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Abstract
We propose a novel approach for sentence boundary detection in text datasets in which boundaries are not
evident (e.g., sentence fragments). Although detecting sentence boundaries without punctuation marks
has rarely been explored in written text, current real-world textual data suffer from widespread lack
of proper start/stop signaling. Herein, we annotate a dataset with linguistic information, such as parts
of speech and named entity labels, to boost the sentence boundary detection task. Via experiments, we
obtained F1 scores up to 98.07% using the proposed multitask neural model, including a score of 89.41%
for sentences completely lacking punctuation marks. We also present an ablation study and provide a
detailed analysis to demonstrate the effectiveness of the proposed multitask learning method.

Keywords: Sentence boundary detection; French; Multitask learning; Corpus creation

1. Introduction
Sentence boundary detection (SBD) is a basic natural language processing (NLP) task that detects
the beginning and end of the sentence. Previous works (Palmer and Hearst 1997; Reynar and
Ratnaparkhi 1997; Kiss and Strunk 2006; Gillick 2009; Lu and Ng 2010) considered sentence
boundary disambiguation as a classification problem. Past researchers classified full-stop punc-
tuation marks and abbreviations to determine the ends of sentences. Note that sentence boundary
disambiguation differs from SBD because the former requires punctuation marks for classifi-
cation, whereas the latter does not necessarily require them to determine the boundary of the
sentence. Hence, we use the term “disambiguation” without the acronym. We use SBD explicitly
for the sentence boundary detection task. To illustrate the problem with previous approaches for
sentence boundary disambiguation, we evaluated a simple paragraph (see Figure 1) using state-
of-the-art systems (e.g., SSPLIT in CoreNLP (Manning et al. 2014), ELEPHANT (Evang et al. 2013),
and SPLITTA (Gillick 2009)) for English.

The paragraph in Figure 1 contains five sentences and fragments, for which humans can easily
exploit their linguistic competence to detect the sentences. In the paragraph, there are two noun
fragments (Opening of the session and Agenda) and three complete sentences containing a sub-
ject and a predicate. Although the complete sentence ends with a period, the noun fragments do
not contain proper punctuation. All three state-of-the-art systems failed to identify the correct
sentence boundaries, detecting only three of the five sentences based on the punctuation marks.
Without punctuation marks representing the ends of sentences, the systems identified two noun
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Figure 1. Paragraph example from the Europarl corpus (Koehn 2005).

fragments as parts of the following sentences. Therefore, another method to achieve SBD relying
on features at the beginnings of sentences is required. This is a challenging problem because it
must handle the non-appearance of punctuation marks in addition to capitalized words, such as
I or Mr. These terms use capital letters even in the middle of a sentence. The French language
shows similar characteristics as English for SBD. Some words starting with a capital letter, such as
Monsieur (“Mr”), can also appear in the middle of a sentence.

In this study, we apply SBD to written French text: an approach that has rarely been explored
in the literature. The objective of this paper is to leverage linguistic information, such as parts of
speech (POS), named entity recognition (NER), and capitalized words to identify the beginning
of a sentence instead of classifying the end of the sentence using punctuation marks. Our main
contributions are three-fold. First, an effective method to construct SBD on a modern corpus is
provided to solve common sentence-marking deficiencies. Second, a multitask learning approach
is presented that predicts linguistic information (e.g., POS and NER) by training sentence bound-
aries simultaneously, as in a real-world setting. Third, the effects ofmultitask learning are explored
wherein the number of training data and the multitask procedures vary.

We first present previous works in Section 2; then, we construct training and evaluation
datasets for French in Section 3. We then propose our novel approaches for SBD using sequence
labeling algorithms with multitask learning, including baseline conditional random field (CRF)
and contextualized neural-network (NN) models discussed in Section 4. Thereafter, we report
on our SBD experiments and their results, including a comprehensive discussion of our model’s
application in a real-world setting. These are discussed in Sections 5 and 6. We finally present a
conclusion in Section 7.

2. Previous works
Most previous works (Palmer and Hearst 1997; Reynar and Ratnaparkhi 1997; Kiss and Strunk
2006; Gillick 2009) considered sentence boundary disambiguation as a classification problem
in which they classified full-stop punctuation marks and abbreviations ending with a period to
find the end of a sentence. More recently, Evang et al. (2013) developed a character-level clas-
sification system for tokenizing words and sentence boundaries. Although most previous works
sought to identify the ends of sentences, Evang et al. (2013) and Björkelund et al. (2016) detected
their beginnings. Table 1 summarizes some previous works’ approaches to sentence boundary
disambiguation.

Sentence boundary disambiguation and SBD have rarely been explored for languages
other than English. We address the French language in this paper. González-Gallardo and
Torres-Moreno (2017) tackled a sentence boundary disambiguation problem wherein a binary
classification task was implied. Azzi, Bouamor, and Ferradans (2019) applied sentence boundary
disambiguation to text from scanned portable data files in both English and French, excluding the

https://doi.org/10.1017/S1351324922000134 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324922000134


152 K. Lim and J. Park

Table 1.Summary of previous works on sentence boundary disambiguation.

PH1997 Classified punctuation marks based on preceding and following POS labels for English and transferred
the system for French and German



RR1997 Used the maximum-entropy Markov model to classify punctuation marks for English


KS2006 Introduced an unsupervised language-independent sentence boundary disambiguation system using
collocation detection to build an abbreviation detector

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

G2009 Used a support vector machine with Naive Bayes for periods to distinguish between sentence boundary
and an abbreviation in English



LN2010 Performed punctuation prediction on speech utterances using dynamic conditional random fields (CRFs)
for Chinese and English



EAL2013 Used CRFs at the character level for word and sentence segmentation with a character-embedding vector
for Dutch, English, and Italian

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BAL2016 Trained a dependency parser for joint sentence boundary disambiguation and parsing for English

PH1997 (Palmer and Hearst 1997), RR1997 (Reynar and Ratnaparkhi 1997), KS2006 (Kiss and Strunk 2006), G2009 (Gillick 2009), LN2010 (Lu and
Ng 2010), EAL2013 (Evang et al. 2013), and BAL2016 (Björkelund et al. 2016).

