diverse water
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Figure 6. Deployment of the retrofit thermal controller on a tank-based water heater at the site.

usage patterns, the MoGHMM algorithm works with two states: a dormant state (Dy) and an active state
(As). The dormant state corresponds to periods of minimal water usage, typically from midnight to early
morning, while the active state represents periods of increased water usage throughout the rest of the day,
as illustrated in Figure 8.

Within the MoGHMM, we differentiate between a routine pattern (M), which signifies a commonly
observed usage pattern, and an abnormal pattern (M,), representing rarely observed patterns. The
classification between M, and M, is performed by a Hidden Markov Model (HMM) classifier, which
computes the matching probability of the current water usage (D) with both M, and M,,. The classifier’s
output is given as follows:

model = argmax (D|m)
meMq, M,

This approach ensures that abnormal patterns do not adversely affect system performance, as the
system can intelligently distinguish and adapt to different usage scenarios. Our automatic scheduling
mechanism has demonstrated an accuracy exceeding 90% after a two-week training period (Abbas et al.,
2020), ensuring efficient anticipation of hot water demand.
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4.2.2. Manual scheduling

The manual scheduling feature provides users with an option to override the MoGHMM models and
manually set their preferred water temperature for different days and times of the week. This feature
acknowledges the nondeterministic nature of hot water usage in some households (Abbas et al., 2020).
The manual schedule, along with an optional “hard start” feature for unexpected hot water needs, can be
configured within the smartphone application and uploaded to the controller.

In summary, these scheduling algorithms allow our system to offer user-friendly, efficient, and
intelligent control of water heaters, catering to varied usage patterns and user preferences.

We estimate the total cost of implementing the proposed system to be less than $50. This estimate
encompasses the expenses related to individual components, sensors, the microcontroller, as well as the
aggregate bulk printed circuit board (PCB) manufacturing cost. The per-unit price of each component is
based on an assumed bulk order of 1000 units. Moreover, the total cost considers the expenses related to
the TEG system. In contrast, instant water heaters start at a price point of $80, lack the smart features
offered by our system, often exhibit lower water pressure, and may not provide sufficient hot water for
prolonged activities such as bathing, thus reaffirming the cost-effectiveness and utility of our proposal.

5. Modelling TEG

We developed and simulated a model of the TEG using MATLAB Simulink to evaluate its feasibility for
charging the system battery. We applied the MPPT algorithm to the model’s output to transfer maximum
power from the TEG to the load, which is the system battery in this context.
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Figure 8. lllustration of MoGHMM algorithm, which forecasts and distinguishes between dormant and
active states, corresponding to periods of minimal and increased water usage, respectively.

5.1. The TEG model

We modeled the TEG using a temperature-dependent voltage source and a resistor, representing its
internal resistance, as recommended in (Mamur and Coban, 2020). Maximum power transfer from the
TEG module to the load occurs when their impedances match.

The input parameters for the TEG model include the temperatures of its hot and cold sides, the Seebeck
coefficient, and the number of TEG modules, with the latter set to one for our implementation. The
Seebeck coefficient measures the thermoelectric sensitivity of a material, denoting the voltage change due
to the temperature difference (T, - T.) (Mamur and Coban, 2020).

With these parameters, we effectively modeled the TEG’s behavior, enabling a thorough analysis of its
performance within our system.

5.2. The charging system

We direct the TEG’s output to a DC-DC Cuk converter, which operates continuously at a 50 kHz
switching frequency. The converter’s duty cycle leverages the MPPT algorithm. We chose the Cuk
converter for its continuous input and output currents, reducing strain on the attached 3.6 V Li-ion cell.

We direct the output from the TEG module to the Cuk converter and utilize the MPPT algorithm to
optimize power transfer to the battery. For comparison purposes, as detailed in the work (Mamur and
Coban, 2020), we incorporate a fixed resistance load. In our analysis, we assume that the TEG’s cold side
remains at a steady 25°C, representing ambient temperature. Meanwhile, its hot side is in contact with a
metal surface consistently maintained at 200°C. This temperature differential is crucial for the TEG’s
power generation.

