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We present a new data reconstruction method with supervised machine learning
techniques inspired by super resolution and inbetweening to recover high-resolution
turbulent flows from grossly coarse flow data in space and time. For the
present machine-learning-based data reconstruction, we use the downsampled
skip-connection/multiscale model based on a convolutional neural network, incorporating
the multiscale nature of fluid flows into its network structure. As an initial example, the
model is applied to the two-dimensional cylinder wake at ReD = 100. The reconstructed
flow fields by the present method show great agreement with the reference data obtained
by direct numerical simulation. Next, we apply the current model to a two-dimensional
decaying homogeneous isotropic turbulence. The machine-learned model is able to track
the decaying evolution from spatial and temporal coarse input data. The proposed concept
is further applied to a complex turbulent channel flow over a three-dimensional domain
at Reτ = 180. The present model reconstructs high-resolved turbulent flows from very
coarse input data in space, and also reproduces the temporal evolution for appropriately
chosen time interval. The dependence on the number of training snapshots and duration
between the first and last frames based on a temporal two-point correlation coefficient are
also assessed to reveal the capability and robustness of spatio-temporal super resolution
reconstruction. These results suggest that the present method can perform a range of flow
reconstructions in support of computational and experimental efforts.

Key words: turbulence simulation, computational methods

1. Introduction

In recent years, machine learning methods have been utilized to tackle various problems
in fluid dynamics (Brenner, Eldredge & Freund 2019; Brunton, Hemanti & Taira 2020a;
Fukami, Fukagata & Taira 2020a; Brunton, Noack & Koumoutsakos 2020b). Applications
of machine learning for turbulence modelling have been particularly active in fluid
dynamics (Kutz 2017; Duraisamy, Iaccarino & Xiao 2019). Ling, Kurzawski & Templeton
(2016) proposed a tensor-basis neural network based on the multilayer perceptron (known
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as MLP) (Rumelhart, Hinton & Williams 1986) for Reynolds-averaged Navier–Stokes
simulation. Embedding the Galilean invariance into the machine learning structure was
found to be important and was verified by considering their model for flows in a duct
and over a wavy wall. For large-eddy simulation, subgrid modelling assisted by machine
learning was proposed by Maulik et al. (2019). They showed the capability of machine
learning assisted subgrid modeling in a priori and a posteriori tests for the Kraichnan
turbulence.

Furthermore, machine learning is proving itself as a promising tool for developing
reduced-order models (ROMs). For instance, Murata, Fukami & Fukagata (2020)
proposed a nonlinear mode decomposition technique using an autoencoder (Hinton &
Salakhutdinov 2006) based on convolutional neural networks (CNN) (LeCun et al. 1998)
and demonstrated its use on transient and asymptotic laminar cylinder wakes at ReD = 100.
Their method shows the potential of autoencoder in terms of the feature extraction of flow
fields in lower dimension. More recently, Hasegawa et al. (2020) combined a CNN and
the long short-term memory (known as LSTM) (Hochreiter & Schmidhuber 1997) for
developing an ROM for a two-dimensional unsteady wake behind various bluff bodies.
Although the aforementioned examples deal with only laminar flows, the strengths of
machine learning have been capitalized for ROM of turbulent flows. San & Maulik (2018)
utilized an extreme learning machine (Huang, Zhu & Siew 2004) based on multilayer
perceptron for developing an ROM of geophysical turbulence. Srinivasan et al. (2019) used
long short-term memory to predict temporal evolution of the coefficients of nine-equation
turbulent shear flow model. They demonstrated that the chaotic behaviour of those
coefficients can be reproduced well. They also confirmed that the statistics collected from
machine learning agreed with the reference data.

Of particular interest here for fluid dynamics is the use of machine learning as a powerful
approximator (Cybenko 1989; Hornik 1991; Kreinovich 1991; Baral, Fuentes & Kreinovich
2018), which can handle nonlinearities. We recently proposed a super resolution (SR)
reconstruction method for fluid flows, which was tested for two-dimensional laminar
cylinder wake and two-dimensional decaying homogeneous isotropic turbulence (Fukami,
Fukagata & Taira 2019a). We demonstrated that high-resolution two-dimensional
turbulent flow fields of a 128 × 128 grid can be reconstructed from the input data
on a coarse 4 × 4 grid via machine learning methods. Applications and extensions of
SR reconstruction can be considered for not only computational (Onishi, Sugiyama &
Matsuda 2019; Liu et al. 2020) but also experimental fluid dynamics (Deng et al. 2019;
Morimoto, Fukami & Fukagata 2020). Although these attempts showed great potential
of machine-learning-based SR methods to handle high-resolved fluid big data efficiently,
their applicability has been so far limited only to two-dimensional spatial reconstruction.

In addition, the temporal data interpolation with various data-driven techniques has been
used to process video images, including the optical flow-based interpolation (Ilg et al.
2017), phase-based interpolation (Meyer et al. 2018), pixels motion transformation (Jiang
et al. 2018), and neural network-based interpolation (Xu et al. 2020). For instance, Li,
Roblek & Tagliasacchi (2019) developed a machine-learning-based temporal SR technique
called inbetweening to estimate the snapshot sequences between the start and last frames
for image and video processing. They generated 14 possible frames between two frames
of videos using machine learning to save on storage. In the fluid dynamics community,
a similar concept has recently been considered by Krishna et al. (2020) to temporal data
interpolation for PIV measurement. They developed a model based on the rapid distortion
theory and Taylor’s hypothesis.