Figure 2. Raw SBD data for French: (translation) “Les Sables-d’Olonne La Chaume Philippe and Véronique, his nephew and
niece; Anne, Albert and Chantal, his brother-in-law and sister-in-law, are sad to report the death of Mr. Serge, who passed away
on November 26, 2014, at the age of 82. . ..”

noisy parts. Apart from these previous works, Read et al. (2012) described nine available systems
and their benchmarks to define standard datasets for evaluation. Dridan and Oepen (2013)
discussed document parsing by focusing on evaluation methods for tokenization and sentence
segmentation from raw string inputs. In the domain of automatic speech recognition, several
SBD-related works have been proposed (Treviso, Shulby, and Aluísio 2017; González-Gallardo
and Torres-Moreno 2018). However, because we propose novel approaches for detecting sentence
beginnings without relying on punctuation marks in written text, we focus on the detection
aspect: SBD.

For a neural system, Xu et al. (2014) implemented a hybrid NN-CRF architecture to detect
sentence boundaries from audio transcripts. Qi et al. (2018) considered joint tokenization and
sentence segmentation as a unit-level sequence tagging process based on an NN model. SBD sys-
tems that used this approach have achieved the best performance over the last few years. More
recently, bidirectional encoder representations for transformers (BERT)-like models (Liu et al.
2019; Martin et al. 2020; Conneau et al. 2020), which are deep contextualized vector represen-
tation methods for a token, have shown outstanding performance in several NLP tasks. Because
BERT (Devlin et al. 2018) is a language model (LM) that learns from a large quantity of raw texts,
such as Wikipedia and news sites, it has the ability to capture contextual information for handling
unknown words (Lim et al. 2020).

3. Creating an SBD corpus
For the raw text dataset, we crawled obituaries frommore than 10 newspapers, including Le Figaro
and Ouest-France. An example of sentences is provided in Figure 2. Note that these sentences
usually contain significant numbers of proper nouns, such as person and location names. They
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can serve as a corpus for information extraction and entity linking in future works. We collected
8725 files containing more than 1-M tokens.

3.1 Tokenization
First, we used the preprocessing tools from MOSES (Koehn et al. 2007) for normalizing punctua-
tion marks and tokenization. However, there are several issues and errors in French tokenization.
We corrected the tokenization results, including identifying pre-defined entities, such as tele-
phone numbers (02�31�77�01�16 → 02-31-77-01-16), times (12h�45 → 12h45), and web
addresses. A binary operator � represents a whitespace delimiter in the written text. We manually
identified these patterns and constructed regular expressions for post-processing.

3.2 POS tagging and rough sentence boundaries
Second, POS labels and “rough” sentence boundaries were handled by TREETAGGER (Schmid
1994) based on added punctuation marks, which is required for NER in the next step.
Because TREETAGGER only classifies punctuation marks for the ends of sentences, we refer to
TREETAGGER’S sentence boundaries as “rough” sentence boundaries.

3.3 NER
Third, because the corpus contains a significant number of proper nouns, named entity labels were
assigned. We used NER data provided by Europeana newspapers for French (Neudecker 2016)
and trained them with NEURONER (Dernoncourt, Lee, and Szolovits 2017), which implements
a bidirectional long short-term memory recurrent NN. We evaluated NER models for French
using various sequence labeling algorithms and improved the NER results using semi-supervised
learning (Park 2018). To refine the current NER task, we added geographical entities using a list
of communes in France,a which improved the NER results. The NER-processed corpus on the
left side of Figure 3 shows geographical entities (third column, using beginning–inside–outside
(bio) annotation using a geographical entity dictionary) and RNN-annotated entities (fourth col-
umn, with using the inside–outside (io) format instead of using the bio, owing to the original
annotation of the NER corpus, which introduces the io format). In the corpus, we removed the
surnames to maintain anonymity. We compared two entities via geographical entity assignment
and RNN labeling and selected the more pertinent entity. When assigned entities were different,
the geographical entity was selected if its length (the number of tokens for the entity) was > 1;
otherwise, the RNN-annotated entity was assigned. For example, Chaume (a village attached to
the city of Sables-d’Olonne) was annotated as I-LOC by geographical entity assignment and I-PER
by RNN labeling. We selected “I-LOC” because the length of the geographical entity assignment
was greater than one. We removed B annotations of the geographical entity assignments to retain
only io annotations of named entities for the consistency of NER labels (see the right side of
Figure 3).

3.4 Marking SENT labels and amanual correction
Finally, we created heuristic rules to determine whether a fragment (e.g., a noun phrase) can be an
independent sentence (e.g., geographical entities at the beginning of the text). However, heuristic
rules to mark SENT labels (for the beginning of a sentence) were weak, and we manually verified
all sentences to correctly mark SENT labels. During manual verification, we corrected SENT
labels in addition to incorrectly assigned POS and NER labels, which were initially automatically

ahttps://www.data.gouv.fr/fr/datasets/base-officielle-des-codes-postaux.
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Figure 3. Preprocessed SBD data for training (SENT marked): Les Sables-d’Olonne La Chaume and Philippe et Véronique, son
. . . are annotated as two sentences where the latter represents the sentencemiddle that no punctuation marks precede.

assigned using heuristic rules. Errors in POS labels are often caused by words that start with a
capital letter in the middle of a sentence. For example, Très (‘very’) is automatically labeled as a
proper noun in Remungol, Guénin Plounévézel Très touchée par . . . (‘LOC, LOC LOC very touched
by ... ’). If we can detect the correct beginning of the sentence in which a fragment, Remungol
(‘LOC’), Guénin Plounévézel (‘LOC LOC’), is considered to be an independent sentence, and the
following sentence starts from Très (‘very’), the word Trèswould be correctly labeled as an adverb.
There were person- and location-label errors in NER, and we manually corrected them as much
as possible. We corrected more than 29-K tokens for their POS and NER labels from automatic
annotation. From 36,392 TREETAGGER-separated sentence boundaries, we arrived at 42,023
sentences, including those starting without punctuation marks from the previous sentence in the
corpus. Because we merged the corpus into a single file to process, the order of sentences was
randomized based on TREETAGGER-assigned sentence boundaries using punctuation marks. We
split the corpus according to an 80:10:10 ratio for training, development, and testing datasets.