To investigate the impact of temperature difference on the power output of the TEG, we maintain a
constant load and cold side temperature while uniformly increasing the hot side temperature. This is
achieved by activating the burner to heat the water in the tank. As the temperature difference between the
hot and cold sides of the TEG increases, the power delivered to the fixed resistance load exhibits a
corresponding increase, as depicted in Figure 9a. This observation aligns with the relationship between
input and output power.

Figures 9b and 9c illustrate the simultaneous increase in voltage and current as the temperature
difference across the TEG increases. The MPPT algorithm plays a crucial role in extracting maximum
power from the TEG by regulating the voltage, which subsequently controls the current flowing through
the fixed load connected to the converter’s output.

The temperature differences examined in Figure 9 can also be indirectly linked to evaluate seasonal and
environmental variations. During the summer, the temperature difference between the surface of the water
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Figure 9. Comprehensive analysis of TEG performance: correlations of power, voltage, and current with
temperature difference (A T), and time-series depiction of TEG output.

heater and the environment is relatively small because both the water heater surface and the surrounding
environment are hot. Consequently, the TEG produces less energy. However, this is balanced by the
reduced demand for hot water during the summer months.

In contrast, during the winter, the temperature difference increases significantly as the environment is
much colder than the surface of the water heater. This greater temperature differential enhances the TEG’s
efficiency, resulting in higher energy generation. This increase in energy production aligns with the higher
demand for hot water during the colder months.

Our initial result demonstrates that the system can effectively adapt to varying environmental
conditions, maintaining consistent need-based performance throughout the year. The analysis of TEG
efficiency under different temperature differences provides a solid foundation for understanding its
performance across different seasons.

6. Experimental results

We evaluate the performance of our proposed solution for legacy water-heating systems by deploying a
prototype in a real household. To do this, we gathered data about usage characteristics based on a
household’s typical hot water requirements. Although each household may exhibit unique usage patterns,
we have validated the machine learning algorithm and found it to predict usage with high accuracy in
diverse settings (Abbas et al., 2020).
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Figure 10. Comparison of cumulative gas consumption by the proposed system operating under different
modes with the baseline. The retrofit controller reduces gas consumption by around 70%.

Figure 6 illustrates the integration of the retrofit controller into a standard gas-powered water heater,
serving as our experimental setup to gauge our system’s efficacy. In this section, we share the results,
emphasizing the controller’s effect on natural gas consumption for water heating and maintaining the
household’s water comfort. We also offer insights into our controller’s power consumption and the TEG’s
effectiveness in recharging the system battery, aiming for long-term, maintenance-free operation.

6.1. Impact on gas consumption

We collected gas consumption data for a typical water heater equipped with a traditional mechanical
thermostat over a one-month period. This serves as our baseline data, representing the gas consumption of
standard water heaters commonly used in households across Pakistan.

The smart controller has two modes: user-defined schedules and machine learning. For these modes,
we derived the gas consumption data from the baseline data, rather than using our smart system in a live
setting. The rationale behind this approach was to establish equal grounds for comparison. Testing each
mode over its own distinct one-month period would introduce variability due to inherent differences in
consumption behavior. Hence, we measured the on/off times of both the user-provided schedule and the
machine-learning (MoGHMM) predicted timings to infer gas consumption. Given the consistent gas flow
during the on-time, which we previously quantified, this allows precise gas consumption measurement
and comparisons.

In Figure 10, the daily natural gas consumption for all three scenarios over a one-month period is
depicted. The dotted lines indicate reductions in gas consumption as percentages. Notably, the curves for
both the user-defined and MoGHMM-learned schedules align closely, underscoring MoGHMM'’s
proficiency in accurately learning and mirroring household water usage patterns.