In the present study, we perform a machine-learning-based spatio-temporal SR analysis
inspired by the aforementioned spatial SR and temporal inbetweening techniques to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

94
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.948


Machine-learning-based spatio-temporal SR for turbulence 909 A9-3

q(xLR)

q(xHR)

Spatial
super resolution 

Input 1

Temporal super resolution
(inbetweening)

Input 2

?
?

?
?

t

t

?
?

?
?

?

= Fx(q(xLR))
q(tHR) = Ft (q(tLR))

q(xHR)

(a) (b)

FIGURE 1. Data reconstruction methods used in the present study: (a) spatial SR; (b) temporal
SR (inbetweening).

reconstruct high-resolution turbulent flow data from extremely low-resolution flow data
both in space and time. The present paper is organized as follows. We first introduce our
machine-learning-based spatio-temporal SR approach in § 2 with a simple demonstration
for a two-dimensional laminar cylinder wake at ReD = 100. We then apply the present
method to two-dimensional decaying isotropic turbulence and turbulent channel flow
over a three-dimensional domain in § 3. The capability of a machine-learning-based
spatio-temporal SR method is assessed statistically. Finally, concluding remarks are
provided in § 4.

2. Approach

2.1. Spatio-temporal SR flow reconstruction with machine learning
The objective of this work is to reconstruct high-resolution flow field data q(xHR, tHR)

from low-resolution data in space and time q(xLR, tLR). To achieve this goal, we combine
spatial SR analysis with temporal inbetweening. Super resolution analysis can reconstruct
spatially high-resolution data from spatially input data, as illustrated in figure 1(a).
Temporal inbetweening is able to find the temporal sequences between the first and the
last frames in the time-series data, as shown in figure 1(b). We describe the methodology
to combine these two reconstruction methods in § 2.1.

In the present study, we use a supervised machine learning model to reconstruct fluid
flow data in space and time. For supervised machine learning, we prepare a set of input x
and output (answer) y as the training data. We then train the supervised machine learning
model with these training data such that a nonlinear mapping function y ≈ F(x; w) can
be built, where w holds weights within the machine learning model. The training process
here can be mathematically regarded as an optimization problem to determine the weights
w such that w = argminw[E( y,F(x; w))], where E is the loss (cost) function.

For the machine learning models for SR in space Fx and time Ft, we use a hybrid
DSC/MS model (Fukami et al. 2019a) presented in figure 2. The DSC/MS model is based
on a CNN (LeCun et al. 1998) which is one of the widely used supervised machine
learning methods for image processing. Here, let us briefly introduce the mathematical

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

94
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.948


909 A9-4 K. Fukami, K. Fukagata and K. Taira

qLR qHR

Downsampling

Upsampling

Skip connection

DSC model

MS model

FIGURE 2. The hybrid downsampled skip-connection/multiscale (DSC/MS) SR model (Fukami
et al. 2019a). Spatial reconstruction of two-dimensional cylinder wake at ReD = 100 is shown as
an example.

framework for the CNN. The CNN is trained with a filter operation such that

q(l)
ijm = ϕ

⎛
⎝b(l)

m +
K−1∑
k=0

H−1∑
p=0

H−1∑
s=0

h(l)
pskmq(l−1)

i+p−C,j+s−C,k

⎞
⎠ , (2.1)

where C = floor(H/2), b(l)
m is the bias, q(l) is the output at layer l, h is the filter, K is

the number of variables per each position of data and ϕ is an activation function which is
generally chosen to be a monotonically increasing nonlinear function. In the present paper,
we use the rectified linear unit (known as ReLU), ϕ(s) = max(0, s), as the activation
function ϕ. It is widely known that the use of the rectified linear unit enables machine
learning models to be stable during the weight update process (Nair & Hinton 2010).

As shown in figure 2, the present machine learning model is comprised of two models:
namely the DSC model shown in blue and the MS model shown in green. The DSC
model is robust against rotation and translation of the objects within the input images
by combining compression procedures and skip-connection structures (Le et al. 2010;
He et al. 2016). On the other hand, the MS model (Du et al. 2018) is able to take the
MS property of the flow field into account for its model structure. Readers are referred
to Fukami et al. (2019a) for additional details on the hybrid machine learning model.
The DSC/MS model is utilized for both spatial and temporal data reconstruction in the
present study. For the example of turbulent channel flow discussed in § 3.2, we use a
three-dimensional convolution layer in place of the two-dimensional operations.

2.2. Order of spatio-temporal SR reconstruction
For the reconstruction of the flow field, we can consider the following two approaches.

(i) Apply the spatial SR model F∗
x : R

nLR×mLR → R
nHR×mLR , then the inbetweening model

Ft : R
nHR×mLR → R

nHR×mHR such that

q(xHR, tHR) = Ft(F∗
x (q(xLR, tLR))) + ε tx . (2.2)
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FIGURE 3. Spatio-temporal SR reconstruction with machine learning for cylinder flow at
ReD = 100.