Thereafter, we removed all duplicated sentences. Finally, after splitting, the datasets contained
approximately 763-K, 86-K, and 85-K tokens for 33-K, 3-K, and 3-K sentences, respectively. After
automatically assigning POS and NER labels using the existing POS and NER models and SBD
labels using the heuristic rules, it took longer than 2 weeks (approximately 80 hours) for a language
expert to manually verify the labels and correct them. The verification process was straightfor-
ward, wherein the expert verified and corrected manually assigned POS, NER, and SBD labels
using a simple text editor.

The detailed statistics of the corpus are provided in Table 2. Although the average number
of tokens in all sentences was 23.42, the average number of tokens in the middle of sentences
was 52.90, which is much larger. This is mainly because, at the beginning of the TREETAGGER-
separated sentence, relatively short noun fragments (e.g., Les Sables-d’Olonne La Chaume), such
as a place name or a title of the document and paragraph, which are not part of the main sentence,
can appear, as seen in Figure 2. Figure 3 shows a preprocessed SBD dataset for training, wherein
sent labels were marked and manually verified.

4. SBD as a sequence labeling problem
In this paper, we propose new SBD approaches wherein we consider the task as a sequence
labeling problem. We use the first words of sentences and the associated linguistic information
to find the beginning. Therefore, the beginning of a sentence is annotated as a label (B-SENT),
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Table 2.Detailed statistics of the corpus.

Train Development Test All

Sentences (all) 33,630 3155 3147 39,932
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sentences (middle) 4529 548 554 5631
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Avg. B-sent 1.155 1.209 1.213 1.164
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tokens (all) 763,743 86,816 85,009 935,568
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tokens (middle) 239,517 29,112 29,291 297,920

Sentences (middle) represent the number of sentences in which a new sentence starts in the middle of the
line. No punctuation marks precede these sentences. AVG. B-sent indicates the average number of B-sent
between punctuation mark-based separated sentences where they may contain more than one sentence and a
fragment. Tokens (middle) show the number of tokens in onlymiddle sentences where punctuation marks are
not preceded. They exclude tokens from (1) punctuationmark-based separated sentences that contain only one
sentence and (2) the beginning of the sentence preceded by middle sentences.

Table 3.Summary of SBD as a sequence labeling problem.

CRFs ROBERTA-SBD MULTITASK- SBD

Tokens and sequentially predicted
POS and NER labels

Vector representations of tokens and
gold POS and NER labels

Vector representations of tokens and
predicted POS and NER labels

and the capital letter can be used as a feature, such as for the baseline conditional random fields
(CRFs) system. Therefore, we need two labels, Y = {B-SENT, O} for the current SBD task. To
train and evaluate the proposed labeling model, we propose several different models. First, we
use CRFs as a baseline labeling algorithm. Second, we implement our own neural baseline for the
SBD model using a cross-lingual language model robustly optimized bidirectional encoders from
transformers approach (XLM-RoBERTa) (Conneau et al. 2020) (ROBERTA-SBD). Third, we pro-
pose a multitask model that trains POS, NER, and SBD labels simultaneously (MULTITASK-SBD).
Table 3 summarizes the proposed models for SBD as a sequence labeling problem.

4.1 CRF baseline SBDmodel
An advantage of CRFs, compared with previous sequence algorithms (e.g., Hidden Markov
Models (HMMs)), is that we can assign our own defined features. Thus, CRFs can usually out-
perform HMMs, owing to the relaxation of independence assumptions. We used binary tests for
feature functions by distinguishing between unigram (fy,x) and bigram (fy′,y,x) features:

fy,x(yi, xi)= 1(yi = y, xi = x)
fy′,y,x(yi−1, yi, xi)= 1(yi−1 = y′, yi = y, xi = x) (1)

where 1(condition)= 1 if the condition is satisfied and 0 otherwise. (condition) represents the
input sequence, x, at the current position, i, with CRF label y. We used word, POS, and
NER for the input sequence, x, and for the unigram (wt−2,wt−1,wt ,wt+1,wt+2,) and bigram
(wt−2/wt−1,wt−1/w0,w0/wt+1,wt+1/wt+2 for the word, e.g.,) features. In addition to the fea-
tures, we also used a Capitalized feature, where wt matches [A-Z][a-z]+. Previous work on
NER utilized text chunking information, which divides a text into phrases in such a way that it syn-
tactically relates words (Tjong Kim Sang and Buchholz 2000). However, we do not do so because
detecting phrase boundaries is especially challenging in French, owing to the flat structure of the
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Figure 4. Overall structure of our ROBERTA-SBD model.

French treebank (Abeillé, Clément, and Toussenel 2003), wherein we would otherwise obtain text
chunking information. However, it gives ambiguous phrase boundaries.

