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Abstract

We make a correction to an important result by Cline [D. B. H. Cline, ‘Convolutions of distributions with
exponential tails’, J. Austral. Math. Soc. (Series A) 43 (1987), 347–365; D. B. H. Cline, ‘Convolutions of
distributions with exponential tails: corrigendum’, J. Austral. Math. Soc. (Series A) 48 (1990), 152–153]
on the closure of the exponential class L(α) under convolution power mixtures (random summation).
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1. Introduction

We say that a cumulative probability distribution function H on the real line belongs
to the exponential class L(α), α > 0, if

lim
x→∞

H(x + t)

H(x)
= lim

x→∞

1 − H(x + t)

1 − H(x)
= e−αt for t ∈ R. (1)

(Some authors require members of L(α) to be supported on [0, ∞) to avoid some
technicalities. However, because of the applications we have in mind (see, for
example, Section 4 below) we do not want to make this restriction.) Note the
elementary fact that (1) holds for t ∈ R if and only if it holds for t > 0. Furthermore,
H ∈ L(α) if and only if H ◦ log is regularly varying at infinity with index −α.

When (1) holds with α = 0 we get the class of long-tailed distributions L(0) = L
introduced by Pitman [10]. Note the elementary fact that H ∈ L if and only if
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lim sup
x→∞

H(x − t)

H(x)
≤ 1 or lim inf

x→∞

H(x + t)

H(x)
≥ 1 for some t > 0. (2)

Furthermore, H ∈ L if and only if H ◦ log is slowly varying at infinity.
The class L(α) was introduced by Embrechts and Goldie [6] to study closedness

properties of the narrower exponential class S(α) consisting of those H ∈ L(α) for
which

lim
x→∞

H ?2(x)

H(x)
= lim

x→∞

H ? H(x)

H(x)
= lim

x→∞

1 −
∫
R H(x − y) d H(y)

1 − H(x)
(3)

exists (and is finite). Members of the class S(0) = S are called subexponential
distributions. The classes S(α), α ≥ 0, have a much longer history than L(α); see,
for example, Cline [4] for more information.

In an important paper Cline [4] established many important results for the classes
L(α) and S(α). It has recently been pointed out by Shimura and Watanabe
[13, Remark 4.2], that Cline [4, Lemma 2.1(iv)] is incorrect, which has some
consequences for later results that build on that lemma.

It was noted by Cline himself in [5] that there is also a problem with Cline
[4, Lemma 2.3(ii)], which claims that, given a cumulative probability distribution
function F supported on [0, ∞) (which is to say that F(x) = 0 for x < 0), together
with discrete probabilities {λn}

∞

n=0 such that λ0 < 1 and
∑

∞

n=0 λn = 1, the convolution
power mixture (random sum distribution) H(x) =

∑
∞

n=0 λn F?n(x) satisfies the
following implication

if F ∈ L(α) then lim inf
x→∞

H(x + t)

H(x)
≥ e−αt for t > 0, for α ≥ 0. (4)

In particular, (2) together with (4) show that F ∈ L implies H ∈ L.
In Cline [5] the result (4) is not only corrected, but also strengthened to the result

that F ∈ L(α) implies H ∈ L(α) for α ≥ 0. However, we have the following simple
counterexample to the claimed result of Cline [5] for α > 0.

PROPOSITION 1.1. Given constants 0 < γ < α < ∞ and an F ∈ L(α) that is
supported on [0, ∞), there exist probabilities {λn}

∞

n=0 such that H =
∑

∞

n=0 λn F?n

/∈ L(α).

PROOF. Pick probabilities {λn}
∞

n=0 such that

∞∑
n=0

λn exp
{

nγ

∫
[0,∞)

x d F(x)

}
= ∞.

(It is an elementary exercise to see that such probabilities exist.) Then∫
[0,∞)

eγ x d H(x) =

∞∑
n=0

λn

(∫
[0,∞)

eγ x d F(x)

)n

≥

∞∑
n=0

λn exp
{

nγ

∫
[0,∞)

x d F(x)

}
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is infinite by Jensen’s inequality. Hence, we have H /∈ L(α) as
∫

∞

0 eγ x d H(x) < ∞

for H ∈ L(α) and γ < α (see, for example, Cline [4, Lemma 2.2(i)]). 2

In Section 2 of this paper we explain what is wrong in the arguments of Cline [5].
In Section 3 we proceed to give a new proof of Cline’s claimed results under
the strengthened hypothesis that the probabilities {λn}

∞

n=0 possess all exponential
moments. This setting includes the important special case when {λn}

∞

n=0 is a Poisson
distribution (see, for example, Sato, [11, Section 25]), so that H is a compound Poisson
distribution with jump distribution in L(α). In Section 4 we give an application in the
form of a Tauberian criterion for infinitely divisible distributions to belong to L(α).

As with the proof of Cline [4, Lemma 2.3(ii)], and half the proof of Cline [5],
our arguments take off from the fundamental estimate (5) below from the proof of
Embrechts and Goldie [6] that L(α) is closed under convolution.