(ii) Apply the inbetweening model F∗
t : R

nLR×mLR → R
nLR×mHR , then the spatial SR model

Fx : R
nLR×mHR → R

nHR×mHR such that

q(xHR, tHR) = Fx(F∗
t (q(xLR, tLR))) + εx t, (2.3)

where n is a spatial dimension of data, m is a temporal dimension of data, ε tx is the
error for the first case and εx t is the error for the second case. The subscripts LR and
HR denote low-resolution and high-resolution variables, respectively.

We seek the approach that achieves the lower error between the above two formulations.
The Lp norms of these error are assessed as

||ε tx ||p = ||q(xHR, tHR) − Ft(F∗
x (q(xLR, tLR)))||p

= ||q(xHR, tHR) − Ft(q(xHR, tLR) + εx)||p, (2.4)

||εx t||p = ||q(xHR, tHR) − Fx(F∗
t (q(xLR, tLR)))||p

= ||q(xHR, tHR) − Fx(q(xLR, tHR) + ε t)||p, (2.5)

where εx is an error from the spatial SR algorithm for the first case and ε t is an error
from the inbetweening process for the second case. Since the spatial SR algorithm is
not a function of the temporal resolution algorithm in our problem setting, εx is not
affected much by the temporal coarseness of the given data. On the other hand, εt is
the error resulting from inbetweening with spatial low-resolution data which lacks the
phase information compared with the spatially high-resolution data. For this reason, the
error ε t is likely to be large due to the spatial coarseness. This leads us to first establish a
machine learning model for spatio-temporal SR reconstruction as illustrated in figure 3
for the example of a cylinder wake. The cylinder flow example confirms the above
error trend, as shown in figure 4. We also examine the possibility of utilizing a single
combined model Fcomb, i.e. q(xHR, tHR) = Fcomb(q(xLR, tLR)), which attempts to reconstruct
the spatio-temporal high-resolution flow field from its counterpart directly. As presented
in figure 4, the flow field cannot be reconstructed well. This is caused by the difficulty in
weight updates while training the machine learning model. The observations here suggest
that care should be taken in training machine learning models (Fukami, Nakamura &
Fukagata 2020b).

Each of these machine learning models is trained individually for the spatial and
temporal SR reconstructions. In the supervised machine learning process for regression
tasks, the training process is formulated as an optimization problem to minimize a loss
function in an iterative manner. The objectives of the two machine learning models can be
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FIGURE 4. Dependence of reconstruction performance on the order of training processes for
cylinder flow. The first (t = 1Δt), intermediate (t = 5Δt) and last (t = 9Δt) snapshots are shown.
Reversed order refers to option (ii) in § 2.2. The combined model refers to Fcomb which directly
reconstructs q(xHR, tHR) from q(xLR, tLR). The values underneath the contours report the L2 error
norms.

expressed as

wx = argminwx
||q(xHR, tLR) − F∗

x (q(xLR, tLR))||p, (2.6)

wt = argminwt
||q(xHR, tHR) − Ft(q(xHR, tLR))||p, (2.7)

where wx and wt are the weights of the spatial and temporal SR models, respectively. In
the present study, we use the L2 norm ( p = 2) to determine the optimized weights w for
each of the machine learning models. Hereafter, we use p = 2 for assessing the errors.

2.3. Demonstration: two-dimensional laminar cylinder wake
For demonstration, let us apply the proposed formulation to the two-dimensional cylinder
wake at ReD = 100. The snapshots for this wake are generated by two-dimensional direct
numerical simulation (DNS) (Taira & Colonius 2007; Colonius & Taira 2008), which
numerically solves the incompressible Navier–Stokes equations,

∇ · u = 0, (2.8)

∂u
∂t

+ u · ∇u = −∇p + 1
ReD

∇2u. (2.9)

Here u and p are the non-dimensionalized velocity vector and pressure, respectively.
All variables are made dimensionless by the fluid density ρ, the uniform velocity
U∞ and the cylinder diameter D. The Reynolds number is defined as ReD = U∞D/ν

with ν being the kinematic viscosity. For this example, we use five nested levels of
multidomains with the finest level being (x, y)/D = [−1, 15] × [−8, 18] and the largest
domain being (x, y)/D = [−5, 75] × [−40, 40]. Each domain uses [Nx , Ny] = [400, 400]
for discretization. The time step for DNS is set to Δt = 2.50 × 10−3 and yields a maximum
Courant–Friedrichs–Lewy number of 0.3. As the training data set, we extract the
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domain around a cylinder body over (x∗, y∗)/D = [−0.7, 15] × [−5, 5] with (Nx , Ny) =
(192, 112). For the present study, we use 70 % of the snapshots for training and the
remaining 30 % for validation, which splits the whole data set randomly. The assessment
of this demonstration is performed using 100 test snapshots excluding the training and
validation data. Note here that the nature of training and test data sets are similar to each
other due to the periodicity of the laminar two-dimensional circular cylinder wake. An
early stopping criterion (Prechelt 1998) with 20 iterations of the learning process is also
utilized to avoid overfitting such that the model retains generality for any unseen data in
the training process. For the input and output attributes to the machine learning model, we
choose the vorticity field ω.

