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Acoustic interaction of a finite body in a rarefied
gas: does sound reciprocity hold at
non-continuum conditions?
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We study the effect of gas rarefaction on the interaction of small thermodynamic
non-uniformities with a finite body. Considering a two-dimensional set-up, the initial
system state is modelled as slight perturbations over its uniform density and temperature
fields, prescribed in the vicinity of a thin plate. The problem is analysed in the collisionless
limit and complemented by direct simulation Monte Carlo computations to cover the
entire range of gas rarefaction rates. The high-Knudsen ‘sink-like’ and ‘source-like’
propagation patterns observed in the density- and temperature-driven set-ups, respectively,
are discussed, together with the impact of specular (smooth) and diffuse (isothermal)
wall reflections. At highly rarefied conditions, the solid body obstructs part of the gas
domain, preventing the propagation of acoustic disturbances therein. With decreasing gas
rarefaction, the acoustic field penetrates the obscured area via the effect of molecular
collisions. Inspecting the near-field description, the propagation of flow disturbances
along the plate surface is examined, and the acoustic force on the body is computed.
In the thermally excited case, both normal- and shear-force components change sign at
late times, attracting the plate towards the initial perturbation location. With reducing
gas rarefaction, the shear force diminishes while the normal force sharply increases
due to the decrease in signal decay. Finally, we apply the analysis to study the impact
of gas rarefaction on acoustic reciprocity. Notably, acoustic reciprocity does not hold
at non-continuum conditions over non-specular surfaces, where boundary reflections
propagate in the presence of few molecular collisions, insufficient to retain reciprocal
symmetry.
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1. Introduction

The reflection of sound at an impermeable body is a fundamental problem in continuum
acoustics that has been studied extensively over the years (Howe 1998; Pierce 2019). In
particular, the scattering of acoustic perturbations at a solid edge, generating high sound
levels due to the singular type of fluid–surface interaction involved, has received much
attention. Such scenarios occur frequently where flow non-uniformities pass in the vicinity
of a finite structure, as prevalent in high-lift devices (e.g. in airfoil–vortex interactions) and
turbomachinery applications. The benchmark problem considers the sound generated by a
point source placed in the vicinity of a body sharp end, where specific treatments differ in
details such as surface geometry and acoustic source properties.

While edge scatter noise has been treated in detail in continuum acoustics, the
counterpart problem at non-continuum conditions has not been addressed hitherto.
Considering gaseous media, non-continuum conditions take place in set-ups where the
length or time scales become of the order of the molecular mean free path or time,
respectively. Motivated by low-pressure and small-scale technologies, investigations on
sound propagation in rarefied gases commenced in the 1950s, focusing primarily on
one-dimensional propagation generated by solid surface mechanical (Maidanik, Fox &
Heckl 1965; Sirovich & Thurber 1965; Loyalka & Cheng 1979; Stefanov, Gospodinov
& Cercignani 1998; Sharipov & Kalempa 2008; Kalempa & Sharipov 2009; Struchtrup
2012; Tsuji & Aoki 2013) or thermal (Manela & Hadjiconstantinou 2007, 2010; Kalempa
& Sharipov 2012; Manela, Radtke & Pogorelyuk 2014; Ben-Ami & Manela 2020a)
excitations. These works were complemented more recently by two-dimensional studies,
where non-uniform actuations were considered in semi-infinite (Manela & Ben-Ami
2021) or channel-confined (Hadjiconstantinou & Garcia 2001; Hadjiconstantinou 2002;
Hadjiconstantinou & Simek 2003; Handford et al. 2008; Wu 2016; Liu et al. 2018; Manela
& Ben-Ami 2022) geometries.

In a separate set of studies, the effect of gas rarefaction on the propagation of
flow-induced disturbances was investigated. Here, set-ups with gas-fluidic thermal sources,
having specific relevance in the areas of microscale heat transfer (Chen 2002; Tzou
2015) and ultrafast heating processes (Tzou & Pfautsch 2002), were analysed. Logan
(1963), and then Berkovsky & Bashtovoi (1977), focused on the propagation of thermal
disturbances in an infinite gas medium, applying Grad’s moment equations and other
model approximations of the Boltzmann equation in their calculations. Later investigations
included the impact of boundaries reflections, yet were limited to the continuum limit
of small Knudsen numbers (Zappoli & Bailly 1990; Herczynski & Kassoy 1991). The
counterpart nonlinear near-continuum gas response to local compression was studied by
Danforth & Long (2004), who carried out numerical simulations in a non-confined set-up.

The impact of gas rarefaction on the interaction of flow disturbances with a solid surface
was studied recently in one- (Ben-Ami & Manela 2020b) and two-dimensional (Manela
& Ben-Ami 2023) configurations. Considering a half-space gas medium confined by an
infinite planar wall, the propagation of small-amplitude thermodynamic perturbations at
non-continuum conditions was investigated. Specifically, the system response to locally
imposed density and temperature non-uniformities was analysed, and the effect of kinetic
wall conditions was examined. Closed-form solutions were derived at free-molecular and
continuum-limit conditions, and the acoustic force on the planar surface, acting normal to
the boundary, was computed.

In view of the above, the objective of the present work is to extend existing works
and study the effect of gas rarefaction on the two-dimensional scattering of sound at a
solid edge. To the best of our knowledge, the interaction of acoustic perturbations with
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Acoustic interaction of a finite body in a rarefied gas

a sharp-edged body in a rarefied gas has not been considered hitherto. Primarily, we are
interested in a detailed description of the near-field gas interaction with a sharp solid end at
arbitrary Knudsen numbers. Additionally, the problem is applied as a means for detecting
the applicability of acoustic reciprocity at non-continuum conditions.

Initially introduced by Helmholtz and Rayleigh (1945), acoustic reciprocity serves as
a fundamental property in continuum acoustics, allowing for the interchange of point
source and listener positions. Having considerable practical significance, the reciprocity
principle has been consequently used to facilitate numerous numerical calculations and
experimental measurements (Fokkema & van den Berg 1993; Howe 1998; Pierce 2019).
While being effective in the majority of applications, recent studies have reported on
non-reciprocal acoustic phenomena, illustrating that the coupling between geometrical
asymmetry and fluid viscosity may result in the breakdown of reciprocality (Fleury
et al. 2015; Heo et al. 2020; Nassar et al. 2020). Since viscous and compressible effects
inherently prevail in rarefied gas flows, it is of particular interest to examine whether
local source and listener positions may be symmetrically interchanged at non-continuum
conditions.

Towards this end, we consider a canonical set-up of a thin finite plate immersed in
an infinite two-dimensional gas expanse. Acoustic excitation is imposed as initial density
and temperature perturbations, prescribed in the vicinity of the plate. In practice, such
inhomogeneities may occur due to gas local compression or heating, respectively, and
serve as useful means for introducing flow perturbation. The system time response is
followed, and the evolution of the acoustic disturbance is examined. Closed-form results
are derived in the free-molecular limit, highlighting the system behaviour far from
equilibrium. Our findings are complemented by direct simulation Monte Carlo (DSMC)
calculations, to test the breakdown of free-molecular conditions and capture the system
response at intermediate rarefaction rates. Advantageously, DSMC computations may also
be carried out at exceedingly low Knudsen numbers, enabling a comparison between
the ballistic- and continuum-limit behaviours. Due to problem complexity, the near-field
characteristics in the latter limit were not tackled analytically, where DSMC calculations
offer a viable alternative.

In the next section the finite-plate problem is stated. The analysis of the free-molecular
limit is detailed in § 3 and the DSMC scheme, applied to solve the problem at arbitrary
rarefaction rates, is described in § 4. Our results for the cases of initial impulse and
Gaussian excitations are presented in §§ 5 and 6, respectively, followed by concluding
comments in § 7. Technical details are relegated to the appendices.

2. Statement of the problem

A schematic of the problem is shown in figure 1. Consider a two-dimensional expanse of an
ideal monatomic gas surrounding a thin flat plate of length L∗. The plate is placed along the
x∗ axis (y∗ = 0) with its edge points located at (x∗, y∗) = (0, ±L∗/2) (hereafter, asterisks
denote dimensional quantities). At time t∗ = 0, the gas is set at rest, with prescribed initial
non-uniform distributions of its hydrodynamic density and temperature,

ρ∗
tot(0, x∗, y∗) = ρ∗

0 + ερ∗
in(x

∗, y∗) and T∗
tot(0, x∗, y∗) = T∗

0 + εT∗
in(x

∗, y∗), (2.1a,b)

respectively. In (2.1a,b), ε � 1, so that the system linearised response may be considered.
It is assumed that the initial disturbances are confined to a narrow zone in the vicinity of
the plate, located at a characteristic distance L∗

y from the boundary and a shift L∗
x from

its midpoint (see the dashed circle in figure 1). In practice, such scenarios may occur
due to any small thermodynamic non-uniformities imposed by external disturbances of
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Diffuse/specular plate

ρ∗
0, T∗

0
ερ∗
in, εT∗

in π 0

L∗
x

L∗
yy∗

L∗
x∗

Figure 1. Schematic of the problem. A thin flat plate of length L∗ is placed in an unbounded two-dimensional
monatomic gas expanse. The gas uniform density ρ∗

0 and temperature T∗
0 are locally perturbed at time t∗ = 0

at a characteristic distance L∗
y from the plate and a shift L∗

x from its midpoint.

local compression or heating. We apply the above model problem to investigate the effect
of gas rarefaction on two-dimensional sound scattering at a sharp edge. Additionally, by
interchanging between the locations of the initial disturbance and the observer, we test
the impact of non-continuum conditions on the applicability of acoustic reciprocity. To
this end, the system response to pointwise delta-function (impulse) perturbation will be
analysed.