2. The proofs by Cline [4] and [5]

Let F, G ∈ L(α). In order to show that F ? G ∈ L(α), in equations (2.11)
and (2.12) of the proof of their Theorem 3(b) Embrechts and Goldie [6] show that

F ? G(x − t)

F ? G(x)
≤ max

{
sup

y≥x−v+t

F(y − t)

F(y)
, sup

y≥v

G(y − t)

G(y)

}
for x, v, t ∈ R. (5)

It should be noted that although (seemingly) Embrechts and Goldie only claim (5)
for t > 0, an inspection of their proof shows that it holds in the above generality. The
point of considering t ∈ R, rather than t > 0 only, is that (5) can then be used in the
proof of both the lower bound (4) and the corresponding upper bound to get H ∈ L(α),
rather than in the proof of the lower bound only. This is crucial for our arguments, as
the estimates Embrechts and Goldie develop for upper bounds in [6, p. 254] on seem
to be too complicated for our application, as well as possibly insufficient.

In addition, Embrechts and Goldie [6] only consider distributions F and G
supported on (0, ∞) when establishing (5). However, we will use (5) for F and G
supported on [0, ∞), as the proof of Embrechts and Goldie carries over to this setting
without any changes at all.

By iteration of (5) we obtain the following crucial lemma.

LEMMA 2.1. Let F ∈ L(α) be supported on [0, ∞) for some α ≥ 0. Given constants
ε > 0 and t ∈ R, pick a constant x0 ∈ R such that (using (1))

F(x − t)

F(x)
≤ (1 + ε)eαt for x ≥ x0. (6)

Then

Fn?(x − t)

Fn?(x)
≤ (1 + ε)eαt for x ≥ n(x0 − t) + t. (7)
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PROOF. As (6) gives (7) for n = 1, it is enough to prove that, for any k ≥ 1, (7) holds
for n = k + 1 if it holds for n = k. So assume that (7) holds for n = k, and take
G = F?k and v = kx/(k + 1) + t/(k + 1) in (5). We have

F?(k+1)(x − t)

F?(k+1)(x)
≤ max

{
sup

y≥x/(k+1)+kt/(k+1)

F(y − t)

F(y)
, sup

y≥kx/(k+1)+t/(k+1)

F?k(y − t)

F?k(y)

}
≤ (1 + ε)eαt for x ≥ (k + 1) (x0 − t) + t,

by (6) and (7) (with n = k), as requested, as

x

k + 1
+

kt

k + 1

∣∣∣∣
x=(k+1) (x0−t)+t

= x0

and

kx

k + 1
+

t

k + 1

∣∣∣∣
x=(k+1) (x0−t)+t

= k (x0 − t) + t. 2

Now, as noted by Cline himself in [5], the problem with the proof of (4) in Cline
[4, Lemma 2.3(ii)] is that (5) and (6) are used to make the incorrect deduction

Fn?(x − t)

Fn?(x)
≤ (1 + ε)eαt for x ≥ x0 (8)

(see (7)), and that (8) (with its uniform bound for all n) is crucial for Cline’s proof.
Moving on to the proof that F ∈ L(α) implies H =

∑
∞

n=0 λn F?n
∈ L(α) for α ≥ 0

in Cline [5] (recall Proposition 1.1), it makes crucial use of the inequality

F?n(x) ≤ F(x) for x > 0 (large enough) and n ≥ 1. (9)

But the correct inequality here goes in the other direction, as (trivially)

F?n(x) ≥ F?m(x) for x ∈ R and n ≥ m ≥ 1. (10)

In fact, it is well known that the limit in (3) is infinite for many members of
L(α) when α > 0, such as, for example, for an exponential distribution with expected
value 1/α, which combines with (10) to give

lim
x→∞

F?n(x)

F(x)
≥ lim

x→∞

F?2(x)

F(x)
= ∞ for n ≥ 2.

That is, not only is (9) wrong, but rather the left-hand side can be (asymptotically)
infinitely bigger that the right-hand side, which makes the proof of Cline [5]
break down.

The result (4) of Cline [4] could still be correct for general probabilities {λn}
∞

n=0,
as Proposition 1.1 only shows that the corresponding upper bound (introduced in
Cline [5]) is not correct in general. However, a proof of (4) is still missing.

https://doi.org/10.1017/S1446788708000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000104


[5] The closure of convolution power mixtures (random sums) of exponential distributions 5

3. A new proof of a version of the result of Cline [5]

By Proposition 1.1, the result of Cline [5] that
∑

∞

n=0 λn F?n
∈ L(α) for F ∈ L(α) is

incorrect in the absence of certain exponential moments for the probabilities {λn}
∞

n=0.
However, in the presence of such exponential moments we now give a new proof of
this result.

THEOREM 3.1. Let F ∈ L(α) be supported on [0, ∞) for some α ≥ 0. Let the
probabilities {λn}

∞

n=0 satisfy λ0 < 1 and
∑

∞

n=0 λnenγ < ∞ for each γ > 0. We have
H =

∑
∞

n=0 λn F?n
∈ L(α).