4.2 Contextualized NN SBDmodel
We investigated the performance of our system based on the CRF model and checked the effect
on the proposed features, including named entities. However, we were still able to explore the
performance of SBD using state-of-the-art techniques. In this section, we introduce our own neu-
ral network (NN)-based SBD system. Following the previously proposed NN-based systems, we
implemented an SBD system using XLM-RoBERTa (Conneau et al. 2020). RoBERTa (Liu et al.
2019) is a BERT-like model that applies the masked language model and shows outstanding per-
formance on several NLP tasks (Devlin et al. 2018). XLM-RoBERTa is a multilingual RoBERTa
trained in several languages. Figure 4 shows the overall structure of our system. The system
consumes a list of words X = (x1, x2, ..., xm), where xi (1≤ i≤m) consists of a word form, a
POS label, and an NER label. We convert the word form of X to a list of word representa-
tions, Eb = (eb1, e

b
2, ..., ebm) based on the pretrained XLM-RoBERTa model.b First, we convert POS

and NER to their distributional vector representation by assigning each POS and NER label to
randomly initialized embedding vectors, Ep = (ep1, e

p
2, ..., e

p
m) and En = (en1, e

n
2, ..., enm), respectively.

The same value is assigned for the same POS and NER labels. To consider the word form, the POS,
and the NER feature as a unified embedding, we concatenate them ([ebi ; e

p
i ; e

n
i ]) and transform the

unified embedding using LSTM as follows:

ei =
[
ebi ; e

p
i ; e

n
i

]

fi, bi = BiLSTM(r0, (e1, .., em))i
hi =

[
fi; bi

]
(2)

where r0 denotes a randomly initialized initial vector for the LSTM hidden layer, fi is the forward-
pass hidden layer of the BiLSTM for word i, bi is the backward-pass, and hi is the concatenation
of the two. Previous studies have shown that applying LSTM after the concatenation of different
embeddings showed better performance because the output of the LSTM keeps track of the con-
textual information (Lim et al. 2018). Finally, we apply a multilayered perceptron (MLP) classifier
with a weight parameter, Q(sbd), including a bias term, b(sbd), to classify sentence boundaries for

bhttps://github.com/huggingface/transformers.
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the output hidden state, hi, as follows:

p(sbd)i =Q(sbd)MLP(hi)+ b(sbd)

y(sbd)i = argmax
j

p(sbd)i,j (3)

where the value of j in p(sbd)i,j is two because we have two labels (B-SENT and O) for the sentence
boundary. During training, the system adjusts the parameters of the network, θ , that maxi-
mizes the probability, P(Y|X, θ), from the training set, T, based on the conditional negative
log-likelihood, sbd-loss(θ). Thus,

sbd-loss(θ)=
∑

(X,Y)∈T
− log P(Y|X, θ) (4)

where (X, Y) ∈ T denotes an element from the training set, T, a set of sentence boundary labels, Y ,
and a predicted label of a token, y(sbd)i . We trained our system using a single Adam optimization
algorithm (Kingma and Ba 2015) with a cross-entropy loss. During training, we set the number
of input batch sizes to 16 and run our system over 100 epochs. For each epoch, we trained our
system using only training data and evaluated the validation data. Finally, we selected the best
performing model among 50 different ones and run the test data to evaluate the scores.

4.3 Contextualized multitask SBDmodel
In reality, the input of an SBD task is plain text without any linguistic information. A potential
approach may involve a cascade pipeline system, wherein the first tagger assigns POS labels to
each word, the second tagger assigns NER labels based on words and POS labels, and the third
tagger assigns SBD labels based on previous information. This system uses predicted POS and
NER labels incrementally to detect sentence boundaries. However, these tasks can be achieved
simultaneously. In this section, we propose a multitask learning scenario that handles POS and
NER labeling and SBD labeling simultaneously.

Following the previously investigated multitask learning problem with a shared lexical repre-
sentation (Hashimoto et al. 2016; Lim et al. 2018, 2020), we propose a more realistic SBD model
that can be deployed as a real-world application. Our method trains POS, NER, and SBD labels
simultaneously, rather than applying POS and NER labeling as a separate task. To obtain the pre-
dicted POS and NER features, we introduce two different classifiers in the middle of our neural
model as follows:

p(pos)i =Q(pos)MLP
(
ebi

)
+ b(pos)

y(pos)i = argmax
k

p(pos)i,k

epi = Embedding(pos)
(
y(pos)i

)

p(ner)i =Q(ner)MLP
(
ebi

)
+ b(ner)

y(ner)i = argmax
l

p(ner)i,l

eni = Embedding(ner)
(
y(ner)i

)
(5)

where the value of k in p(pos)i,k and l in p(ner)i,l is the number of POS and NER labels, respectively.
The Embedding(pos) and Embedding(ner) denote randomly initialized vectors to represent each
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Table 4.Hyperparameters in neural models.

Component Value

ebi (RoBERTa) dimension 768
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

epi (POS) dimension 50
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

eni (NER) dimension 50
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Q (parameter) dimension 300
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

No. BiLSTM layers 2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MLP output dimension 300
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MLP activation function ReLu
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dropout 0.3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Learning rate 0.000005
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β1, β2 of Adam optimizer 0.9, 0.99
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Epoch 100
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Batch size 16
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Gradient clipping 5.0

POS and NER label. For example, our system computes a logistic value using the MLP classifier;
thereafter, we can predict a POS label using the argmax computation with a logistic value. Finally,
the system converts the predicted POS label as a vector representation by the Embedding function.
During training, we added two additional losses, pos-loss and ner-loss by changing a set of
SBD labels, Y , in (4) to the POS and NER labels, respectively. The multitask loss is defined as
follows:

multi-loss(θ)= α sbd-loss
+ β pos-loss+ γ ner-loss (6)

where each α, β , and γ indicate the ratio of how much the system learns from each task. We
empirically set {α = 1.5, β = 0.5, γ = 1}, and the effect of different values for α, β , γ is further
discussed in Section 5.2. From a practical perspective, our multitask model has the advantage of
producing POS and NER labels alongside SBD labels.

Figure 5 shows the overall structure of our MULTITASK system. The hyperparameter values that
we applied for our neural system (ROBERTA-SBD in Section 4.2) and MULTITASK-SBD in Section
4.3) are listed in Table 4.