The interaction between the acoustic disturbance and the plate is strongly affected by
the boundary conditions applied at the solid surface. Here, we compare between perfectly
reflecting (specular) and fully diffuse (isothermal) wall surfaces, representing limit
realisations of completely smooth and accommodating boundaries, respectively. Diffuse
scattering occurs over ‘rough’ surfaces, where the colliding particles attain thermal
equilibrium with the reflecting wall and evaporate accordingly. Specular interactions take
place where the incident molecules collide with a solid surface and rebound elastically as
if hitting a perfectly smooth wall. While none of these idealised scenarios exists in reality,
it is commonly accepted that wall reflections from realistic surfaces may be described,
in a variety of applications, as a combination of diffuse and specular interactions, as
formulated in the prevalent Maxwell-type surface condition (Sone 2007). Since the
combined diffuse-specular case merely superposes the above two limits in the present
linear formulation, it is not discussed in detail hereafter.

Considering the problem formulation in the isothermal-surface configuration, the wall
temperature is assumed equal to the gas reference temperature T∗

0 . In both isothermal- and
specular-wall set-ups, a dimensionless description of the problem is obtained by scaling
the position by the plate length L∗, the velocity by the most probable speed of a gas
molecule U∗

mp = √
2R∗T∗

0 (with R∗ denoting the specific gas constant) and the time by
the consequent time scale L∗/U∗

mp. The density and temperature are normalised by ρ∗
0

and T∗
0 , respectively, and the pressure by ρ∗

0R∗T∗
0 . The non-dimensional problem is then

governed by the scaled initial disturbance fields ρin(x, y) and Tin(x, y), together with the
reference Knudsen number

Kn = l∗/L∗, (2.2)

marking the ratio between the mean free path of a gas molecule l∗ and the system
characteristic length scale. The non-dimensional counterparts of the characteristic
source-plate distance L∗

y and offset L∗
x are incorporated in the specific form taken for
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Acoustic interaction of a finite body in a rarefied gas

ρin(x, y) and Tin(x, y). Assuming a monatomic hard-sphere gas, the molecular mean free
path is given by l∗ = m∗/(

√
2πρ∗

0 d∗2), where m∗ and d∗ denote the molecular atomic
mass and diameter, respectively (Sone 2007).

In § 3 the gas response in the free-molecular limit is analysed. The application of the
DSMC method to the problem solution is described in § 4 . Closed-form collisionless
results are presented in § 5 for the case of impulse excitation. A comparison between
the collisionless and DSMC predictions at non-infinite Knudsen numbers is carried out
in § 6 for the case of Gaussian excitation, to validate the free-molecular description
and examine its breakdown with decreasing Knudsen numbers. Advantageously, DSMC
calculations could be carried out through relatively low rarefaction rates, capturing the
system behaviour in the continuum limit, and providing a quantitative examination of the
differences from the counterpart gas response in the free-molecular regime. The normal
and shear acoustic forces imposed on the plate are presented and discussed.

3. Free-molecular limit

In the framework of gas kinetic theory and the present two-dimensional unsteady
flow configuration, the gas state is governed by the velocity distribution function f =
f (t, x, y, ξ) of finding a gas molecule with velocity about ξ = (ξx, ξy, ξz) at a position
near (x, y) at time t. At the linearised conditions assumed we set

f (t, x, y, ξ) = F[1 + εφ(t, x, y, ξ)], (3.1)

where F = π−3/2 exp[−ξ2] denotes the non-dimensional Maxwellian equilibrium
distribution and φ(t, x, y, ξ) marks the velocity distribution perturbation function (Kogan
1969). Assuming the Knudsen number to be large, we consider the collisionless
two-dimensional unsteady Boltzmann equation for φ(t, x, y, ξ),

∂φ

∂t
+ ξx

∂φ

∂x
+ ξy

∂φ

∂y
= 0. (3.2)

The equation is supplemented by the initial condition

φ(0, x, y, ξ) = φin(x, y, ξ), (3.3)

which, in accordance with (2.1a,b), takes the linearised form of deviation from equilibrium

φin(x, y, ξ) = ρin(x, y) + Tin(x, y)(ξ2 − 3/2). (3.4)

The velocity distribution perturbation function is additionally subject to a far-field decay
condition and a boundary condition imposed at the solid plate surface. For the case of a
fully diffuse isothermal boundary, the latter takes the linearised half-range form

φ(iso)(t, −1/2 ≤ x ≤ 1/2, 0±, ξ · ŷ ≷ 0) = ρ±
w (t, x), (3.5)

along the upper (y = 0+) and lower (y = 0−) solid surfaces. Here, ŷ is a unit vector
directed in the positive y direction (normal to the plate) and ρ±

w (t, x) are treated unknown.
Considering a specular-wall set-up, the probability perturbation function satisfies the
symmetry condition

φ(spec)(t, −1/2 ≤ x ≤ 1/2, 0±, ξx, ξy, ξz) = φ(spec)(t, −1/2 ≤ x ≤ 1/2, 0±, ξx, −ξy, ξz).
(3.6)

The isothermal- and specular-wall set-ups are subsequently analysed in §§ 3.1 and 3.2,
respectively. In § 3.3, expressions for the acoustic force imposed on the plate are detailed.
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To simplify the presentation, and without loss of generality, we consider cases where
the initial disturbance is imposed at the upper half-plane only, y > 0. Cases where the
disturbance is initialised at the lower half-plane (y < 0), or at both lower and upper parts
of the plane, may be obtained through simple manipulations of the following analysis.

3.1. Isothermal plate
Considering a fully diffuse isothermal wall and an initial disturbance that is confined to the
upper half-plane, the solution for (3.2) subject to the initial condition (3.3) and boundary
condition (3.5) is conveniently divided into its upper- and lower-half-plane parts. For y > 0
and particles that have not hit the wall since the initial t = 0 time,

φ(iso)(t, x, y > 0, ξ) = ρin(xin, yin) + Tin(xin, yin)(ξ
2 − 3/2), (3.7)

where

xin ≡ x − ξxt and yin ≡ y − ξyt (3.8a,b)

denote the initial (at t = 0) coordinates of the gas molecule. The above distribution applies
to gas particles approaching the plate (ξy < 0) or moving away from the surface (ξy > 0)
with a free-flight path that has not been affected by the wall since t = 0. For ξy > 0, this
further implies that the retarded x coordinate of the particles satisfies

xret ≡ x − (ξx/ξy)y ≷ ±1/2, (3.9)

i.e. that the particle trajectory has passed sideways to the plate, or

−1/2 ≤ xret ≤ 1/2 and tret ≡ t − y/ξy < 0, (3.10a,b)

implying that at the initial time the particle was located within −1/2 ≤ x ≤ 1/2 and in the
upper half-plane. The velocity distribution perturbation function for particles at y > 0 that
have collided with the surface since t = 0 is given by

φ(iso)(t, x, y > 0, ξ) = ρ+
w (tret, xret). (3.11)

Complementary to (3.7), this distribution applies to gas molecules maintaining ξy >

0, −1/2 ≤ xret ≤ 1/2 and tret ≥ 0.
Traversing to the lower y < 0 half-plane and considering particles that have not hit the

wall since t = 0, we obtain

φ(iso)(t, x, y < 0, ξ) = ρin(xin, yin) + Tin(xin, yin)(ξ
2 − 3/2), (3.12)

applicable to gas molecules with ξy > 0 or with ξy < 0 and xret ≷ ±1/2. Additionally,
since the initial disturbance is confined to the upper half-plane and molecular collisions
are ignored, the lower y = 0− plate surface does not interact with particles carrying the
perturbation signal. Consequently, ρ−

w (t, x) = 0 and

φ(iso)(t, x, y < 0, ξ) = 0, (3.13)

for molecules with ξy < 0 and −1/2 ≤ xret ≤ 1/2.
The wall function ρ+

w (t, x) appearing in (3.11) is determined via imposition of the
linearised form of the impermeability condition at the upper plate surface. Applying (3.1),
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we obtain

v(iso)(t, −1/2 ≤ x ≤ 1/2, 0+)

= 1
π3/2

∫ ∞

−∞
ξyφ

(iso)(t, −1/2 ≤ x ≤ 1/2, 0+, ξ) exp[−ξ2] dξ = 0, (3.14)

where dξ = dξx dξy dξz. Substituting (3.7) and (3.11) into (3.14), carrying the ξz integration
and making the changes of variables s = x − ξxt and q = −ξyt, we find that

ρ+
w (t, x) = 2√

πt3

∫ ∞

0
q exp

[
−
(q

t

)2
] ∫ ∞

−∞

[
ρin(s, q) + Tin(s, q)

((
x − s

t

)2

+
(q

t

)2 − 1

)]
× exp

[
−
(

x − s
t

)2
]

ds dq. (3.15)

Having determined ρ+
w (t, x) and consequent φ(t, x, y, ξ), appropriate quadratures over the

velocity space yield expressions for the O(ε)-scaled hydrodynamic perturbations. The
density perturbation ρ(t, x, y), tangential velocity u(t, x, y), normal velocity v(t, x, y) and
stress component deviations Pij(t, x, y) (with i and j being x, y or z) are given by (Sone
2007)

ρ(t, x, y) = π−3/2
∫ ∞

−∞
φ e−ξ2

dξ ,

u(t, x, y) = π−3/2
∫ ∞

−∞
ξxφ e−ξ2

dξ , v(t, x, y) = π−3/2
∫ ∞

−∞
ξyφ e−ξ2

dξ ,

Pxx(t, x, y) = π−3/2
∫ ∞

−∞
ξ2

x φ e−ξ2
dξ , Pyy(t, x, y) = π−3/2

∫ ∞

−∞
ξ2

y φ e−ξ2
dξ ,

Pxy(t, x, y) = π−3/2
∫ ∞

−∞
ξxξyφ e−ξ2

dξ and Pzz(t, x, y) = π−3/2
∫ ∞

−∞
ξ2

z φ e−ξ2
dξ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.16)

respectively, where φ = φ(iso) is substituted to obtain the results in the isothermal-plate
case. The integrations over ξx and ξy at each (x, y) location follow the (ξx, ξy) space
divisions specified above, as detailed in Appendix A. The acoustic pressure and
temperature perturbations are consequently given by

p(iso)(t, x, y) = 2
3
(P(iso)

xx + P(iso)
yy + P(iso)

zz ) and

T(iso)(t, x, y) = p(iso)(t, x, y) − ρ(iso)(t, x, y),
(3.17a,b)

respectively, with the latter marking the linearised form of the gas equation of state.

