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Abstract

‘We make a correction to an important result by Cline [D. B. H. Cline, ‘Convolutions of distributions with
exponential tails’, J. Austral. Math. Soc. (Series A) 43 (1987), 347-365; D. B. H. Cline, ‘Convolutions of
distributions with exponential tails: corrigendum’, J. Austral. Math. Soc. (Series A) 48 (1990), 152-153]
on the closure of the exponential class £(«) under convolution power mixtures (random summation).
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1. Introduction

We say that a cumulative probability distribution function H on the real line belongs
to the exponential class L(«), a > 0, if

Hx+1 . 1—Hx+1

lim =e ¥ fortelR. (1

— = lim
oo H(x) x—oco 1 —H(x)
(Some authors require members of L(«) to be supported on [0, 00) to avoid some
technicalities. However, because of the applications we have in mind (see, for
example, Section 4 below) we do not want to make this restriction.) Note the
elementary fact that (1) holds for ¢ € R if and only if it holds for ¢ > 0. Furthermore,
H € L(«) if and only if H o log is regularly varying at infinity with index —c.
When (1) holds with « = 0 we get the class of long-tailed distributions £(0) = £
introduced by Pitman [10]. Note the elementary fact that H € L if and only if
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H(x —t H(x +t
limsup¥<l or liminfgz

1 for some ¢t > 0. 2)
X—>00 H(x) X—>00 H(x)

Furthermore, H € L if and only if H o log is slowly varying at infinity.

The class L(«) was introduced by Embrechts and Goldie [6] to study closedness
properties of the narrower exponential class S(«) consisting of those H € L(«) for
which

- o - B
lim H™(x) = lim H*—I_I(x): lim 1 fR H(x —y)dH(y)

— — 3)
X—>00 H(x) xX—>00 H()C) X—00 1— H(x)

exists (and is finite). Members of the class S(0) =S are called subexponential
distributions. The classes S(«), @ > 0, have a much longer history than L£(«); see,
for example, Cline [4] for more information.

In an important paper Cline [4] established many important results for the classes
L(x) and S(«). It has recently been pointed out by Shimura and Watanabe
[13, Remark 4.2], that Cline [4, Lemma 2.1(iv)] is incorrect, which has some
consequences for later results that build on that lemma.

It was noted by Cline himself in [5] that there is also a problem with Cline
[4, Lemma 2.3(ii)], which claims that, given a cumulative probability distribution
function F supported on [0, co) (which is to say that F(x) =0 for x < 0), together
with discrete probabilities {)‘”};io such that g < 1 and Z?;o A = 1, the convolution
power mixture (random sum distribution) H(x) = Z?,o:o A F*(x) satisfies the
following implication

H t
if F € L() then lim inf (_x——i—) >e ™ fort >0, fora > 0. )
xX—00 H(x)

In particular, (2) together with (4) show that F € £ implies H € L.

In Cline [5] the result (4) is not only corrected, but also strengthened to the result
that F € L(«) implies H € L(«) for o > 0. However, we have the following simple
counterexample to the claimed result of Cline [5] for o > 0.

PROPOSITION 1.1. Given constants 0 <y <a <00 and an F € L(a) that is
supported on [0, 00), there exist probabilities {)\,,}210 such that H = fo;o A F*"
¢ L(a).

PROOF. Pick probabilities {A,,};2 , such that

o0
anexp {ny/ xdF(x)}:oo.
n=0 [0,00)

(It is an elementary exercise to see that such probabilities exist.) Then

(e8] n o0
/ e’ dH(xX) =Yy (/ er* dF(x)> > exp{ny / x dF(x)}
[0,00) =0 [0,00) =0 [0,00)
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is infinite by Jensen’s inequality. Hence, we have H ¢ L(«) as fooo e’ dH (x) < 0o
for H € L(«) and y < « (see, for example, Cline [4, Lemma 2.2(1)]). d

In Section 2 of this paper we explain what is wrong in the arguments of Cline [5].
In Section 3 we proceed to give a new proof of Cline’s claimed results under
the strengthened hypothesis that the probabilities {1,};2, possess all exponential
moments. This setting includes the important special case when {1, }° , is a Poisson
distribution (see, for example, Sato, [11, Section 25]), so that H is a compound Poisson
distribution with jump distribution in £(«). In Section 4 we give an application in the
form of a Tauberian criterion for infinitely divisible distributions to belong to £(«).