5. Experiments and results
We useWAPITI as a CRF implementation (Lavergne, Cappé, and Yvon 2010), and our own neural
implementations (ROBERTA-SBD and MULTITASK-SBD) for SBD.

5.1 Results
Table 5 shows results of precision, recall, and the F1 score for how we used different linguis-
tic information to improve SBD results using CRFs, ROBERTA-SBD, and MULTITASK-SBD. We
also present the SBD results of the middle, where sentence boundaries occur in the middle of the
sentence without punctuation marks. Overall, each linguistic feature improves the SBD labeling
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Table 5.SBD results using different linguistic information.

CRFs by WAPITI ROBERTA-SBD MULTITASK- SBD

word + P+N (p) word +P (p) +N (p) + P+N (p)

(all) P 95.39 97.27 97.35 97.60 97.66 97.54
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R 96.84 95.96 98.21 98.28 98.47 98.60
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F1 score 96.11 96.61 97.78 97.94 98.06 98.07
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(middle) P 73.83 84.48 85.56 86.80 87.24 86.75
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R 80.67 78.39 89.89 90.25 91.33 92.23
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F1 score 77.10 81.32 87.67 88.49 89.24 89.41

POS (+P) and NER (+N) labels or together (+P+N) are used as features alongside word features. We use predicted linguistic
labels (+pos and+ner) from the system (p). We show the entire SBD results (all) and those only for sentence boundaries without
precedent punctuation marks (middle).

Figure 5. Overall structure of our MULTITASK model.

results for the baseline CRFs and neural models. Although these linguistic features are predicted
labels, they can improve SBD results for all experiment settings compared with results that use
only word features. Our neural models, ROBERTA-SBD and MULTITASK-SBD, outperformed CRFs
for all experimental settings, including word-only (word) and predicted linguistic features (+pos
and +ner). We speculate the following plausible explanations. First, the neural model adapts well
to the given SBD corpus. Second, the BERT-like model yields more accurate sentence boundaries
because it has been trained on a huge number of unlabeled data. Third, the proposed multitask
approach efficiently transfers linguistic knowledge by leveraging a shared BERT representation
among the following three tasks: POS tagging, NER, and SBD.

5.2 Discussion
5.2.1 Experiments onmiddle
To clarify our proposal, we show results of SBD without punctuation marks (middle) in Table 5,
with which existing SBD tools fail to detect sentence boundaries (middle), owing to the lack
of precedent punctuation marks. For example, when we test PUNKT which is implemented in
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Table 6.Comparison between the single-task andmultitask learning in terms of required computing
resources and training time.

Single-task Multitask Gap

GPU (V100) 13.4GB 14.1GB +0.7GB (5.22%)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Training time 960 seconds 1020 seconds +60 seconds (6.25%)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Inference time 32 seconds 34 seconds +2 seconds (6.25%)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Time complexity O(n) O(n) –

NLTK, it does not have the functionality to detect sentence boundaries without punctuationmarks.
Moreover, PUNKT obtained a 91.37 F1 score with a precision of 99.80 and a recall of 84.25 on the
same SBD evaluation data that we use in Table 5. It is understandable that it obtains high preci-
sion because it detects only clear sentence boundaries with punctuation marks. However, its recall
is notably low compared with our proposed model because PUNKT is unable to detect sentence
boundaries without punctuation marks (middle).

5.2.2 POS and NER as features for SBD
We investigated three different scenarios to determine the effect of the proposed features. In
Table 5, performances under column WORD, +POS, and +NER denote that the model used the
word form only, and either separately with POS labels (+pos) and NER labels (+ner) or accu-
mulatively (+pos+ner). We can see performance improvement when using the predicted POS
and NER feature on CRFs, with a gap of +4.22 F1 score in the middle scenario. Alternatively, we
find a relatively smaller performance gap between the WORD and the +POS+NER models using
MULTITASK-SBD with a 1.74 F1 score. Some linguistic features are already captured while training
on the unlabeled data based on the masked language modeling for the pretrained BERT model.
The WORD as a feature in ROBERTA-SBD already obtains a good result with a 10.57 F1 score com-
pared with the baseline CRFs, and the effect of POS and NER features is relatively smaller than
those of the CRF model.

5.2.3 Cost-effectiveness of the proposed system
The multitask model normally requires more computing resources and training time. Therefore,
it is important to investigate the cost-effectiveness of the proposed model from a practical
point of view. Table 6 shows the comparison between the single and multitasks in terms of
cost-effectiveness. The proposed single and multitask models consume 13.4- and 14.1-GB GPU
memory, respectively, when training with a batch size of 16. 330-M parameters are required for the
single task, which includes in the XLM-RoBERTa model. The single-task model runs for approx-
imately 16 minutes over the training data, and it handles 929 tokens per second. The multitask
model runs for 17 minutes and handles 875 tokens. However, it should be noted that the system
can yield higher accuracy classifiers at the expense of 6.17% more training time, including pre-
dicting POS and NER labels. During the inference phase of the test data, the multitask model can
predict 2801 tokens/s for SBD, POS, and NER labels. As our model needs to consider the number
of n words as the input, the time complexity is O(n).

6. Ablation study and analysis
6.1 Effect of the multitask learning procedure
As mentioned in Section 4.3, we empirically set the learning weight for each task as {α = 1.5,
β = 0.5, γ = 1} for SBD, POS, and NER, respectively. However, performance varies depending
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Table 7.SBD (middle) results based on different multitask models.