The results from preliminary examination with the undersampled cylinder wake data
are summarized in figure 5. The machine learning models are trained by using nsnapshot,x =
1000 for spatial SR and nsnapshot,t = 100 for inbetweening. Both snapshots are prepared
from a same time range which is approximately eight vortex shedding periods. Here, the
spatial SR model Fx has the role of a mapping function from the low-spatial-resolution
data q(xLR) ∈ R

12×7 to the high-spatial-resolution data q(xHR) ∈ R
192×112. Next, two spatial

high-resolved flow fields illustrated only at t = 1Δt and 9Δt in figure 5 are used as the
input for the temporal SR model Ft, so that the in-between snapshots from t = 2Δt
to 8Δt corresponding to a period in time can be reconstructed. As shown in figure 5,
the spatio-temporal SR analysis achieves excellent reconstruction of the flow field that
is practically indistinguishable from the reference DNS data. The L2 error norm ε =
||ωDNS − ωML||2/||ωDNS||2 is shown in the middle of figure 5. The L2 error level is
approximately 5 % of the reference DNS data. As the machine learning model is provided
with the information at t = 1Δt and 9Δt, the error level shows slight increase between
those two snapshots.

3. Results

3.1. Example 1: two-dimensional decaying homogeneous isotropic turbulence
As the first example of turbulent flows, let us consider two-dimensional decaying
homogeneous isotropic turbulence. The training data set is obtained by numerically
solving the two-dimensional vorticity transport equation,

∂ω

∂t
+ u · ∇ω = 1

Re0
∇2ω, (3.1)

where u = (u, v) and ω are the velocity and vorticity, respectively (Taira, Nair &
Brunton 2016). The size of the biperiodic computational domain and the numbers of grid
points here are Lx = Ly = 1 and Nx = Ny = 128, respectively. The Reynolds number is
defined as Re0 ≡ u∗l∗0/ν, where u∗ is the characteristic velocity obtained by the square
root of the spatially averaged initial kinetic energy, l∗0 = [2u2(t0)/ω2(t0)]1/2 is the initial
integral length and ν is the kinematic viscosity. The initial Reynolds numbers are Re0 =
u∗(t0)l∗(t0)/ν = 81.2 for training/validation data and 85.4 for test data (Fukami et al.
2019a). For the input and output attributes to the machine learning model, we use the
vorticity field ω.

For spatio-temporal SR analysis of two-dimensional turbulence, we consider four cases
comprised of two spatial and two temporal coarseness levels as shown in figure 6. For
spatial SR analysis, we prepare two levels of spatial coarseness: medium- (16 × 16)
and low-resolution (8 × 8 grids) data, analogous to our previous work (Fukami et al.
2019a). These spatial low-resolution data are obtained by an average downsampling of
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FIGURE 5. Spatio-temporal SR reconstruction with machine learning for cylinder wake at
ReD = 100. The bar graph located in the centre shows the L2 error norm ε for the reconstructed
flow fields. The contour level of the vorticity fields is same as that in figure 4.

the reference DNS data set. Note that the reconstruction with SR for turbulent flows
is influenced by the downsampling process, e.g. maximum or average values (Fukami
et al. 2019a). We use the average pooling in the present work. For the temporal resolution
set-up, we define a medium (ΔT = 1.0) and a wide time step (ΔT = 4.0), where ΔT is
the time step between the first and last frames of the inbetweening analysis. The decay
of Taylor Reynolds number Reλ(t) = u#(t)λ(t)/ν, where u#(t) is the spatial root mean
square value for velocity at an instantaneous field and λ(t) is the Taylor length scale at
an instantaneous field, is shown in the middle of figure 6. The training data includes the
low Taylor Reynolds number portion (regime II in figure 6) so as to assess the influence
on the decaying physics compared with regime I. For the training process, we consider
a fixed number of snapshots (nsnapshot,x , nsnapshot,t) = (10 000, 10 000) for all four cases of
this two-dimensional example. The models for the considered four cases are constructed
separately.

For the example of two-dimensional turbulence, the machine learning model for
inbetweening analysis plays the role of a regression function to reconstruct eight snapshots
between the first and last frames (given by the spatial reconstruction model). The flow
fields reconstructed from spatio-temporal SR analysis of two-dimensional turbulence
with various coarse input data are summarized in figure 7. On the left-hand side, the
reconstructed fields from regime I with coarse spatio-temporal data are shown. As can
be seen, the temporal evolution of the complex vortex dynamics can be accurately
reconstructed by the machine-learned models. For almost all cases, the L2 error norms
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FIGURE 6. The problem set-up of spatio-temporal SR analysis for two-dimensional decaying
homogeneous isotropic turbulence. The curve located in the centre is the decay of Taylor
Reynolds number Reλ. The vorticity fields ω at the time stamps (a)–( f ) along this curve are
shown on the right-hand side.

ε = ||qDNS − qML||2/||qDNS||2 listed below the contour plots for the spatially low-resolution
input show larger errors compared with the medium-resolution case due to the effect of
input spatial coarseness. On the right-hand side of the figure, we show the results from
regime II. Analogous to the results for regime I, the reconstructed flow fields are in
agreement with the reference DNS data. Noteworthy here is the peak L2 error norm of
0.198 appearing at t = (n + 7)Δt for regime II using low-resolution input and a wide time
step. This is in contrast with the other cases that give peak errors at t = (n + 4)Δt. This
is likely because the present machine learning model, which does not embed information
of boundary condition, has to handle the temporal evolution of a relatively large structure
over a biperiodic domain (i.e. bottom left on the colourmap). Furthermore, the model is
also affected by the error from the spatial SR reconstruction. For these reasons, the peak
in error is shifted in time compared with the other cases in figure 7.