3.2. Specular plate
Similar to the diffuse-wall case, for particles that have not hit the wall since the initial
t = 0 time,

φ(spec)(t, x, y, ξ) = ρin(xin, yin) + Tin(xin, yin)(ξ
2 − 3/2). (3.18)

In the upper half-plane (y > 0), this applies to all gas molecules with ξy < 0 or those
with ξy > 0 satisfying (3.9) or (3.10a,b). In the lower half-plane (y < 0), (3.18) is valid
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for molecules with ξy > 0 or with ξy < 0 and xret ≷ ±1/2. Particles affected by the initial
perturbation that have hit the specular wall after t = 0 may be found in the upper half-plane
only, and satisfy

φ(spec)(t, x, y > 0, ξ) = ρin(xin, yspec) + Tin(xin, yspec)(ξ
2 − 3/2), (3.19)

where

yspec ≡ ξytr = ξyt − y > 0 (3.20)

denotes the particle initial y location prior to wall reflection. Equation (3.19) applies to gas
molecules with ξy > 0, −1/2 ≤ xret ≤ 1/2 and tret ≥ 0.

Substituting (3.18) and (3.19) into (3.16), the expressions for the acoustic fields follow
by quadratures over the velocity space, as detailed in Appendix A.

3.3. Acoustic force on plate
The acoustic loading on the plate, to be discussed in §§ 5 and 6, consists of normal- and
shear-force components, calculated via

N(t) = −
∫ 1/2

−1/2
Pyy(t, x, 0+) dx and S(t) = −

∫ 1/2

−1/2
Pxy(t, x, 0+) dx, (3.21a,b)

respectively. In both expressions, integration of the stress components is carried out
over the upper plate surface only, as no contribution to the force arrives from the
lower side of the plate for upper-half-plane perturbations. Substituting (A4) and its
specular-wall counterpart into (3.21a,b), we obtain, for the normal force in the isothermal-
and specular-plate set-ups,

N(iso)(t) = −
∫ 1/2

−1/2

(
1
4
ρ+

w (t, x) + h(t, x)
)

dx and N(spec)(t) = −2
∫ 1/2

−1/2
h(t, x) dx,

(3.22a,b)

respectively, where

h(t, x) = 1
π

∫ 0

−∞

∫ ∞

−∞
ξ2

y [ρin(xin, −ξyt) + Tin(xin, −ξyt)(ξ2
x + ξ2

y − 1)] e−ξ2
x −ξ2

y dξx dξy.

(3.23)

For the shear force in the isothermal-wall set-up, we find that

S(iso)(t) = 1
π

∫ 1/2

−1/2

∫ 0

−∞

∫ ∞

−∞
ξxξy[ρin(xin, −ξyt) + Tin(xin, −ξyt)(ξ2

x + ξ2
y − 1)]

× e−ξ2
x −ξ2

y dξx dξy dx. (3.24)

The shear force on a specular wall vanishes identically,

S(spec)(t) ≡ 0, (3.25)

since P(spec)
xy (t, −1/2 ≤ x ≤ 1/2, 0+) ≡ 0 in line with the symmetrical wall condition.
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Acoustic interaction of a finite body in a rarefied gas

4. Numerical scheme: DSMC method

The DSMC method, initially introduced by Bird (1994), is a stochastic particle-based
method, commonly applied to simulate gas flows at non-continuum conditions. In the
present work we make use of the DSMC scheme to validate our analytical free-molecular
predictions and explore the system behaviour at arbitrary Knudsen numbers. We
accordingly adopt Bird’s algorithm, and apply it for a hard-sphere gas model (Bird 1994),
to simulate the system response.

In each simulation the initial gas state was set in accordance with (2.1a,b) and the
chosen distributions of temperature and density fields. In the temperature-driven case, the
particles were allocated with uniform distribution of their initial positions. Their velocities
were assigned according to a Maxwellian distribution, with the temperature (governing the
variance of the particles’ velocity distribution) following the prescribed initial profile. In
the density-driven set-up the particles were assigned random uniformly distributed initial
positions. A uniform-temperature Maxwellian distribution was imposed, with particles
added at positions in accordance with the initial density perturbation. Each simulation was
followed in time and terminated at t∗sim ≈ 1.5L∗/U∗

mp, which proved sufficient to describe
the interaction between the disturbance front (initially peaked at a distance (x∗, y∗) � L∗/2
from the plate) and the finite wall. The wall surface was assumed either specular or fully
diffuse with prescribed uniform temperature T∗

0 .
The size of the computational domain was set such that the signal does not reach (and is

therefore not affected by) virtual outer boundaries placed at y∗
top = 3L∗, y∗

bottom = −1.5L∗
and x∗

left/right = ∓3L∗. The (x∗, y∗) ∈ ([x∗
left, x∗

right], [y∗
bottom, y∗

top]) domain was divided
into ≈ 104 cells. An additional division of each cell into collisional subcells was carried
out to comply with the mean-free-path limitations (Bird 1994). A typical run consisted
of ≈ 108 particles, where ≈ 103 realisations were followed to sufficiently reduce the
numerical noise. In line with the linearised problem formulation, a value of ε = 0.1 was
taken for the level of initial perturbations (see (2.1a,b)), for which nonlinear effects proved
to be negligible. The calculations were made using a 32-core Threadripper 3975WX
machine, with each computation lasting several days.

5. Impulse response

Applying the free-molecular analysis in § 3, our results may be obtained for arbitrary
choices of the gas initial density and temperature perturbations, ρin(x, y) and Tin(x, y).
In this section we discuss the system response to an impulse input of either the density or
temperature fields, by setting

ρin(x, y) = δ(x − xδ)δ( y − yδ) or Tin(x, y) = δ(x − xδ)δ( y − yδ), (5.1)

where δ(·) marks the Dirac delta function and yδ > 0, in accordance with assuming
that the initial perturbation is imposed at the upper y > 0 half-plane. The delta-function
analysis enables the study of the system response to a point-localised source, which may be
conveniently applied for testing the applicability of acoustic reciprocity at non-continuum
conditions. The DSMC scheme, however, could not be used in this context due to
the ambiguous representation of a delta-function source in simulations. The numerical
validation of our calculations and analysis of the system response at finite Knudsen
numbers are deferred to § 6, where a Gaussian input perturbation is considered.

In practice, the significance of studying the impulse response in the free-molecular limit
is two fold. First, any non-localised excitation signal may be expressed as a convolution
over a distribution of delta functions with the desired source form. Consequently, since
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the system is linear, the delta-function response may be considered as a ‘building block’
for any other non-localised source. Second, our numerical results presented in § 6 indicate
that the free-molecular description remains quantitatively valid at O(1) Knudsen numbers
and somewhat lower, making the collisionless point-source analysis of practical relevance.

5.1. Analysis
Starting with the upper half-plane, we substitute (5.1) into (3.15) and integrate to obtain
the wall function in the case of a density impulse

ρ
(δρ)
w (t, x) = 2yδ√

πt3
H( yδ) exp

[
−
(

x − xδ

t

)2

−
(yδ

t

)2
]

, (5.2)

and a temperature perturbation

ρ(δT )
w (t, x) = 2yδ√

πt3
H( yδ)

[(
x − xδ

t

)2

+
(yδ

t

)2 − 1

]
exp

[
−
(

x − xδ

t

)2

−
(yδ

t

)2
]

.

(5.3)

Here, H(·) denotes the Heaviside step function. Equations (5.2) and (5.3) can now be used,
upon substitution to the pertinent expressions in Appendix A, to derive the free-molecular
system impulse response, as detailed in Appendix B.