PROOF. Picking ε, t > 0, we have by ((1) and) Lemma 2.1,

F?n(x + t)

F?n(x)
≤ (1 + ε)e−αt for x ≥ n(x0 + t), for some x0 ≥ 0. (11)

Let c = 1/(x0 + t) and pick a constant γ ∈ (α/c, ∞). As F ∈ L(α) implies that
limx→∞ eβx F(x) = ∞ for β > α (see, for example, Cline [4, Lemma 2.2(i)]), we
have e−cγ x

≤ εe−αt F(x) for x ≥ x1, for some x1 ≥ x0. It follows that

∞∑
n=N

λn F?n(y)

≤

∞∑
n=N

λn (trivially)

≤ e−γ N
∞∑

n=N

λneγ n (as n ≥ N )

≤ e−cγ x
(

as N ≥ cx and
∞∑

n=N

λneγ n
≤ 1 for N large enough

)
≤ εe−αt F(x) (by initial construction)

≤
ε

1 − λ0
e−αt

∞∑
n=1

λn F?n(x)

(
by (10) and as

∞∑
n=1

λn = 1 − λ0

)
≤

ε

1 − λ0
e−αt H(x) for y ∈ R, N ≥ cx and x ≥ x2 (trivially), (12)

for some x2 ≥ x1. On the other hand, (11) shows that

N−1∑
n=0

λn F?n(x + t) ≤

N−1∑
n=0

λn(1 + ε)e−αt F?n(x) ≤ (1 + ε)e−αt H(x), (13)

for N ≤ cx (so that x ≥ N (x0 + t)) and x ≥ x0. Putting (12) and (13) together, we get

H(x + t) =

∞∑
n=0

λn F?n(x + t) ≤

(
1 + ε +

ε

1 − λ0

)
e−αt H(x) for x ≥ x2. (14)
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Turning to a lower bound, note that, picking constants ε, t > 0, Lemma 2.1 readily
gives

F?n(x + t)

F?n(x)
≥ (1 − ε)e−αt for x ≥ n(x3 + t), for some x3 ≥ 0.

Writing c = 1/(x3 + t) and N = bcxc + 1 and picking a constant γ ∈ (α/c, ∞), we
therefore have

H(x + t)

≥

N−1∑
n=0

λn F?n(x + t) (trivially)

≥

N−1∑
n=0

λn(1 − ε)e−αt F?n(x) (as n ≤ N − 1 = bcxc ≤ cx = x/(x3 + t))

≥

∞∑
n=0

λn(1 − ε)e−αt F?n(x) −
ε

1 − λ0
e−αt H(x) (by (12))

=

(
1 − ε −

ε

1 − λ0

)
e−αt H(x) for x ≥ x2 ∨ x3 (trivially). (15)

Putting (14) and (15) together, we conclude that H satisfies (1) for t > 0, so that
H ∈ L(α), as is the claim of the theorem. 2

In the particular case when F ∈ S(α) and {λn}
∞

n=0 is a Poisson distribution, the
conclusion of Theorem 3.1 follows from Embrechts and Goldie [7, Theorem 4.2(ii)].

4. A Tauberian result for infinitely divisible distributions

The following easy corollary to Theorem 3.1 is used in a crucial manner by Albin
and Sundén [1].

COROLLARY 4.1. Let G be an infinitely divisible distribution with Lévy measure ν

such that F(x) = ν([1 ∨ x, ∞))/ν([1, ∞)) ∈ L(α) for some α ≥ 0. Then G ∈ L(α).

PROOF. Writing (ν, m, σ 2) for the Lévy triplet of G, we have G = F1 ? F2, where F1
and F2 are infinitely divisible distributions with Lévy triplets (ν([1, ∞)) d F, 0, 0) and
(ν(· ∩ (−∞, 1)), m, σ 2), respectively. As F1 is a compound Poisson distribution with
jump distribution F ∈ L(α) supported on [1, ∞), Theorem 3.1 shows that F1 ∈ L(α).
Hence it follows from Pakes [9, Lemma 3.1] that G = F1 ? F2 ∈ L(α). 2

In the particular case when F ∈ S the conclusion of Corollary 4.1 follows from
Embrechts et al. [8, Theorem 1].

In the particular case when F ∈ S(α), the conclusion of Corollary 4.1 follows
from Braverman and Samorodnitsky [3, equation (3.37)]; see also Braverman
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[2, Proposition 1.3], and Pakes [9, Theorem 3.1]. However, as remarked by Braverman
and Samorodnitsky [3, p. 229], the result for F ∈ S(α) ‘. . . has been undoubtedly
known to (among other people) Embrechts and Goldie, who included in their paper
(1982) only the compound Poisson case. . . ’ (see the last paragraph of Section 3).

Added in Proof: The conclusion of Corollary 4.1 in the special case of the exponential
class S(α) may be found in [12].
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