To examine the dependence on the regime of test data, the time-ensemble L2 error norms
of medium- and low-spatial-input cases are shown in figure 8. For all cases, the errors
for regime I are larger than those for regime II. One of reasons here is that the relative
change in vortex structures for regime II is less than that for regime I, which we can see
in figure 7. We also find that the reconstructions are affected by the input coarseness in
space as evident from comparing figures 8(a) and 8(b). Similar trends can also be seen in
figure 9 which show the total kinetic energy Etot over the domain for each case. The curves
shown here do not decrease monotonically since we take the ensemble average over the
test data, whose trend is analogous to the decay of Taylor Reynolds number as presented
in figure 6. By comparing figures 7 and 9, it is inferred that the present machine learning
model can capture the decaying nature of two-dimensional turbulence.

Next, let us present the kinetic energy spectrum and the p.d.f. of the vorticity field ω for
all coarse input cases with spatio-temporal reconstructions in figure 10. For comparison,
we compute these statistics for regimes I (purple) and II (yellow). The statistics with
all coarse input data show similar distributions with the reference DNS trends. The
high-wavenumber region of the kinetic energy spectrum obtained from the reconstructed
fields do not match with the reference curve due to the lack of correlation between the
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FIGURE 7. Spatio-temporal SR reconstruction for two-dimensional decaying homogeneous
turbulence. The vorticity field ω is shown with the same contour level in figure 6. Medium-
and low-resolution spatial input with (a) medium time step for regime I, (b) medium time step
for regime II, (c) wide time step for regime I and (d) wide time step for regime II. The values
underneath the flow fields report the L2 error norms.
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FIGURE 8. Time-ensemble L2 error norms for the (a) medium- and (b) low-spatial-input cases.

low- and high-wavenumber components. Through our investigation in this section, we can
exemplify that the present machine learning model can successfully work in reconstructing
high-resolution two-dimensional turbulence from spatio-temporal low-resolution data.

3.2. Example 2: turbulent channel flow over three-dimensional domain
To investigate the applicability of machine-learning-based spatio-temporal SR
reconstruction to three-dimensional turbulence, let us consider a turbulent channel
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FIGURE 9. Decay of time-ensemble total kinetic energy Etot over the domain.

flow (Fukagata, Kasagi & Koumoutsakos 2006). The governing equations are the
incompressible Navier–Stokes equations,

∇ · u = 0, (3.2)

∂u
∂t

+ ∇ · (uu) = −∇p + 1
Reτ

∇2u, (3.3)

where u = [u v w]T represents the velocity vector with components u, v and w in the
streamwise (x), wall-normal (y) and spanwise (z) directions. Here, t is time, p is pressure
and Reτ = uτ δ/ν is the friction Reynolds number. The variables are normalized by the
half-width δ of the channel and the friction velocity uτ = (ν dU/dy|y=0)

1/2, where U is
the mean velocity. The size of the computational domain and the number of grid points
here are (Lx , Ly, Lz) = (4πδ, 2δ, 2πδ) and (Nx , Ny, Nz) = (256, 96, 256), respectively.
The grids in the x and z directions are taken to be uniform. A non-uniform grid is utilized
in the y direction with stretching based on the hyperbolic tangent function.

As the baseline data, we prepare the data snapshots on a uniform grid interpolated
from the non-uniform grid data of DNS. The influence of grid type is reported in the
Appendix for completeness. The no-slip boundary condition is imposed on the walls and a
periodic boundary condition is prescribed in the x and z directions. The flow is driven by
a constant pressure gradient at Reτ = 180. For the present study, a subspace of the whole
computational domain is extracted and used for the training process, i.e. (L∗

x , L∗
y, L∗

z ) =
(2πδ, δ,πδ), x, y, z ∈ [0, L∗

x ] × [0, L∗
y] × [0, L∗

z ], and (N∗
x , N∗

y , N∗
z ) = (128, 48, 128). Due

to the symmetry of turbulence statistics in the y direction and homogeneity in the x and z
directions, the extracted subdomain maintains the turbulent characteristics of the channel
flow over the original domain size. We generally use 100 training data sets for both the
spatial and temporal SR analyses in this case. The dependence of the reconstruction on
the number of snapshots is investigated later. For all assessments in this example, we use
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FIGURE 10. Statistical assessments for the spatio-temporal SR analysis of two-dimensional
turbulence. (a,c,e,g) Kinetic energy spectrum; (b,d, f,h) probability density function (p.d.f.)
of vorticity ω; (a–d) medium time step; (e–h) wide time step; (a,b,e,f ) regime I; (c,d,g,h)
regime II.

200 test snapshots excluding the training data. For the input and output attributes to the
machine learning model, we use the velocity fields u = [u v w]T. Hereafter, the superscript
+ is used to denote quantities in wall units.