Advantageously, the above analysis yields closed-form results for the acoustic
perturbations along the plate upper (−1/2 ≤ x ≤ 1/2, y = 0+) surface. For the density
perturbation in response to the δρ and δT excitations, we find that

ρ(iso,δρ)(t, −1/2 < x < 1/2, 0+) = ρ
(δρ)
w (t, x)

2
+ 1

πt2
e−ξ2

x1
−ξ2

y10 and

ρ(iso,δT )(t, −1/2 < x < 1/2, 0+) = ρ
(δT )
w (t, x)

2
+ 1

πt2
(ξ2

x1
+ ξ2

y10
− 1) e−ξ2

x1
−ξ2

y10

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

(5.4)

respectively, over an isothermal plate, and

ρ(spec,δρ)(t, −1/2 < x < 1/2, 0+) = 2
πt2

e−ξ2
x1

−ξ2
y10 and

ρ(spec,δT )(t, −1/2 < x < 1/2, 0+) = 2
πt2

(ξ2
x1

+ ξ2
y10

− 1) e−ξ2
x1

−ξ2
y10

⎫⎪⎪⎬
⎪⎪⎭ , (5.5)

for a specular surface, where

ξx1 = x − xδ

t
and ξy10 = −yδ

t
. (5.6a,b)

Following to the x-velocity component, we find that in the isothermal-wall case

u(iso,δρ)(t, −1/2 < x < 1/2, 0+) = 1
πt2

ξx1 e−ξ2
x1

−ξ2
y10 and

u(iso,δT )(t, −1/2 < x < 1/2, 0+) = 1
πt2

ξx1(ξ
2
x1

+ ξ2
y10

− 1) e−ξ2
x1

−ξ2
y10

⎫⎪⎪⎬
⎪⎪⎭ , (5.7)
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and over a specular plate

u(spec,δρ)(t, −1/2 < x < 1/2, 0+) = 2
πt2

ξx1e−ξ2
x1

−ξ2
y10 and

u(spec,δT )(t, −1/2 < x < 1/2, 0+) = 2
πt2

ξx1(ξ
2
x1

+ ξ2
y10

− 1)e−ξ2
x1

−ξ2
y10

⎫⎪⎪⎬
⎪⎪⎭ . (5.8)

The y-velocity component vanishes at the plate in accordance with surface impermeability,
and the normal and shear stresses are given by

P(iso,δρ)
yy (t, −1/2 < x < 1/2, 0+) = yδ√

πt3

(
1
2

+ yδ√
πt

)
e−ξ2

x1
−ξ2

y10 ,

P(iso,δT )
yy (t, −1/2 < x < 1/2, 0+) = yδ√

πt3

(
1
2

+ yδ√
πt

)
(ξ2

x1
+ ξ2

y10
− 1) e−ξ2

x1
−ξ2

y10 ,

P(spec,δρ)
yy (t, −1/2 < x < 1/2, 0+) = 2

πt2
ξ2

y10
e−ξ2

x1
−ξ2

y10 ,

P(spec,δT )
yy (t, −1/2 < x < 1/2, 0+) = 2

πt2
ξ2

y10
(ξ2

x1
+ ξ2

y10
− 1) e−ξ2

x1
−ξ2

y10 ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.9)

and

P(iso,δρ)
xy (t, −1/2 < x < 1/2, 0+) = −yδ(x − xδ)

πt4
e−ξ2

x1
−ξ2

y10 ,

P(iso,δT )
xy (t, −1/2 < x < 1/2, 0+) = −yδ(x − xδ)

πt4
(ξ2

x1
+ ξ2

y10
− 1) e−ξ2

x1
−ξ2

y10 ,

P(spec,δρ)
xy (t, −1/2 < x < 1/2, 0+) = P(spec,δT )

xy (t, −1/2 < x < 1/2, 0+) = 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.10)

respectively. Substituting (5.9) and (5.10) into (3.21a,b) and integrating, we obtain
expressions for the acoustic force on the plate. For the normal force, we find that

N(iso,δρ)(t) = − yδ

2t2

(
1
2

+ yδ√
πt

)
e−(yδ/t)2

[
erfc

(
−1/2 + xδ

t

)
− erfc

(
1/2 − xδ

t

)]
,

N(iso,δT )(t) = − yδ√
πt2

e−(yδ/t)2
(

1
2

+ yδ√
πt

){√
π

2

[(yδ

t

)2 − 1
2

]

×
[

erfc
(

−1/2 + xδ

t

)
− erfc

(
1/2 − xδ

t

)]
− 1

2t

[(
1
2

− xδ

)
e−(1/2−xδ)

2/t2

+
(

1
2

+ xδ

)
e−(1/2+xδ)

2/t2
]}

,

N(spec,δρ)(t) = − y2
δ√
πt3

e−(yδ/t)2
[

erfc
(

−1/2 + xδ

t

)
− erfc

(
1/2 − xδ

t

)]
and

N(spec,δT )(t) = −2y2
δ

πt3
e−(yδ/t)2

{√
π

2

[(yδ

t

)2 − 1
2

] [
erfc

(
−1/2 + xδ

t

)

− erfc
(

1/2 − xδ

t

)]
− 1

2t

[(
1
2

− xδ

)
e−(1/2−xδ)

2/t2 +
(

1
2

+ xδ

)
e−(1/2+xδ)

2/t2
]}

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.11)
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in the isothermal- and specular-plate set-ups with density and temperature perturbations,
respectively, where erfc(s) = (2/

√
π)
∫∞

s e−q2
dq denotes the complementary error

function. The counterpart tangential shear-force components are

S(iso,δρ)(t) = yδ

2πt2
e−(yδ/t)2

(e−(1/2−xδ)
2/t2 − e−(1/2+xδ)

2/t2),

S(iso,δT )(t) = yδ

2πt2
e−(yδ/t)2

[(yδ

t

)2
(e−(1/2−xδ)

2/t2 − e−(1/2+xδ)
2/t2)

+
(

1/2 − xδ

t

)2

e−(1/2−xδ)
2/t2 −

(
1/2 + xδ

t

)2

e−(1/2+xδ)
2/t2
]

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.12)

and S(spec,δρ)(t) = S(spec,δT )(t) = 0. The above results are further discussed below.

5.2. Results
To present our findings, we focus primarily on a case where the point source is located
at (xδ, yδ) = (0.5, 0.5), in the relative vicinity of the plate x = 0.5 edge. For this set-up,
we examine the effects of plate wall conditions (specular or isothermal) and source type
(initial temperature or density impulses) on the flow properties. Other source locations are
then considered to examine their impact on the acoustic loading on the plate, as well as on
the applicability of acoustic reciprocity.

Figure 2 shows time-snapshot colour maps of the free-molecular acoustic pressure
in response to a temperature impulse imposed at (xδ, yδ) = (0.5, 0.5). The results are
depicted at times t = 0.1, 0.5 and 1 and compared between specular- and isothermal-plate
systems. For clarity of presentation, each figure is divided into three zones, confined by
the dashed lines. In zone I the acoustic field is affected by the source only and not by
plate reflections; zone II is obscured by the plate and not affected by the source; and zone
III is influenced by both source and plate. Assuming collisionless flow conditions, this
division is based on problem kinematics. Specifically, zone II is delineated in the lower
y < 0 half-plane by the straight lines emanating at the source and passing through the
plate edge points. In the absence of molecular collisions, no free-flight particle trajectories
may originate at the source and pass through this zone, which is consequently obstructed
by the solid wall. In contrast, all points in zone III may be reached either by particles
emitted directly from the source or after being reflected from the plate. Notably, these zone
boundaries differ between specular- and diffuse-plate systems: while it contains the entire
upper y > 0 half-plane in the latter, it is restricted by the x = 1/2 and x = −8y/3 − 1/2
lines in the former, determined by possible specular-reflection trajectories of particles
emanating at the source and emitted at the wall x = ±0.5 edges. Zone I then complements
the (x, y) plane division, where the acoustic signal may be reached directly from the source,
yet not after being reflected from the solid surface.

At the earliest t = 0.1 time presented in figure 2(a,b), the interaction of the acoustic
perturbation with the plate is negligible. Consequently, there are no visible differences
between the specular-plate (in figure 2a) and diffuse-plate (figure 2b) system responses,
where the perturbation propagates isotropically in the radial direction away from (xδ, yδ) =
(0.5, 0.5). The acoustic pressure peaks at a dimensional distance U∗

mpt∗ from the initial
source location, in line with the mean propagation speed ∼ U∗

mp of perturbations in the
free-molecular regime.
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Figure 2. Free-molecular acoustic pressure in response to a temperature impulse imposed at (xδ, yδ) =
(0.5, 0.5). The impulse and plate locations are marked by a cross and a solid line in each figure, respectively.
The results are shown at times t = 0.1 (a,b), t = 0.5 (c,d) and t = 1 (e, f ). Panels (a,c,e) present the
specular-plate field and panels (b,d, f ) are for an isothermal-plate configuration. The dashed lines divide the
(x, y) plane into domains affected by the impulse but not by the plate (zone I), obscured by the plate (zone II)
and affected by both impulse and plate (zone III).

Following to the later t = 0.5 time snapshot in figure 2(c,d), the interaction between
the acoustic disturbance and the plate is clearly seen through the peak pressure forming
along the boundary upper side. This interaction is found weaker in figure 2(d), as the
acoustic signal energy is partially absorbed by the isothermal plate, in contrast with the
specular-wall configuration. In line with free-molecular flow kinematics, the lower plate
surface (contained in zone II) is not affected by the perturbation. Notably, the maximum
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Figure 3. Effect of acoustic source type on the free-molecular velocity and acoustic pressure fields in an
isothermal-plate system: time snapshots at t = 0.5 of the pressure perturbation (a,b) and velocity magnitude
(c,d) in response to a temperature (a,c) and a density (b,d) impulse imposed at (xδ, yδ) = (0.5, 0.5). The
impulse and plate locations are marked by a cross and a solid line in each figure, respectively. The dashed lines
confine the plane zone obstructed by the plate. The blue solid curves in figure 3(c,d) show the instantaneous
flow streamlines.

pressure level at t = 0.5 (reaching ≈ 0.7 in figure 2c,d) is considerably lower than at earlier
times, in line with the exponential (∼ exp[−ξ2

x1
− ξ2

y10
]) time decay of all fields indicated

in (5.4)–(5.10). This trend becomes more pronounced at the latest t = 1 time presented in
figure 2(e, f ), where the acoustic perturbation turns smaller and more dispersed. Excluding
zone II, the differences between zones I and III in figure 2(e) for the specular-plate system
are clearly seen, with higher pressure levels appearing in the latter, reflecting the added
impact of plate emission. These differences are less visible in the isothermal-wall field in
figure 2( f ), since the transition between boundary-affected and non-affected zones is more
smooth in a diffuse-wall configuration.