α β γ SBD POS NER

sequential 88.69 98.94 94.14

simultaneous 0.7 0.1 0.2 88.92 99.28 94.16
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 0 0 87.67 – –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 1 0 – 99.28 –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 1 – – 94.55
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 1 1 89.01 99.21 94.48
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.5 0.5 1 89.41 99.23 94.54

+fine-tune 1.5 0.5 1 89.14 99.15 94.23

The parameter values α, β, and γ are described in (6). In sequential POS tagging (accuracy), NER (F1 score), and SBD (F1 score)
are sequentially trained.

on the training procedure of the multitask model. Hence, we empirically determined which task
would be more significant to SBD performance by using different training procedures and con-
sidering the learning weight. We investigated two different learning methods: sequential and
simultaneous. The sequential method trains a task only for a certain number of epochs and
moves on to train another. In Table 7, sequential denotes the performance of the sequential
model. Conversely, the simultaneous learning method trains three different tasks for every
epoch with a particular task’s learning weight. Table 7 shows the SBD performance of each learn-
ing method. The parameters α, β , and γ indicate the ratio of how much our system learns from
each task. For example, the second low, where α = 1, β = 0, and γ = 0, represents single-task
learning for SBD with embedding, ei = ebi in (2). Meanwhile, the seventh row with the parameter
values {α = 1.5, β = 0.5, and γ = 1} represents the application of multitask learning from three
different tasks. The sequential method trains each task sequentially. We trained a POS tagger
for the first 20 epochs and then trained a NER tagger from 20 to 40 epochs. We finally trained
SBD from 40 to 80 epochs. Although the three tasks were trained separately, the shared BERT
embedding ebi was affected by all the tasks by updating the BERT embedding ebi . The sequential
method has the advantage of fine-tuning parameters for the particularities of a single task to boot-
strap its final SBD performance. Overall, the simultaneous method slightly outperforms the
sequential method by up to 0.72 in SBD.

However, the single-task learning showed the same or slightly better results than our multi-
task approach when observing two experimental results that set {α = 0, β = 1, and γ = 0} for a
POS task and {α = 0, β = 0, and γ = 1} for a NER task, respectively. This is because our multitask
model focuses more on the SBD task by learning the POS and NER tasks. By following McCann
et al. (2018), we also investigated an experiment on the fine-tuning method, which applied both
simultaneous and sequential methods simultaneously. We first trained our model with the
simultaneous method using parameter values of {α = 0, β = 1, and γ = 0} until 100 epochs;
we then fine-tuned only for SBD for 20 epochs. The result is shown as +fine-tune. We found
that the fine-tuning method with simultaneous does not have positive effects on our model;
rather, it shows performance degradation in NER and POS tasks. The main reason for perfor-
mance degradation might be that the BERT embedding was fully adjusted only for the SBD task
during fine-tuning. Thus, POS and NER performances decrease, and the lower-performing POS
and NER results affect SBD directly because the system considers the predicted results of the tasks.
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Figure 6. Evaluation results are based on the number of training epochs. The Y-axis represents F1 scores.

6.2 Effect of POS and NER information
Although the proposed multitask learning method has been adapted to several NLP tasks, it has
not been explained in detail how multitask learning leverages overall performance. McCann et al.
(2018) showed an approach to investigating correlations among tasks using multitask learning
based on performance changes. The key idea is to test whether a pretrained model trained by a
task can leverage a new task’s performance. Inspired by the previously proposedmethod, we inves-
tigated the following two questions: “does a pretrained model learn from POS and NER tasks to
improve SBD performance?” and “does the pretrained model achieve a better performance than
a randomly initialized model in early training?” We assume that if the learned knowledge trained
by POS and NER tasks is transferable, it positively affects training SBD during the early epochs of
training. In Figure 6, SBD-single-random shows that the model trained only for SBD as a single-
task learning, SBD-multi-random is the model trained on multitask learning with {α = 1.5,
β = 0.5, and γ = 1}, and SBD-multi-fine-tuned represents the pretrained model trained by
POS and NER tasks for 20 epochs, respectively. We observe that the SBD-multi-fine-tuned
model outperforms the other models over the first six epochs. The average performance gap
between SBD-multi-fine-tuned and SBD-single-random has a 1.78 F1 score during the first
six epochs.We conjecture that the BERT embedding in the single model could not obtain any syn-
tactic and named entity information from the POS and NER tasks, whereas the fine-tunedmodel’s
BERT acquired general syntactic information from them, and the informed linguistic knowledge
was transferred to a new task for SBD. In contrast, as shown in Table 7, the fine-tuned model
performed worse than the SBD-multi-random model when training for more than 20 epochs
(i.e., +fine-tune and simultaneous) as described previously, where the BERT embedding was
adjusted only for the SBD task.

6.3 Effect of the size of training data
In low-resource NLP, which frequently occurs in real-world settings, the size of training data mat-
ters. Figure 7 shows the evaluation results based on sbd-single and sbd-multi as well as POS
and NER. This shows that their results can converge after using 5000 sentences, and sbd-multi
always outperforms sbd-single. In particular, the multitasking setting still performs better than
sbd-single when sbd-multi only utilizes 70% of the training dataset (approximately 20,000
sentences).

6.4 Limitation of the proposedmodel
The currently proposed system is highly reliant on named entity information in the dataset
where results using +NER (+N) and +POS+NER (+P+N) features in MULTITASK-SBD in Table 5
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Table 8.Multitask SBD (middle) results based on different BERTmodels.

BERT Model α β γ SBD POS NER

multilingual-bert 1.5 0.5 1 87.91 99.18 94.34
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xlm-roberta 1.5 0.5 1 89.41 99.23 94.54
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CamemBERT 1.5 0.5 1 89.52 99.16 94.46

The parameter values α, β, and γ are described in (6). POS tagging (accuracy), NER (F1 score), and SBD (F1 score) are presented.