We illustrate in figure 11 the problem setting of the spatio-temporal SR analysis
for three-dimensional turbulence. For visualization here, we use the second invariant
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FIGURE 11. The problem set-up for example 2. We consider two spatial coarseness levels with
three temporal resolutions. Note that Q+ = 0.005 and 0.07 are used for visualization of spatial
and temporal resolutions, respectively. The plot on the upper right-hand side shows the temporal
two-point correlation coefficients R at y+ = 11.8 for the present turbulent channel flow.

of the velocity gradient tensor Q. Regarding the spatial resolution, medium and low
resolutions are defined as 16 × 6 × 16 and 8 × 3 × 8 grids in the x , y and z directions,
respectively. These coarse input data sets are generated by the average downsampling
operation from the reference DNS data of 128 × 48 × 128 grids. Note that we are
unable to detect the vortex core structures at Q+ = 0.005 with low-resolution input in
figure 11 due to the gross coarseness. As shown in figure 12, the vortex structure cannot
be seen with a contour level of Q+ = 0.07 with either medium- or low-spatial-input
data. For the inbetweening reconstruction, three time steps are considered; ΔT+ =
12.6 (medium), 25.2 (wide) and 126 (superwide time step) in viscous time units,
where ΔT+ is the time step between first and last snapshots. These ΔT+ correspond
to temporal two-point correlation coefficients at y+ = 11.8 of R = R+

uu(t
+)/R+

uu(0) ≈
0.50 (medium), 0.25 (wide) and 0.05 (superwide time step), where R+

uu(t
+; y+) =

u′+(x+, y+, z+, τ+)u′+(x+, y+, z+, τ+ − t+)
x+,z+,τ+

, ·̄x+,z+,τ+
denotes the time-ensemble

average over the x–z plane, and u′ is the fluctuation of streamwise velocity (Fukami et al.
2019b).

Let us summarize the reconstructed flow field visualized by the Q-criteria isosurface
based on nsnapshots,x = 100 in figure 12. The machine learning models are able to
reconstruct the flow field from extremely coarse input data, despite the input data showing
almost no vortex-core structures in the streamwise direction as shown in figure 12(a). We
also present the velocity contours at a y–z section (x+ = 1127) in figure 13. We report the
L2 error norms normalized by the fluctuation component ε = ||ui,DNS − ui,ML||2/||u′

i,DNS||2
in this example to remove the influence on magnitude of each velocity attribute in the
present turbulent channel flow. With both coarse input data, the reconstructed flow fields
are in reasonable agreement with the reference DNS data in terms of the contour plots
and the L2 error norms listed below the reconstructed flow field. We also assess the
turbulence statistics as summarized in figure 14. Noteworthy here are the trends in the
wall-normal direction that are well captured by the machine learning model from as little
as six (medium-) or three (low-resolution) grid points, as shown in figures 14(a) and 14(b).
Regarding the kinetic energy spectrum at y+ = 11.8, the maximum wavenumber kmax in
the streamwise and spanwise directions can also be recovered from the extremely coarse
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FIGURE 12. Isosurfaces of the Q criterion (Q+ = 0.07). (a) The input coarse data with medium
and low resolutions. For comparison, Q+ = 0.005 with medium-resolution is also shown.
(b) Reference DNS data. (c) Reconstructed flow field from medium-resolution input data.
(d) Reconstructed flow field from low-resolution input data.
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FIGURE 13. Velocity contours at a y–z section (x+ = 1127) of the reference DNS data, coarse
input data and the recovered flow field through spatial SR analysis with machine learning (ML).
The values listed below the contours are the L2 error norm ε.
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FIGURE 14. Turbulence statistics of the reference DNS data, medium resolution (MR) input,
low resolution (LR) input, and recovered flow fields by spatial SR analysis. (a) Root mean square
of velocity fluctuation ui,rms, (b) Reynolds stress −u′v′, (c) streamwise energy spectrum E+

uu(k
+
x )

and (d) spanwise energy spectrum E+
uu(k

+
z ).

input data as presented in figures 14(c) and 14(d). The high-wavenumber components
for both cases show differences due to the fact that the dissipation range has no strong
correlation with the energy-containing region. The aforementioned observation for the
kinetic energy spectrum is distinct from that of two-dimensional turbulence. The under
or overestimation of the kinetic turbulent energy spectrum here is likely caused by a
combination of several reasons, e.g. underestimation of u because of the L2 regression and
relationship between a squared velocity and energy such that u2 = ∫

E+
uu(k

+) dk+. Whether
machine-learning-based approaches consistently yield underestimated or overestimated
kinetic energy spectrum likely depends on the flow of interest. While the overall method
aims to minimize the loss function in the derivation, there are no constraints imposed for
optimizing the energy spectrum in the current approach.

Next, let us combine the spatial SR reconstruction with inbetweening to obtain the
spatio-temporal high-resolution data q(xHR, tHR), as summarized in figure 15. We only
show in figure 15(a) the results for the medium-spatial-resolution input. With the medium
time step, the reconstructed flow fields show reasonable agreement with the reference DNS
data in terms of both the Q isosurface and L2 error norm listed below the isosurface plots.
In contrast, the flow fields cannot be reconstructed with wide and superwide time steps due
to the lack of temporal correlation, as summarized in figure 11. Although the vortex core
can be somewhat captured with the wide time step at n + 2 and n + 7, the reconstructed
flow fields are essentially smoothed since the machine-learned models for inbetweening
are given only the information with low correlation at the first and last frames obtained
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FIGURE 15. Spatio-temporal SR reconstruction of turbulent channel flow over
three-dimensional domain. (a) The Q isosurfaces (Q+ = 0.07) of the reference DNS and
super-resolved flow field with medium, wide and superwide time step. The medium-resolution
data in space are used as the input for spatial SR reconstruction. (b) The L2 error norm of
inbetweening for spatial medium-resolution input with wide time step. (c) Summary of the
time-ensemble L2 error norms for all combinations of coarse input data in space and time.

from spatial SR reconstruction, as shown in figure 15(b). The time-ensemble L2 error
norm ε̄ with all combinations of coarse input data in space and time are summarized in
figure 15(c). It can be seen that the results with the machine-learned models are more
sensitive to the temporal resolution than the spatial resolution level. This observation
agrees with the previous example in § 3.1.