To examine the interaction between the acoustic perturbation and the plate surface in
more detail, figure 3 focuses on an isothermal-plate set-up and presents the pressure
(figure 3a,b) and velocity (figure 3c,d) fields at time t = 0.5, when the signal ‘front’
reaches the x = 0.5 plate end. The figure compares between non-uniform temperature
(figure 3a,c) and density (figure 3b,d) acoustic excitations.

The free-space (in the absence of the plate) system response to density and temperature
perturbations follows characteristically different flow patterns. In the former, the acoustic
signal propagates in a ‘source-type’ manner, with the velocity streamlines directed radially
away from the initial perturbation location. In the latter, local heating serves as an
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effective ‘sink’, with the acoustic front propagating at the most probable speed, generating
radial flow towards and away from (xδ, yδ) at scaled distances < t and > t from (xδ, yδ),
respectively. In figure 3(a,b) the free-space patterns are manifested as zones of low and
high acoustic pressures in the vicinity of (xδ, yδ), respectively. The interaction of flow
perturbation with the solid plate is then viewed as regions of higher pressures along the
upper wall surface. The distortion of the free-space flow streamlines near the plate edge is
illustrated in figure 3(c,d), where the velocity vector close to the surface (0.5, 0) end point
is directed towards and away from (xδ, yδ) in the density- and temperature-driven set-ups,
respectively. These, in turn, are reflected in late-time opposite ‘attraction’ and ‘suction’
forces on the plate, to be discussed below.

The distribution of the acoustic pressure over the upper plate surface (−0.5 ≤ x ≤
0.5, y = 0+) is presented in figure 4, showing time variations of the free-molecular
pressure perturbation at fixed points along the solid boundary. Considering an
isothermal-plate system, the figure examines the effects of source type and initial location.
Set-ups excited by temperature and density non-uniformities are compared between
figures 4(a,c) and 4(b,d), respectively. Maintaining xδ = 0.5, the source y coordinate is
varied between yδ = 0.5 in figure 4(a,b) and yδ = 0.25 in figure 4(c,d). To track the
propagation of the acoustic disturbance in time, the dotted line in each figure marks the
locus of maximum pressure values along the plate, indicating the advance and decay of
the perturbation front with increasing t. This follows the propagation of the high-pressure
zone along the upper plate surface observed in figures 2 and 3.

All pressure variations contain an initial time interval during which the acoustic
disturbance vanishes. This reflects the time it takes for the signal to reach the plate, being
shorter in the case where the source is located closer to the solid boundary (cf. figures 4c,d
and 4a,b). Once the perturbation has reached the plate, the pressure increases to its
maximum value, after which it decays gradually. While the time decay at each x location
is monotonic in the density-driven case in figure 4(a,c), it varies non-monotonically
in the temperature-excited set-up described in figure 4(b,d). The non-monotonic decay,
containing a minimum negative acoustic pressure, is in line with the flow field discussed
in figure 3(c). Specifically, while creating an early increase in the pressure perturbation
due to the initial interaction of the acoustic disturbance with the plate, the ‘sink-like’
propagation in the temperature-excited configuration is characterised by a suction flow
field that exhibits a negative pressure fluctuation at the solid surface. This trend is not
viewed in the density-excited configuration, where the pressure perturbation is positive
at all times. The decrease in the initial distance between the source and the plate has the
general effect of magnifying the pressure levels along the plate. Quantitatively, the halving
of yδ between figures 4(a,b) and 4(c,d) results in a pressure increase by a factor of 4, which
is supported by the closed-form expressions obtained in § 5.1.

Having discussed the pointwise pressure distribution along the plate, figure 5 presents
the time variations of the integral acoustic force on the solid surface. To this end,
figures 5(a) and 5(b) show the normal (figure 5a) and shear (figure 5b) loadings on an
isothermal boundary in response to temperature (blue lines) and density (black curves)
impulses imposed at (xδ, yδ) = (0.5, 0.5) (solid lines) and (xδ, yδ) = (0.5, 0.25) (dashed
curves). The plotted results follow from the closed-form expressions in (5.11) and (5.12).
In line with the discussion in figure 4, fluid loading on the plate vanishes through an
initial time interval, during which the imposed disturbance has not yet reached the solid
surface. Once arriving at the plate, the acoustic interaction commences, resulting in an
integral force on the boundary. The force acts initially in the negative x and y directions,
extending to a larger maximum magnitude at an earlier time in the case where the impulse
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Figure 4. Time variations of the free-molecular acoustic pressure at the indicated x = 0.5, 0.2, −0.2 and
−0.5 locations along the upper part of the plate (y = 0+). The results are presented for an isothermal-plate
system with temperature (a,c) and density (b,d) impulses imposed at (xδ, yδ) = (0.5, 0.5) (a,b) and (xδ, yδ) =
(0.5, 0.25) (c,d). The dotted line in each figure connects the maximum pressure values obtained at each x
location, which follows the propagation of the acoustic front along the plate.

is imposed closer to the plate. At late times, both normal and shear forces become positive
in the temperature-driven case, marking a suction force on the plate towards the initial
source location. In the density-driven set-up, N < 0 and S < 0 invariably, indicating that
an integral repelling force is imposed at all t > 0. The shear force is characteristically
smaller than the normal loading, yet maintaining a similar order of magnitude. In the case
where the impulse is imposed at a position xδ closer to the plate midchord (not illustrated
here for brevity), S diminishes. The shear force vanishes identically for xδ = 0, due to
problem symmetry.

In line with (3.21a,b), N and S are calculated via quadratures of the negative sign of
the normal and shear stresses over the plate upper surface. To gain further insight into the
results in figures 5(a) and 5(b), figures 5(c) and 5(d) present the distributions of Pyy and
Pxy, respectively. Focusing on a temperature-driven set-up with (xδ, yδ) = (0.5, 0.5), the
x ∈ [−1/2, 1/2] variations of Pyy (in figure 5c) and Pxy (in figure 5d) at y = 0+ are shown
in black at the time instant when the repelling force amplitude is maximal. Additionally,
the stress distributions at t = 0.99, when both force components are positive, are shown in
red, and the blue curves denote the stress variations at an intermediate time t = 0.55.

Starting with the black curves, the strong interaction of the acoustic front with the plate
is reflected as relatively sharp maxima in both Pyy and Pxy along the 0 < x < 0.5 half of
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Figure 5. (a,b) Time variations of the acoustic normal (a) and shear (b) forces on an isothermal plate in
response to temperature (blue lines) and density (black curves) impulses imposed at (xδ, yδ) = (0.5, 0.5) (solid
lines) and (xδ, yδ) = (0.5, 0.25) (dashed curves). (c,d) The x variations of the normal Pyy (c) and shear Pxy
(d) stresses along the upper part of the isothermal plate in response to a temperature impulse imposed at
(xδ, yδ) = (0.5, 0.5) at the indicated time instants. The circles in figures 5(a) and 5(b) denote the times along
the normal- and shear-force curves at which the normal and shear stress distributions are plotted in figures 5(c)
and 5(d), respectively.

the plate. At the later t = 0.55 presented, the wave-like distribution propagates to lower
x values, while reducing in magnitude. Simultaneously, a zone where both stresses turn
negative appears close to the x = 0.5 edge, indicating the creation of the ‘suction’ field
developed at later times. At t = 0.99, the stresses turn negative almost invariably, resulting
in the positive values of N and S marked in figures 5(a) and 5(b) by the red circles. The
overall trends found in figures 5(c) and 5(d) agree with the time variations found for the
pressure along the plate, discussed in figure 4.

We make use of the impulse-response set-up to examine the applicability of acoustic
reciprocity at free-molecular conditions. Towards this end, figure 6 presents time variations
of the acoustic pressure (figure 6a) and density (figure 6b) fields in response to a
temperature impulse imposed at the indicated (xδ, yδ) locations. The blue and red
curves mark the results calculated at points (0, 0.1) and (0.2, 1), respectively, in an
isothermal-plate system. The dashed curves present the counterpart pressure and density
variations in a specular-wall system, where the source and listener are located at (0, 0.1)

and (0.2, 1), respectively, or interchanged.
Considering the specular-system time response, we observe that the acoustic fields

remain unchanged when the source and listener are replaced, indicating that acoustic
reciprocity holds. This is in line with the smooth-boundary wall condition, where no
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Figure 6. Acoustic non-reciprocity in a diffuse-plate system: time variations of the acoustic pressure (a) and
density (b) in response to a temperature impulse imposed at the indicated (xδ, yδ) locations. The red lines
show the pressure and density calculated at (x, y) = (0.2, 1) in the case where the impulse is imposed at the
indicated (xδ, yδ) = (0, 0.1). The blue curves present the pressure and density calculated at (x, y) = (0, 0.1) in
the case where the impulse is set at (xδ, yδ) = (0.2, 1). The dashed lines depict the counterpart variations in
a specular-wall system where the source and listener are located at (0, 0.1) and (0.2, 1), respectively, or vice
versa.

transfer of energy occurs between the gas and the surface. The particles are emitted in
a mirror-like reflection, and symmetry is preserved when replacing between the impulse
and observer positions. At the macroscopic level of description, specular-wall conditions
impose impermeability over the solid wall, while other hydrodynamic fields are left
undetermined. In a sense, this is equivalent to the inviscid (ideal compressible flow)
limit of Kn → 0, where thermal and no-slip conditions cannot be imposed at a boundary.
Consequently, acoustic reciprocity holds in both scenarios, as applicable in continuum
linear acoustics (Howe 1998; Pierce 2019).