Figure 7. Evaluation results based on the number of training data. The Y-axis represents F1 scores for SBD and NER and
accuracy for POS tagging.

are similar. However, improving NER results using extrinsic factors, such as adding additional
pseudo datasets by semi-supervised learning, is very difficult, as demonstrated by Park (2018) for
French. Although different learning algorithms show various F1 score results ranging from 45.76
(HMM) to 76.26 (bi-LSTM) using the French NER data provided by Europeana Newspapers,
semi-supervised learning, in which we automatically annotate a large monolingual corpus, could
not improve NER results significantly for F1 scores of 49.69 (HMM) to 76.65 (bi-LSTM). In the
proposed multitask learning model, we can still improve the NER results in areas in which further
improvement would otherwise be difficult, apart from introducing a completely different and new
learning mechanism.

6.5 Comparison betweenmultilingual and Frenchmonolingual BERTs
We have shown that the BERT models outperform the CRF model. However, the BERT and the
XLM-RoBERTa models that we used are multilingual. There is also a French monolingual BERT
proposed byMartin et al. (2020) (CamemBERT). The monolingual French BERTmodel was trained
only with French plain text from Wikipedia and corpora taken by the Common Crawler. Table 8
shows the ablation study on multilingual and French monolingual BERT models. However, the
CamemBERT model performs better for SBD. It shows relatively lower-performing results for POS
andNER tasks.We leave the detailed discussion on performance betweenmultilingual and French
monolingual BERTs as future work.

6.6 Experiments on the heterogeneous domain
The Europarl corpus (Koehn 2005) provides French translations of Europarl proceedings, and
it is a good candidate for evaluating our SBD models for general heterogeneous purposes. We
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Table 9.SBD results of heterogeneous domains using the Europarl corpus.

CRFs by WAPITI ROBERTA-SBD MULTITASK-SBD

word + P+N (p) word +P (p) +N (p) + P+N (p)

(all) P 99.17 99.18 99.50 99.66 99.53 99.78
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R 99.86 99.79 99.18 99.19 99.19 99.19
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F1 score 99.51 99.48 99.33 99.42 99.36 99.48
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(middle) P 2.59 3.53 8.59 10.32 8.73 17.32
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R 14.10 12.71 4.47 4.47 5.17 5.17
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F1 score 4.37 5.52 5.88 6.23 6.49 7.97

constructed an evaluation dataset from the data of Q4/2000 (October–December 2000) in which
the same portion was used for machine translation evaluation. It contained approximately 50-K
sentences and 150-K words. To prepare evaluation data of the Europarl corpus, we first detected
the beginning sequences of the sentence by using XML tags in which each was also the beginning
of a sentence as shown in Figure 8. We assigned POS labels and punctuation mark-based sen-
tence boundaries as described in Section 3.2. We also assigned NER labels as described in Section
3.3. There was an empty line for each punctuation mark-based boundary-detected sentence for
rough sentence boundaries. There was no empty line for sentence boundaries only XML tags for
evaluation purposes to allow the proposed models to automatically detect them. Although we
did not verify automatically assigned POS and NER labels, we manually checked B-SENT labels.
The dataset contains over 50-K sentences with 1.4 M tokens, with a small ratio (0.0084) of the
middle. Table 9 shows the results (F1 scores) using CRFs, ROBERTA-SBD and MULTITASK-SBD
as experiments in one of the heterogeneous domains. Although overall results were promising,
results onmiddlewere much lower. As one of the characteristics of the Europarl corpus, as seen in
Figure 8, there are noun phrase fragments lacking named entities. The distinction between a noun
phrase fragment and the following sentence is immensely challenging in the SBD system, but
the semantic property of the noun phrase fragment should be identified. The proposed method
using multitask learning relies on sequence-level shallow linguistic information, such as POS and
named entities. Even deep linguistic processing, such as syntactic analysis, may not distinguish
between the noun phrase fragment and the following sentence because such fragments can be
considered as an adverbial phrase in the sentence. Although such a sentence can be considered
as being grammatically correct, it is not semantically acceptable. The proposed model attempts to
resolve this linguistically difficult problem in SBD by using currently exploitable linguistic prop-
erties. Notably, existing SBD methods in previous work cannot detect such boundaries at all, as
we showed in Section 1. Additionally, sentence boundaries without punctuation marks, as shown
in Figure 8, can be easily remedied by simple heuristics (e.g., using title or subtitle tags in
XML). However, we did not use explicit information to conduct experiments with more realistic
conditions, which are not always available in heuristics.

6.7 Experiment on domain adaptation
As was shown in the previous section, the overall performance of our model is promising,
although it is still poor in detecting middle sentence boundaries in a heterogeneous domain.
Generally, a domain adaptation approach would be a good solution to solve such a problem.
Table 10 reports on the performance of our model with a domain adaptation method. We split the
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(a)

(b)

Figure 8. Example of the Europarl corpus for French: (translation) “Opening of the session I declare resumed the 2000-2001
session of the European Parliament. AgendaMr President, the second item on this morning’s agenda is the recommendation for
second reading on cocoa and chocolate products, for which I am the rapporteur. Quite by accident I learnt yesterday, at 8.30
p.m., that the vote was to take place at noon today.’’ We note that Je déclare ouverte . . . (‘I declare resumed ...’) andMonsieur
le Président, le deuxième ... (‘Mr President, the second ...’) are considered as middle sentences because punctuation marks
are not preceded.

Table 10.SBD results of domain adaptation using the Europarl corpus based on MULTITASK-SBD with+P+N (p).