Let us demonstrate the robustness of the composite model against noisy input data for
spatio-temporal SR analysis in figure 16. For this example, we use the medium spatially
coarse input data with the medium time step. Here, the L2 error norm for noisy input
is defined as ε ′

noise = ||qHR − F(qLR + κn)||2/||q′
HR||2, where n is the Gaussian noise for

which the mean of the distribution is the value on each grid point and the standard
deviation scale is 1, κ is the magnitude of noisy input, and q′

HR is the fluctuation component
of the reference velocity. The reported values on the right-hand side of figure 16 are
the ensemble-averaged L2 error ratio against the original error without noisy input,
ε ′/ε ′

κ=0. As shown, the error increases with the magnitude of noise κ for both coarse
input levels. The x–z sectional streamwise velocity contours from intermediate output of
inbetweening at t = (n + 5)Δt are shown in the left-hand side of figure 16. The model
exhibits reasonable robustness for the considered noise levels, especially for reconstructing
large-scale structures.

In the above discussions, we used 100 snapshots for both spatial and temporal SR
analyses with three-dimensional turbulent flow. Here, let us discuss the dependence of the
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FIGURE 16. Robustness of the machine learning model for noisy input with medium time
step models. The x–z sectional streamwise velocity contours are chosen from y+ = 19.4, with
medium-spatial-coarse input model. The contour plots visualize the intermediate snapshots at
t = (n + 5)Δt for each noise level.
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FIGURE 17. Influence of the number of the training snapshots for spatial SR reconstruction
nsnapshot,x on the ensemble L2 error norm ε̄.

results on the number of snapshots for the spatial SR analysis nsnapshot,x and inbetweening
nsnapshot,t. The ensemble L2 error norm ε̄ with various number of snapshots is presented in
figure 17. We summarize in this figure the effect from the number of training snapshots
on the spatial and temporal reconstructions. Up to nsnapshot,t = 50, the L2 errors are
approximately 0.4 and the reconstructed fields cannot detect vortical structures from
the Q-value visualizations, even if nsnapshot,x is increased. For cases with nsnapshot,t � 100
and nsnapshot,x � 100, the errors drastically decrease. For this particular example with the
turbulent channel flow, 100 training data sets is the minimum requirement for recovering
the flow field for both in space and time. These findings suggest that data sets consisting
with as few as 100 snapshots with the appropriate spatial and temporal resolutions hold
sufficient physical characteristics for reconstructing the turbulent channel flow at this
Reynolds number.

Next, we assess the computational costs with increasing number of training data sets
for the NVIDIA Tesla V100 graphics processing unit (known as GPU), as shown in
figure 18. The computational time per an iteration (epoch) linearly increases with the
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(a) streamwise (x), (b) spanwise (z) and (c) wall-normal (y) directions. For clarity, a log-scale is
used for panel (c).

number of snapshots for both spatial and temporal SR analyses. Plainly speaking, complete
training process takes approximately three days with {nsnapshot,x , nsnapshot,t} = {100, 100}
and 15 days with {nsnapshot,x , nsnapshot,t} = {1000, 1000}. The computational costs for the
full iterations can deviate slightly from the linear trend since the error convergence is
influenced within the machine learning models due to early stopping.

Let us also discuss the challenges associated with the spatio-temporal
machine-learning-based SR reconstruction. As discussed above, a supervised machine
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learning model is trained to minimize a chosen loss function through an iterative training
process. In other words, the machine learning models aim to solely minimize the given
loss function, which is different from actually learning the physics. We here discuss the
dependence of the error in the real space and wave space.

The L2 error distribution over each direction of turbulent channel flow is summarized
in figure 19. The case with combination of medium-spatial-input (16 × 6 × 16 grids) with
medium time step (ΔT+ = 12.6) is presented. As shown in figure 19, the errors at the edge
of the domain in all directions are large. This is likely due to the difficulty in predicting the
temporal evolution over boundaries and the padding operation of CNN. Noteworthy here is
the error trend in the wall-normal direction in figure 19(c). The errors for all attributes are
high near the wall. One of possible reasons is the low probability of velocity attributes near
wall region, i.e. high flatness factor (Kim, Moin & Moser 1987). Since the present machine
learning models are trained with L2 minimization as mentioned above, it is tougher to
predict those region than high probability for fluctuations.