Traversing to the isothermal-wall case, we note that acoustic reciprocity does not hold.
This observation is supported by both pressure and density scalar perturbations, which
are considered for the present inspection. Specifically, starting at t ≈ 0.4 and following to
later times, significant differences are viewed between the measured quantities, marked by
the blue and red curves. Different from the specular-wall set-up, diffuse-wall conditions
model relatively ‘rough’ surfaces, where each colliding particle transfers momentum and
energy with the solid surface to attain thermal equilibrium with its reflecting wall. This
introduces distinct asymmetry between a source and a listener that are placed at different
distances from the wall, particularly at free-molecular conditions, where wall information
is carried undisturbed by particles emitted from the surface. Indeed, at early times (t �
0.4), when wall reflection of the acoustic disturbance has not yet reached the observer,
the blue and red curves are nearly identical. The observed discrepancies at later times are
directly attributed to the combined impacts of gas–wall interactions and asymmetry in the
trajectories of particles reflected from the boundary to different locations in the gas. In
essence, the mechanism driving acoustic non-reciprocity in the present set-up is similar to
that mentioned in counterpart continuum-limit studies (Fleury et al. 2015; Heo et al. 2020;
Nassar et al. 2020), coupling geometrical considerations with fluid viscosity. Yet, while
viscous effects are commonly confined to the very vicinity of solid walls at high Reynolds
(with low Knudsen) number gas flows, they affect wider portions of the flow field in the
absence of molecular interactions, causing non-reciprocity to become apparent.

Summarising the above, we find that acoustic reciprocity at non-continuum conditions
breaks down in the presence of non-smooth surfaces. Taking the diffuse-wall model as
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an extreme set-up of a rough wall, non-reciprocal effects are expected to be stronger
with increasing Knudsen numbers, as the mitigating impact of intermolecular collisions
weakens and the asymmetry caused by particle–surface interactions is carried over larger
distances from the wall. These observations are further illustrated in the next section (see
figure 10 et seq.), where the system response to Gaussian excitation is analysed.

6. Gaussian excitation

While the free-molecular system response to an impulse could be analysed in detail,
counterpart DSMC realisation of a delta-function source is numerically ambiguous. To
facilitate DSMC calculations, we therefore consider a continuous Gaussian excitation
input of either the density or the temperature,

ρin(x, y) = exp[−α((x − xG)2 + ( y − yG)2)] or

Tin(x, y) = exp[−α((x − xG)2 + ( y − yG)2)],
(6.1)

marking a smooth signal peaked at (x, y) = (xG, yG). A value of α = 80 (� 1) with
yG > 0 is taken to mimic a localised excitation at the upper half-plane that decays
sharply about its peak and does not interact with the plate at t = 0+. The Gaussian
distribution, which is related to the above-studied impulse perturbation via the limit
δ(s) = limα→∞

√
α/π exp[−αs2], is also considered to test acoustic reciprocity at various

Knudsen numbers. In what follows, the free-molecular gas response is calculated and
compared with DSMC predictions at finite Knudsen numbers, to test its applicability
and breakdown. Based on the scaling introduced in § 2, the expected flow regime should
be governed by the ratio between the Knudsen number and the time elapsed since the
initiation of flow disturbance. Strictly, free-molecular flow conditions should prevail at
t/Kn � 1 and break down with increasing t/Kn. At t/Kn � 1, the continuum flow
regime should hold. To make the presentation concise, our results focus on the case of
thermal system excitation with isothermal-plate conditions. Results for the case of density
perturbation and specular-plate set-ups were added as supplementary material, available
at https://doi.org/10.1017/jfm.2024.1003, yet are skipped in the main text as they do not
provide additional insight.

Figure 7 presents the effect of gas rarefaction on the isothermal-plate system response to
a Gaussian temperature excitation peaked at (xG, yG) = (0.5, 0.5). The figure shows time
snapshots of the density perturbation at time t = 0.5 and descending Knudsen numbers,
including the free-molecular (Kn → ∞) field and Kn = 10, 1, 0.1, 0.05 and 0.01 results.
The non-infinite Knudsen number plots are based on DSMC computations.

Comparing between figures 7(a) and 7(b), we find that the free-molecular and Kn = 10
fields are practically identical, exhibiting the same hydrodynamic pattern and perturbation
level. Different from the smooth analytical result in figure 7(a), and in view of the
relatively low O(10−2) perturbation level, the signal-to-noise ratio in the simulation is
not large and the DSMC output in figure 7(b) is relatively scattered. Notably, the density
perturbation remains nearly unchanged also in the Kn = 1 case shown in figure 7(c) (where
t/Kn = 0.5), indicating that the free-molecular regime persists through t/Kn � O(1)

(cf. the results in figure 9). The difference in colour spread between figures 7(a,b) and
7(c) is merely due to the different colour range depicted to facilitate comparison between
figures 7(c) and 7(d) for Kn = 0.1. Maintaining the same [−0.085, 0.04] scale range, we
observe that the free-molecular description breaks down by passing between t/Kn = 0.5
(for Kn = 1) and t/Kn = 5 (for Kn = 0.1). This is visualised through the considerable
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Figure 7. Effect of gas rarefaction on the isothermal-plate system response to a Gaussian temperature
excitation peaked at (xG, yG) = (0.5, 0.5) with α = 80: density perturbations at time t = 0.5 with (a) Kn →
∞, (b) Kn = 10, (c) Kn = 1, (d) Kn = 0.1, (e) Kn = 0.05 and ( f ) Kn = 0.01. The results in (a) are based
on the free-molecular solution and in (b–f ) present DSMC data. The dashed lines in each figure confine the
plane zone obstructed by the plate in the free-molecular regime for an instantaneous point source located at
(x, y) = (0.5, 0.5). The crosses denote the Gaussian peak location and the thick solid lines mark the plate
position.

increase in the perturbation magnitude combined with the more focused propagation
pattern in figure 7(d). These are in line with previous studies on the propagation of acoustic
disturbances in the free-molecular and continuum limits, indicating that the decay rate of
the latter is typically much lower than the exponential decay characterising collisionless
sound emission (Kalempa & Sharipov 2009; Manela & Ben-Ami 2021, 2023). With
increasing field magnitude, the computational signal-to-noise ratio rises, yielding a
smoother result. The above trends become more pronounced at the near-continuum Kn =
0.05 and Kn = 0.01 conditions presented in figures 7(e) and 7( f ), respectively, where
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Figure 8. Time evolution of the system response to a Gaussian temperature excitation peaked at (xG, yG) =
(0.5, 0.5) with α = 80: density perturbations in an isothermal-plate set-up at times t = 1 (a–c) and t = 1.5
(d–f ) with Kn → ∞ (a,d), Kn = 0.05 (b,e) and Kn = 0.01 (c, f ). Panels (a,d) are based on the free-molecular
solution and all other results are obtained via DSMC calculations. The crosses denote the peak location of the
initial perturbation and the thick solid lines mark the plate position. The dashed lines confine the plane zone
obstructed by the plate in the free-molecular regime for a point source imposed at (x, y) = (0.5, 0.5).

the propagating disturbance decays slower and retains its thin-circular form through later
times.

Considering the interaction between the propagating disturbance and the plate in
figure 7, we observe that the gas zone obstructed by the plate for a counterpart point source
imposed at (x, y) = (0.5, 0.5) is nearly unaffected by the present acoustic disturbance at
non-small Knudsen numbers. Yet, a slight effect is visible to the left of the x = 0.5 dashed
line even for Kn → ∞, as the excitation signal considered herein is a smoothly varying
Gaussian and not a point impulse. With increasing t/Kn towards continuum conditions, it
is expected that the disturbance bypasses the plate and penetrates the ‘obstructed’ zone to a
larger extent. Physically, this is attributed to the effect of intermolecular collisions, missing
at highly rarefied conditions, transferring momentum and energy between gas particles at
non-small t/Kn numbers. This phenomenon is illustrated in figure 8, showing the system
response to the same (xG, yG) = (0.5, 0.5) Gaussian disturbance as in figure 7, yet at times
later than t = 0.5, corresponding to higher t/Kn values. Specifically, figures 8(a–c) and
8(d–f ) compare between the density perturbation fields obtained at times t = 1 and t =
1.5, respectively, with Kn → ∞ (in figure 8a,d), Kn = 0.05 (in figure 8b,e) and Kn = 0.01
(in figure 8c, f ). Noting the variations in colour map grid scales, we observe again the large
differences in perturbation magnitudes between the collisionless and continuum limits,
manifesting the higher decay rate of the former. Distinctly, while the dashed-line confined
zone is practically quiescent in figure 8(a,d), the mechanism of molecular collisions results
in the propagation of the imposed disturbance into the obstructed area. This, together with
the retained ‘focused’ form of the disturbance at late times, form the primary differences
between the system response in the continuum and ballistic limits.

The effect of gas rarefaction on the acoustic force imposed on the plate is considered in
figure 9. Keeping (xG, yG) = (0.5, 0.5), the solid curves in figures 9(a) and 9(b) present
the free-molecular normal- and shear-force components, respectively, and the symbols
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Figure 9. Effect of gas rarefaction on the time variation of the acoustic normal (a) and shear (b) forces on
an isothermal plate in response to a Gaussian temperature perturbation peaked at (xG, yG) = (0.5, 0.5) with
α = 80. The solid lines present the free-molecular result (Kn → ∞) and the symbols mark DSMC data at the
indicated values of Kn. The dashed curves depict the N = 0 and S = 0 lines for reference.

denote counterpart DSMC data at the indicated Knudsen numbers. The free-molecular
results indicate similar trends to those discussed in figures 5(a) and 5(b) for an impulse
signal, yet with expectedly lower magnitudes. As in figure 7, the free-molecular and Kn =
1 DSMC predictions largely agree, indicating that the collisionless regime prevails through
t/Kn � O(1). With decreasing Kn, the maximum magnitude of the normal force increases,
while the shear component reduces. The peak location shifts to later times in both cases.