(all) (middle)

P R F1 score P R F1 score

Out-of-domain 99.58 99.27 99.36 8.32 5.36 6.49
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In-domain 99.94 99.69 99.81 89.83 63.09 74.12
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Domain adaptation 99.95 99.69 99.82 91.37 63.09 74.64

Europarl corpus in an 80:10:10 ratio for training, development, and testing datasets, respectively.
We performed three different experiments: (1) out-of-domain, which determines the performance
of our previous model (using the proposed dataset) onto the new Europarl test dataset; (2)
in-domain, which uses the Europarl dataset both for training and evaluation; (3) domain adap-
tation, which fine-tunes our previous model using the Europarl development dataset to evaluate
the Europarl test dataset. Based on the domain adaptation approach, we can observe perfor-
mance improvement in detecting middle sentence boundaries by a 0.52 F1 score as well as the
performance of all where it remains slightly high compared to the in-domainmodel.
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Figure 9. Sentence example for obituaries and possible genealogy tree diagram: (translation) “GLANGES (Cramarigeas, Le
Chˆataignier) Gaston and Marie-Claude, his children; Laurent and Christelle, his grandchildren; Evelyne, Guillaume, her great-
grandchildren, As well as all the family and her friends, are sad to inform you of the death of Madame Lucienne at the age
of 84 years. Her funeral will take place on Monday, October 19, 2009, at 2:30 p.m., in the church of Glanges. Condolences on
register at the church. The family thanks in advance all the people who will take part in their grief. PF Graffeuil-Feisthammel,
St-Germain-les-Belles.’’

6.8 Extrinsic evaluation for SBD
We use a semantic relation recognition task for extrinsic evaluation of SBD. A semantic relation
recognition task consists of the automatic recognition of semantic relationships between pairs
of entities in a text. Since Roth and Yih (2004) proposed semantic relation recognition data for
English, several works on semantic relation recognition have been explored and proposed. This
section describes our semantic relation recognition system for French using the proposed SBD
system with a dataset for extrinsic evaluation. We specified (1) a segmentation problem to help
decide whether a sentence in the obituary contains the information of kinship relations for the
deceased person, and (2) a classification problem to decide kinship relations of the deceased per-
son for semantic relation recognition of genealogical relation. The problem of being survived by
whom identifies which kinship relations in obituaries should be considered for the deceased per-
son after determining whether the information of kinship relations is to appear. Figure 9 provides
an example of an obituary, which contains the information of kinship relations and its possi-
ble genealogy tree diagram. Lucienne (a deceased person) is survived by Gaston et Marie-Claude
(her children) and other grandchildren and great-grandchildren. An end-to-end semantic relation
recognition system uses the heuristic symbolic rules to fill tabular cells based on kinship-related
words after detecting sentences in obituaries.

We consider only direct familial relationships of the deceased person in a genealogy tree,
including parents, spouse, children, grandchildren, and great-grandchildren. We obtained 3000
additional random obituary documents crawled from the internet to evaluate the end-to-end
system and analyze the results. Because the deceased person is given by the document, we iden-
tified kinship relations of the deceased person. Table 11 shows the evaluation and statistics of
results from the end-to-end system. We noted misc relationships for beyond direct relationships,
such as (1) siblings (i.e., brother and sister) or other relatives (i.e., second-degree relatives for
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Table 11.End-to-end system result.

(total) number

# of deceased persons 2760
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a_enfants (‘has children’) 1534
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a_petits-enfants (‘has grandchildren’) 984
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a_arrière-petits-enfants (‘has great-grandchildren’) 362
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a_parents (‘has parents’) 397
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a_époux (‘has a spouse’) 816
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

misc relationships 2460
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(total) # of relationships 6553

The system extracts 6553 relationships for 2760 deceased persons.

aunt/uncle and niece/nephew), (2) person names without kinship relationships, and (3) other
kinship, friend or colleague relationships without person names. 2760 est_décédé (‘is deceased’)
relations were given from 3000 documents. 240 missing est_décédé were from the original docu-
ment errors in which they do not explicitly annotate the deceased person. There may be sentences
wherein kinship relationships appear without the given est_décédé relation. Hence, 1902 sen-
tences where kinship relationships appear were identified using sentence classification from 1878
documents (four false-positive examples). We analyzed 1122 documents where kinship relation-
ships did not appear according to sentence classification results. There were 273 false-negative
examples. Although some errors came from results of SBD in which the system cannot provide
correct sentence boundaries by merging several sentences because of missing punctuation marks,
most presented real classification errors. The number of a_∗ (‘has ∗’) relations presented their
occurrences according to the system specification. They also included 545 relations without per-
son names in which only relationship words occurred in the sentence without specific names of
kinships. The misc relationships contained 415 person names without kinship relationships, and
941 other relationships lacked person names. For evaluation, we manually verified the quality of
extracted semantic relations with two native French speakers. By using the proposed SBD sys-
tem to feed the semantic relation recognition system, the average accuracy for extracted semantic
relations was 92.36% by human judgment. When we used the conventional sentence boundary
disambiguation system (i.e., TREETAGGER) for French, the system did not detect sentence bound-
aries without full-stop punctuation marks. Therefore, the number of extracted relationships was
much smaller because the system could not detect correct sentences that contained information
of kinship relations for the deceased person. Additionally, extracted relationships may have been
unacceptable because the named entities could not be correctly recognized based on the wrongly
segmented sentences.

7. Conclusion
In this paper, we first created a new SBD corpus for French from scratch. We automatically
assigned linguistic information and manually corrected them to use the reference corpus. All
codes and data are available through author’s github.c We built our own corpus to measure the
SBD result specifically for middle sentences in which a new sentence begins in the middle of

chttps://github.com/jujbob/frenchSBD.
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another, and no punctuation marks preceded either one. No previous work has provided such
information. Second, we detected the beginning of a sentence without punctuation marks using
multitask learning. Sentence boundary disambiguation as a sequence labeling problem is not
new (e.g., joint modeling for segmenting tokens and sentences together (Evang et al. 2013; Rei
and Søgaard 2018, 2019). However, by introducing linguistic features POS and NER labels, we
observed a fair improvement in performance compared to that obtained by features only from the
word form. In the ablation study, we demonstrated the effectiveness of the proposed multitask
learning procedure and linguistic information. Downstream applications that use SBD results will
benefit from the outperformance of the proposed method. Finally, we considered a low-resource
NLP setting, which frequently happens in real-world settings, by varying the size of the training
data. Even for this scenario, the proposedmultitask learning combined with linguistic information
outperformed other approaches.
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