As with the proof of Cline [4, Lemma 2.3(ii)], and half the proof of Cline [5],
our arguments take off from the fundamental estimate (5) below from the proof of
Embrechts and Goldie [6] that L(«) is closed under convolution.

2. The proofs by Cline [4] and [5]

Let F, G € L(a). In order to show that F x G € L(«), in equations (2.11)
and (2.12) of the proof of their Theorem 3(b) Embrechts and Goldie [6] show that

FxG(x—1) F(y—1) Gy —1)
—— < max sup , Su
F xG(x)

< = P — } forx,v,reR. (5
yx—v+t F(¥) y=v G(y)

It should be noted that although (seemingly) Embrechts and Goldie only claim (5)
for ¢ > 0, an inspection of their proof shows that it holds in the above generality. The
point of considering ¢ € R, rather than ¢ > 0 only, is that (5) can then be used in the
proof of both the lower bound (4) and the corresponding upper bound to get H € L(«),
rather than in the proof of the lower bound only. This is crucial for our arguments, as
the estimates Embrechts and Goldie develop for upper bounds in [6, p. 254] on seem
to be too complicated for our application, as well as possibly insufficient.

In addition, Embrechts and Goldie [6] only consider distributions F and G
supported on (0, co) when establishing (5). However, we will use (5) for F and G
supported on [0, 00), as the proof of Embrechts and Goldie carries over to this setting
without any changes at all.

By iteration of (5) we obtain the following crucial lemma.

LEMMA 2.1. Let F € L(a) be supported on [0, 00) for some o > 0. Given constants
e>0andt € R, pick a constant xo € R such that (using (1))

F(x —
% <1 +e)e* forx > xp. 6)

Then

F*(x —t)

) < +e)e* forx>n(xg—t)+t. @)
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PROOF. As (6) gives (7) for n = 1, it is enough to prove that, for any k > 1, (7) holds
for n =k + 1 if it holds for n = k. So assume that (7) holds for n =k, and take
G=F*andv=kx/(k+1)+1t/(k+1)in (5). We have

{ F(y—n F*"(y—t)}
f max Sllp _—, sup Ee——
y=x/k+D+ke /1) F (V) y=ka/k+D+1/(k+1)  F**(y)

<A +e)e forx>(k+1)(xg—1)+t,

F*(k'H)(x —1)
FrU+D ()

by (6) and (7) (with n = k), as requested, as

X n kt
[ = X0
k+1 " k+ 1] g1y (xo—n e
and
k t
* L —k (xo—1) +1. O
k1 b+ Ty o)+

Now, as noted by Cline himself in [5], the problem with the proof of (4) in Cline
[4, Lemma 2.3(ii)] is that (5) and (6) are used to make the incorrect deduction
F(x —t
—ﬁ ) < (1 +¢e)e* forx > xg (8)
Fnx (X)

(see (7)), and that (8) (with its uniform bound for all n) is crucial for Cline’s proof.
Moving on to the proof that F € L(«) implies H =) oo Ay F*" € L(«) fora >0
in Cline [5] (recall Proposition 1.1), it makes crucial use of the inequality

F*1(x) < F(x) forx > 0 (large enough) and n > 1. 9)
But the correct inequality here goes in the other direction, as (trivially)
F*(x)> F*(x) forxeRandn>m > 1. (10)

In fact, it is well known that the limit in (3) is infinite for many members of
L () when « > 0, such as, for example, for an exponential distribution with expected
value 1/, which combines with (10) to give

fim @y R

— > — =00 forn>2.
X— 00 F(x) X— 00 F(x)

That is, not only is (9) wrong, but rather the left-hand side can be (asymptotically)
infinitely bigger that the right-hand side, which makes the proof of Cline [5]
break down.

The result (4) of Cline [4] could still be correct for general probabilities {A,,}5 ),
as Proposition 1.1 only shows that the corresponding upper bound (introduced in
Cline [5]) is not correct in general. However, a proof of (4) is still missing.
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3. A new proof of a version of the result of Cline [5]

By Proposition 1.1, the result of Cline [5] that ZZ‘;O A F* e L(a) for F € L(a) is
incorrect in the absence of certain exponential moments for the probabilities {1,}72 .
However, in the presence of such exponential moments we now give a new proof of
this result.