We further examine how well the machine learning model performs over the
wavenumber space. The kinetic energy spectrum at y+ = 11.8 in the streamwise and
spanwise directions of spatio-temporal SR reconstruction are shown in figure 20. For the
input data, spatial medium-resolution (16 × 6 × 16 grids) with medium (ΔT+ = 12.6)
and wide time steps (ΔT+ = 25.2) are considered. The L2 error here is defined as
εE+

uu
(t+) = ||E+

uu(t
+)DNS − E+

uu(t
+)ML||2/||E+

uu(t
+)DNS||2. With the medium time step, the

error over the high-wavenumber space are higher than that over the low-wavenumber
space. This observation agrees with the machine learning models being able to recover
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the low-wavenumber space from grossly coarse data seen in figure 14. With the use of
wide time step, we can infer the influence of temporal coarseness, as discussed above.
The L2 error distributions of kinetic energy spectrum show high-error concentration
on high-wavenumber portion at intermediate output in time, as shown in the bottom
part of figure 20. The machine learning models capture low-wavenumber components
preferentially to minimize the reconstruction error.

4. Conclusions

We developed supervised machine learning methods for spatio-temporal SR analysis to
reconstruct high-resolution flow data from grossly under-resolved input data both in space
and time. First, a two-dimensional cylinder wake was considered as a demonstration. The
machine-learned model was able to recover the data in space and reconstruct the temporal
evolution from only the first and last frames.

As the first turbulent flow example, a two-dimensional decaying homogeneous isotropic
turbulence was considered. In this example, we considered two spatial resolutions based
on our previous work (Fukami et al. 2019a) and two different time steps to examine
the capability of the proposed model. The reconstructed flow fields were in reasonable
agreement with the reference data in terms of the L2 error norm, the kinetic energy
spectrum, and the p.d.f. of vorticity field. We also found that the machine-learned models
were affected substantially by the temporal range of training data.

We further examined the capability of the proposed method using a turbulent
channel flow over three-dimensional domain at Reτ = 180. The machine-learning-based
spatio-temporal SR analysis showed its great capability to reconstruct the flow field from
grossly coarse input data in space and time when an appropriate time step size between
the first and the last frames is used. The proposed method, however, was unable to recover
the turbulent flow fields in time when the temporal two-point correlation coefficient was
R+ � 0.25. It was also seen that the machine learning models tend to preferentially extract
the features in the low-wavenumber space so as to minimize a loss function efficiently. For
improving the accuracy of the spatio-temporal SR analysis, we likely need to prepare a
well-designed architecture which can take physics into account in its structure, e.g. loss
function (Lee & You 2019; Maulik et al. 2020; Raissi, Yazdani & Karniadakis 2020) and
choice for input and output attributes, i.e. feature engineering. In addition, care should also
be taken for the proper choice of training data set which highly relates to the remaining
problem – the distinction of interpolation and extrapolation for training data is still vague
(Taira 2019). Such efforts will be undertaken in future work.

The robustness of the present model for noisy input and dependence on the
number of training snapshots were also investigated. The proposed model showed
reasonable capability for up to 10 % noisy input in terms of both qualitative and
quantitative assessments. We found that the flow field can be reconstructed by the
machine-learning-based methods with as few as 100 training data sets for both the spatial
and temporal models.

We foresee a range of applications for the spatio-temporal super resolution analysis
in fluid dynamics. For example, we may be able to leverage the current technique for
large-eddy simulations as an augmentation tool. We may also be able to consider SR as a
data compression tool to store big data, which will also makes it easier to share or exchange
spatio-temporal data of complex flows among researchers. In fact, in the present paper, we
can recover the three-dimensional turbulent channel flow field comprised of 7.9 million
spatio-temporal elements from low-resolution data which have only 3072 spatio-temporal
elements. This translates to a significant compression of 0.04 %.
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FIGURE 21. (a) Dependence on the grid style of streamwise velocity contours u at a y–z section
(x+ = 1127) for spatial SR reconstruction with machine learning (ML). Listed values are L2
error norm. (b) Time-ensemble L2 error norm of spatio-temporal SR reconstruction with uniform
and non-uniform grid data in wall-normal direction.

The ability to reconstruct turbulent flow fields from a small number of data points in
space and time has the potential for novel data compression techniques using machine
learning models. However, the success of flow field reconstruction hinges on developing an
appropriate neural network construct that accommodates the complex nonlinear physics of
turbulence. When successful, the neural networks are able to condense the flow field to its
skeleton giving hope for autoencoder-based approaches to identify the suitable coordinates
to represent the primary axes of turbulent flow data in a nonlinear sense (Fukami et al.
2020b).
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Appendix

In this Appendix, we assess the influence of spatial discretizations in the wall-normal
direction on the results from filter operation of the CNN. These operations are generally
performed on uniform resolution image data. Note that we use the interpolated flow fields
on a uniform grid generated from the non-uniform grid data in the y direction, as input
and output attributes for the discussions in the main text.

Here, we do not interpolate but instead use the data on a non-uniform grid. We present
the streamwise velocity contours at a y–z section of spatial SR analysis with medium
coarseness input data for both grid types in figure 21(a). Although we observe some
visual differences in the input data as shown in figure 21(a), significant differences are
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not observed in terms of the streamwise velocity contours and the L2 error norm. We also
compare the L2 error norm of the spatio-temporal SR analysis with both grid types in
figure 21(b). For all cases, the errors using the uniform grid data are slightly larger than
those from the non-uniform grid data. This is due to the original non-uniform data holding
more information in the near-wall region compared with the uniform grid data. However,
the filter operation of the CNN is not sensitive to the choice of the spatial discretization,
at least for this problem.
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