The wall acoustic interaction is expected most intense when the signal ‘front’, initially
peaked at (xG, yG) = (0.5, 0.5), reaches the plate (0.5, 0) edge. At continuum conditions,
this should occur at time t = 0.5

√
2/γ = 0.5

√
6/5 ≈ 0.548 in most-probable-speed time

units. This value, common for both temperature and density excitations at Kn � 1, is
indeed approached in figure 9(a) with decreasing Kn. Traversing to the free-molecular
regime and starting with the density-driven case, the results in figure 5 (see the black
solid lines in figure 5a,b) show that the maximum force amplitude occurs at t ≈ 0.5, in
agreement with the propagation of sound in the most probable speed at Kn � 1. The
counterpart value in the temperature-excited case is lower, as depicted by the blue solid
lines in figures 5(a) and 5(b) and by the solid curves in figure 9. This decrease is attributed
to the effect of higher-order moments that travel faster in the collisionless limit for thermal
perturbations, as discussed in Ben-Ami & Manela (2020b). Notably, the time instants for
maximal free-molecular normal- and shear-force amplitudes in figures 9(a) (t ≈ 0.31)
and 9(b) (t ≈ 0.35), respectively, are close to their impulse-response counterparts in
figures 5(a) and 5(b), respectively (cf. the blue solid lines therein). We may consequently
rely on the closed-form expressions for these forces, derived in (5.11) and (5.12), to
quantitatively predict the times of maximum magnitudes.

We conclude the discussion by illustrating the effect of gas rarefaction on the
applicability of acoustic reciprocity. To this end, figure 10 presents time variations of
the pressure perturbation in response to a Gaussian temperature source imposed at
interchanged locations. Specifically, the blue curves show p(t) at (x, y) = (0, 0.25) for
a source peaked at (xG, yG) = (0, 1). Reciprocity is tested via comparison with the
calculated p(t) at (x, y) = (0, 1) for a source peaked at (xG, yG) = (0, 0.25), marked
by the red lines. The results are presented at highly rarefied (free molecular and
DSMC Kn = 10 in figure 10a) and continuum-limit (DSMC calculated Kn = 0.01 in
figure 10b) conditions. While the present Gaussian-response analysis is different from the
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Figure 10. Effect of gas rarefaction on acoustic reciprocity in a diffuse-plate system: time variations of the
pressure perturbation in response to a Gaussian temperature excitation with α = 80 peaked at the indicated
(xG, yG) locations. The blue curves show the acoustic pressure calculated at (x, y) = (0, 0.25) with the
Gaussian peaked at (xG, yG) = (0, 1), and the red curves present the pressure at (x, y) = (0, 1) with the
Gaussian centred at (xG, yG) = (0, 0.25). Panel (a) depicts free-molecular and DSMC Kn = 10 results in solid
lines and symbols, respectively. Panel (b) presents DSMC predictions at Kn = 0.01.

impulse-signal discussion carried out in § 5.2 (and is therefore less suitable for the study
of reciprocity), the results clearly indicate that acoustic reciprocity, holding at continuum
conditions, breaks down with increasing rarefaction. This is viewed through the departure
between the blue and red curves and symbols in figure 10(a), initiating at t ≈ 0.55, and
missing in figure 10(b). Starting at the noted time instance, acoustic non-reciprocity at
non-continuum conditions is driven by the effect of isothermal-wall reflection, reaching
the different observers at different times after wall emission, and missing the mitigating
impact of molecular collisions that otherwise permit reciprocal symmetry.

7. Conclusion

We investigated the effect of gas rarefaction on the interaction of small thermodynamic
non-uniformities with a finite body. Considering a two-dimensional set-up, the
initial system perturbations were modelled as small-amplitude density or temperature
inhomogeneities, prescribed in the vicinity of a thin impermeable plate. The problem
was analysed in the free-molecular limit and complemented by DSMC computations
to cover the entire range of gas rarefaction rates. The high-Knudsen ‘sink-like’ and
‘source-like’ propagation patterns observed in the density- and temperature-driven set-ups,
respectively, were discussed, together with the impact of specular (smooth) and diffuse
(isothermal) wall reflections. At highly rarefied conditions, the solid body obstructs part of
the gas domain, preventing the propagation of acoustic disturbances through the concealed
zone. With decreasing gas rarefaction, the acoustic field penetrates the obscured area
and the disturbance is transferred therein via molecular interactions. Focusing on the
near-field description, the propagation of flow perturbation along the plate surface was
inspected, and the normal and shear forces on the body were computed. In the highly
rarefied thermally excited case, both force components change sign at late times, acting
to attract the plate towards the initial perturbation location in line with the flow sink-like
characteristics. With reducing gas rarefaction, the shear force on the plate diminishes and
the normal force sharply increases due to the decreased decay rate of the propagating
disturbance. Finally, we applied our analysis to study the impact of gas rarefaction on
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acoustic reciprocity. We found that acoustic reciprocity does not hold at non-continuum
conditions over non-specular surfaces, where boundary reflections propagate through the
gas in the presence of few molecular collisions, insufficient to retain reciprocal symmetry.

Our work focuses on the case of a monatomic gas interacting with a solid surface.
Yet, the more complex case of a polyatomic gas, where molecular internal degrees of
freedom turn effective, is of interest and deserves separate attention. Since the inclusion of
vibrational and rotational modes of motion lead to a more complex dependence of acoustic
attenuation on the wave frequency (Arima, Ruggeri & Sugiyama 2017; Kustova et al. 2023;
Li, Su & Zhang 2023), we expect them to significantly affect the flow field generated by the
excited broad-spectrum (impulse and Gaussian) perturbations. Specifically, it is plausible
that boundary conditions that preserve the energy of the molecular vibration and rotation
modes (as well as the translation speed) should satisfy reciprocity at free-molecular
conditions, while diffuse conditions would not. Additionally, since sound attenuation is
scaled with the Knudsen number in the continuum limit, it is anticipated that polyatomic
gases satisfy reciprocity in this regime, in line with continuum theory. Longer relaxation
times of the vibration and rotation modes (leading to higher gas viscosities) should result
in growing deviation from reciprocity with increasing Kn.

Rigorous treatment of the problem at arbitrary rarefaction rates requires analysis of
the two-dimensional unsteady Boltzmann equation, which is formidably challenging.
Advantageously, the DSMC method could be applied in the present work up to
sufficiently low rarefaction rates, to capture the system behaviour in the transition and
continuum limits. This replaced the utilisation of near-continuum schemes, such as the
Navier–Stokes–Fourier slip flow and higher-order hydrodynamic models, that should
have been tackled numerically in the current set-up. A desired extension of the present
investigation would be an asymptotic analysis of the near-free-molecular problem. In
particular, the consideration of low yet finite t/Kn values may provide valuable insight
into the effect of slight molecular collisions on acoustic scattering at a solid edge. This,
together with the investigation of the counterpart nonlinear problem, where large initial
deviations from equilibrium are considered, constitute topics for future study.

Supplementary material. Supplementary material are available at https://doi.org/10.1017/jfm.2024.1003.

Declaration of interest. The authors report no conflict of interest.
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Appendix A. The acoustic field in the free-molecular limit

Appendix A details the acoustic-field perturbations in the free-molecular limit for the
cases of isothermal (iso) and specular (spec) plate systems. The tabulation is split
into expressions valid in the upper (y > 0, § A.1) and lower (y < 0, § A.2) half-planes,
following the assumption that the initial perturbation is confined to the former.

A.1. Upper half-plane
Focusing on the ξx and ξy quadratures in (3.16) and carrying the changes of variables
xr = x − (ξx/ξy)y (see (3.9)) between ξx and xr, and tr = t − y/ξy (see (3.10a,b)) between
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ξy and tr, we denote, for the isothermal-wall calculation,

I(iso)
m,n (t, x, y > 0) = yn+1

π

∫ t

0

1
(t − tr)m+n+3

∫ 1/2

−1/2
ρ+

w (tr, xr)(x − xr)
m

× exp

[
− y2

(t − tr)2

(
1 +

(
x − xr

y

)2
)]

dxr dtr. (A1)

For the counterpart specular-plate set-up, we set (see (3.4))

I(spec)
m,n (t, x, y > 0) = 1

π3/2

∫ ∞

−∞

∫ ∞

y/t

∫ ((x+1/2)/y)ξy

((x−1/2)/y)ξy

φin(xin, yspec, ξ)ξm
x ξn

y

× exp[−ξ2
x − ξ2

y − ξ2
z ] dξx dξy dξz. (A2)

Additionally, we introduce

Jm,n(t, x, y > 0) = 1
π

∫ 0

−∞

∫ ∞

−∞
ξm

x ξn
y [ρin(xin, yin) + Tin(xin, yin)(ξ

2
x + ξ2

y − 1)]

× exp[−ξ2
x − ξ2

y ] dξx dξy + 1
π

∫ ∞

0

∫ ∞

((x+1/2)/y)ξy

ξm
x ξn

y [ρin(xin, yin)

+ Tin(xin, yin)(ξ
2
x + ξ2

y − 1)] exp[−ξ2
x − ξ2

y ] dξx dξy

+ 1
π

∫ ∞

0

∫ ((x−1/2)/y)ξy

−∞
ξm

x ξn
y [ρin(xin, yin) + Tin(xin, yin)(ξ

2
x + ξ2

y − 1)]

× exp[−ξ2
x − ξ2

y ] dξx dξy + 1
π

∫ y/t

0

∫ ((x+1/2)/y)ξy

((x−1/2)/y)ξy

ξm
x ξn

y [ρin(xin, yin)

+ Tin(xin, yin)(ξ
2
x + ξ2

y − 1)] exp[−ξ2
x − ξ2

y ] dξx dξy. (A3)

Hereafter, the numerical evaluation of all improper integrals is carried out by replacing
the unbounded integration intervals with bounded intervals. All integrals converge rapidly
due to the exponential decay of their integrands at |ξx|, |ξy| � 1.