THEOREM 3.1. Let F € L(a) be supported on [0, 00) for some a > 0. Let the
probabilities {7, )2 satisfy ko < 1 and Y_,~ 4 kpe"? < 00 for each y > 0. We have
H = Z;’lO:O )\,nF*n (S £(O{).

PROOF. Picking ¢, t > 0, we have by ((1) and) Lemma 2.1,

F*(x +1)

— <(1+4eg)e ™ forx >n(xyg+t), for some xg > 0. (11)
F*n(x)

Let ¢ =1/(xo + ) and pick a constant y € («/c, 00). As F € L(a) implies that
limy s o0 €PXF (x) =00 for § > « (see, for example, Cline [4, Lemma 2.2(i)]), we
have =7 < ge™* F(x) for x > x1, for some x| > xq. It follows that

0 R
> A F(y)
n=N
o0
<>k (trivially)
n=N

ox
<e VN Z Ae?’" (asn>N)
n=N

[o¢]
<e T (as N > cx and Z Ane?" <1 for N large enough)
n=N

<ee “F(x) (by initial construction)

o0 o
<& w Z A F*(x) (by (10) and as Z Ap=1— /\0)
- Ao n=1 n=1
< T e H(x) foryeR, N>cxandx>x (trivially), (12)
— Ao

for some x, > x1. On the other hand, (11) shows that

N-—1 N—1
D x4+ <Y A1+ e F(x) < (1 +e)e “Hx), (13)
n=0 n=0

for N < cx (so that x > N(xg + t)) and x > x¢. Putting (12) and (13) together, we get

o0
ﬁ(x+t)=ZAnW(x+t)s<l+s+

¢ )e‘”ﬁ(x) for x > x2. (14)
n=0 A

1 -2
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Turning to a lower bound, note that, picking constants ¢, t > 0, Lemma 2.1 readily
gives

F*(x +1
Pra+n > (1 —g)e™  forx > n(x3 +1), for some x3 > 0.
F*”(X)

Writing ¢ =1/(x3 +t) and N = [cx] + 1 and picking a constant y € («¢/c, 00), we
therefore have

H(x +1)
N-—1 -
> > F7(x +1) (trivially)
n=0

N-—1
> Z (1 —e)e ™ F*(x) (asn<N—1=|cx] <cx=x/(x3+1))
n=0

An(1 — )e ¥ F*(x) — e “"H(x) (by(12))

Nk

>

5 1—2p

3
Il

= (1 —&— 1 SA )e_"”ﬁ(x) for x > xo VvV x3 (trivially). (15)
— A0

Putting (14) and (15) together, we conclude that H satisfies (1) for ¢ > 0, so that
H € L(a), as is the claim of the theorem. O

In the particular case when F € S(a) and {A,}7°, is a Poisson distribution, the
conclusion of Theorem 3.1 follows from Embrechts and Goldie [7, Theorem 4.2(ii)].

4. A Tauberian result for infinitely divisible distributions

The following easy corollary to Theorem 3.1 is used in a crucial manner by Albin
and Sundén [1].

COROLLARY 4.1. Let G be an infinitely divisible distribution with Lévy measure v
such that F(x) = v([1 V x, 00))/v([1, 00)) € L() for some o > 0. Then G € L().

PROOF. Writing (v, m, o'2) for the Lévy triplet of G, we have G = F| x F,, where F)
and F> are infinitely divisible distributions with Lévy triplets (v([1, 0o0)) dF, 0, 0) and
(w(-N (=00, 1)), m, 02), respectively. As Fj is a compound Poisson distribution with
jump distribution F' € L(«) supported on [1, co), Theorem 3.1 shows that F| € L(w).
Hence it follows from Pakes [9, Lemma 3.1] that G = F| x F> € L(). O

In the particular case when F € S the conclusion of Corollary 4.1 follows from
Embrechts et al. [8, Theorem 1].

In the particular case when F € S(«), the conclusion of Corollary 4.1 follows
from Braverman and Samorodnitsky [3, equation (3.37)]; see also Braverman
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[2, Proposition 1.3], and Pakes [9, Theorem 3.1]. However, as remarked by Braverman
and Samorodnitsky [3, p. 229], the result for F € S(«) ‘...has been undoubtedly
known to (among other people) Embrechts and Goldie, who included in their paper
(1982) only the compound Poisson case. ..’ (see the last paragraph of Section 3).

Added in Proof: The conclusion of Corollary 4.1 in the special case of the exponential
class S(«) may be found in [12].
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