Figure 10 also showcases the cumulative natural gas consumption across the designated days. It is
evident from the results that our smart controller achieves a reduction in natural gas consumption by
roughly 70%. This significant reduction can be attributed to the controller’s ability to discern household
water usage patterns, activating the water heater precisely when hot water demand is anticipated.
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Table 1. Energy consumption of the proposed system with and without power optimizations

Before power optimization ~ After power optimization

Modes of operation Current (A) Energy (Wh) Energy (Wh)
System ON  Active mode 0.42 1.26 0.08
Sleep mode 0.013
System OFF  Active mode 0.031 0.093 0.003
Sleep mode 0

It is important to note that gas savings might differ among households, as water usage patterns can vary
considerably. While our system realized significant gas savings in the studied household settings,
variations in water usage patterns imply that not every household might achieve the same level of savings.

6.2. The system’s power consumption

We deem it essential to analyze the power consumption of the proposed system, especially given its
intended use in environments without tethered power access, depending solely on rechargeable batteries.
We determined the system’s power requirements by monitoring the input current across different
operational modes, both with and without power optimizations.

Without power optimizations, the device always remains in the active mode, where both the radio and
sensor nodes function continually. However, when we introduce power optimizations, the device switches
between active and sleep modes, utilizing a very low duty cycle. Specifically, the system activates every
30 seconds for a brief moment to execute necessary tasks and then reverts to the sleep mode. In this sleep
mode, we deactivate all sensors and the radio. It’s also important to highlight that we consistently set the
radio transmit power to 0 dBm.

Table 1 presents the device’s power consumption results. The data reveal substantial power savings,
achieved by eliminating superfluous processing and operating the device at low duty cycles. These power
optimizations extend the battery life, assuring the system’s continuous operation over extended durations.

By integrating the TEG into our system, we can recharge the system’s battery, extending its lifespan
without the need for manual recharging via external power. However, it remains crucial to ensure that the
TEG, with the designed MPPT converter, produces power sufficient to either match or exceed the battery’s
discharge rate.

Figure 9d displays the results derived from the TEG in conjunction with a Cuk converter. We initiated
the system at time t = 0 secs and recorded the current and voltage readings from the converter’s output. As
the temperature difference (7% - Tc) grows, the power the TEG module produces increases proportionally.
The temperature differential peaks at 190°C, at which the TEG output can support the controller system’s
power needs throughout the season, removing the need for any extra charging. Our implementation of the
MPPT algorithm maximizes power extraction from the TEG module, efficiently charging the system
battery.

Table 1 shows that during the water heater’s active function, the device’s controller draws a maximum
current of 0.42A, which covers the power needs of all sensors and peripherals. The TEG’s power output,
as depicted in Figure 9d, sufficiently powers our system, erasing the need for extra charging during the
entire operational season. This outcome underscores the efficiency of our TEG integration, guaranteeing
the system’s continuous and self-sufficient operation.

7. Limitations and future work

Our study’s primary objective was to establish a proof of concept and demonstrate the system’s feasibility.
However, we acknowledge that our evaluation was limited to a single household and a specific model of
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water heater, which may not represent the diversity of usage patterns and heater designs found in broader
populations. Additionally, we emulated different climatic conditions for evaluation, which may not
capture the actual seasonal or geographic variations that could impact the efficiency of the TEG. Future
research should include a more diverse range of households and water heater models to better understand
the system’s adaptability, with longer field trials conducted in various climates to assess the TEG’s
performance across different temperature differentials.

Our system also introduces data privacy and security concerns that can affect user acceptance and trust.
Users may be apprehensive about the potential misuse of their water usage data, underscoring the need for
robust data protection measures. Although our initial prototype did not focus on security, developing
strong data security protocols to protect user information and enhance privacy will be critical. Educating
users about these measures can build trust and encourage system adoption.

8. Conclusion

In this paper, we tackled the energy inefficiencies of tank-based water heaters by introducing an
innovative retrofit controller that integrates machine learning for adaptive monitoring and control.
The introduction of a TEG ensures sustainability by converting waste heat into electrical energy,
addressing the challenges of intermittent power availability in certain heater placements. The Intelligence
Hub, placed indoors, streamlines data collection, analysis, and communication, facilitating informed
decision-making for the thermal controller. Our real-world deployment results validate the system’s
enhanced energy efficiency while ensuring user comfort. This work paves the way for modern, efficient,
and user-friendly water-heating solutions, with potential avenues for future optimization and integration.
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