Applying (A1)–(A3) to express the acoustic fields in (3.16), we obtain, for the
isothermal-plate system,

ρ(iso)(t, x, y > 0) = I(iso)
0,0 ( y > 0) + J0,0( y > 0),

u(iso)(t, x, y > 0) = I(iso)
1,0 ( y > 0) + J1,0( y > 0),

v(iso)(t, x, y > 0) = I(iso)
0,1 ( y > 0) + J0,1( y > 0),

P(iso)
xx (t, x, y > 0) = I(iso)

2,0 ( y > 0) + J2,0( y > 0),

P(iso)
yy (t, x, y > 0) = I(iso)

0,2 ( y > 0) + J0,2( y > 0),

P(iso)
xy (t, x, y > 0) = I(iso)

1,1 ( y > 0) + J1,1( y > 0).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A4)

For the specular-wall case, the same expressions follow after replacing all I(iso)
m,n ( y > 0)

terms with I(spec)
m,n ( y > 0) given in (A2). Both isothermal- and specular-wall fields contain

free-space (Jm,n) and wall-reflection (Im,n) contributions to the acoustic disturbances. The
differences between I(iso)

m,n and I(spec)
m,n manifest the effect of wall conditions on the acoustic

field.
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Due to the difference in the ξz dependence of the integrand, the normal-to-plane stress
component Pzz (see (3.16)) cannot be tabulated entirely in terms of the above Im,n and Jm,n.
The expression for Pzz in the upper half-plane in the isothermal-plate case is

P(iso)
zz (t, x, y > 0) = 1

2
I(iso)
0,0 ( y > 0)

+ 1
2π

∫ 0

−∞

∫ ∞

−∞
[ρin(xin, yin) + Tin(xin, yin)(ξ

2
x + ξ2

y )] exp[−ξ2
x − ξ2

y ] dξx dξy

+ 1
2π

∫ ∞

0

∫ ∞

((x+1/2)/y)ξy

[ρin(xin, yin) + Tin(xin, yin)(ξ
2
x + ξ2

y )] exp[−ξ2
x − ξ2

y ] dξx dξy

+ 1
2π

∫ ∞

0

∫ ((x−1/2)/y)ξy

−∞
[ρin(xin, yin) + Tin(xin, yin)(ξ

2
x + ξ2

y )] exp[−ξ2
x − ξ2

y ] dξx dξy

+ 1
2π

∫ y/t

0

∫ ((x+1/2)/y)ξy

((x−1/2)/y)ξy

[ρin(xin, yin) + Tin(xin, yin)(ξ
2
x + ξ2

y )] exp[−ξ2
x − ξ2

y ] dξx dξy,

(A5)

whereas in the specular-wall set-up

P(spec)
zz (t, x, y > 0) = 1

2π

∫ ∞

y/t

∫ ((x+1/2)/y)ξy

((x−1/2)/y)ξy

[ρin(xin, yspec) + Tin(xin, yspec)(ξ
2
x + ξ2

y )]

× exp[−ξ2
x − ξ2

y ] dξx dξy + 1
2π

∫ 0

−∞

∫ ∞

−∞
[ρin(xin, yin)

+ Tin(xin, yin)(ξ
2
x + ξ2

y )] exp[−ξ2
x − ξ2

y ] dξx dξy

+ 1
2π

∫ ∞

0

∫ ∞

((x+1/2)/y)ξy

[ρin(xin, yin) + Tin(xin, yin)(ξ
2
x + ξ2

y )] exp[−ξ2
x − ξ2

y ] dξx dξy

+ 1
2π

∫ ∞

0

∫ ((x−1/2)/y)ξy

−∞
[ρin(xin, yin) + Tin(xin, yin)(ξ

2
x + ξ2

y )] exp[−ξ2
x − ξ2

y ] dξx dξy

+ 1
2π

∫ y/t

0

∫ ((x+1/2)/y)ξy

((x−1/2)/y)ξy

[ρin(xin, yin) + Tin(xin, yin)(ξ
2
x + ξ2

y )] exp[−ξ2
x − ξ2

y ] dξx dξy.

(A6)

A.2. Lower half-plane
Since the free-molecular system response in the lower half-plane is not affected by wall
reflections, the acoustic fields are identical between the isothermal- and specular-plate
set-ups for y < 0. Here, we introduce

Jm,n(t, x, y < 0) = 1
π

∫ 0

−∞

∫ ∞

((x+1/2)/y)ξy

ξm
x ξn

y [ρin(xin, yin) + Tin(xin, yin)(ξ
2
x + ξ2

y − 1)]
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× exp[−ξ2
x − ξ2

y ] dξx dξy + 1
π

∫ 0

−∞

∫ ((x−1/2)/y)ξy

−∞
ξm

x ξn
y [ρin(xin, yin)

+ Tin(xin, yin)(ξ
2
x + ξ2

y − 1)] exp[−ξ2
x − ξ2

y ] dξx dξy, (A7)

and obtain

ρ(t, x, y < 0) = J0,0( y < 0), u(t, x, y < 0) = J1,0( y < 0),

v(t, x, y < 0) = J0,1( y < 0), Pxx(t, x, y < 0) = J2,0( y < 0),

Pyy(t, x, y < 0) = J0,2( y < 0) and Pxy(t, x, y < 0) = J1,1( y < 0),

⎫⎬
⎭ (A8)

independent of the solid plate type. For the normal-to-plane stress component Pzz, we find
that

Pzz(t, x, y < 0) = 1
2π

∫ 0

−∞

∫ ∞

((x+1/2)/y)ξy

[ρin(xin, yin) + Tin(xin, yin)(ξ
2
x + ξ2

y )]

× exp[−ξ2
x − ξ2

y ] dξx dξy + 1
2π

∫ 0

−∞

∫ ((x−1/2)/y)ξy

−∞
[ρin(xin, yin)

+ Tin(xin, yin)(ξ
2
x + ξ2

y )] exp[−ξ2
x − ξ2

y ] dξx dξy. (A9)

Appendix B. Free-molecular impulse response

Starting with the upper half-plane, we substitute (5.1) together with (3.4) into (A2) and
(A3) and integrate. In the density-impulse case we obtain

I(spec,δρ)
m,n (t, x, y > 0) = 1

πt2
ξm

x1
ξn

yspec
H
(

ξx1 − x − 1/2
y

ξyspec

)
H
(
ξyspec − y

t

)

× H
(

x + 1/2
y

ξyspec − ξx1

)
e−ξ2

x1
−ξ2

yspec , (B1)

and

J(δρ)
m,n (t, x, y > 0) = 1

πt2
ξm

x1
ξn

y1

[
H(−ξy1) + H(ξy1)H

(
ξx1 − x + 1/2

y
ξy1

)

+ H(ξy1)H
(

x − 1/2
y

ξy1 − ξx1

)
+ H(ξy1)H

(y
t

− ξy1

)

× H
(

ξx1 − x − 1/2
y

ξy1

)
H
(

x + 1/2
y

ξy1 − ξx1

)]
e−ξ2

x1
−ξ2

y1 , (B2)

where

ξy1 = y − yδ

t
, ξyspec = y + yδ

t
, (B3a,b)

and ξx1 is specified in (5.6a,b). In the heating-impulse set-up we obtain

I(spec,δT )
m,n (t, x, y > 0) = 1

πt2
ξm

x1
ξn

yspec
(ξ2

x1
+ ξ2

yspec
− 1)H

(
ξx1 − x − 1/2

y
ξyspec

)

× H
(
ξyspec − y

t

)
H
(

x + 1/2
y

ξyspec − ξx1

)
e−ξ2

x1
−ξ2

yspec , (B4)

999 A105-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
03

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1003


A. Manela and Y. Ben-Ami

and

J(δT )
m,n (t, x, y > 0) = 1

πt2
ξm

x1
ξn

y1
(ξ2

x1
+ ξ2

y1
− 1)

[
H(−ξy1) + H(ξy1)H

(
ξx1 − x + 1/2

y
ξy1

)

+ H(ξy1)H
(

x − 1/2
y

ξy1 − ξx1

)
+ H(ξy1)H

(y
t

− ξy1

)

× H
(

ξx1 − x − 1/2
y

ξy1

)
H
(

x + 1/2
y

ξy1 − ξx1

)]
e−ξ2

x1
−ξ2

y1 . (B5)

Expressions for I(iso,δρ)
m,n (t, x, y > 0) and I(iso,δT )

m,n (t, x, y > 0) are obtained by substituting
(5.2) or (5.3) into (A1), and evaluating numerically.

Traversing to the lower half-plane, we find that

J(δρ)
m,n (t, x, y < 0) = 1

πt2
ξm

x1
ξn

y1

[
H(−ξy1)H

(
ξx1 − x + 1/2

y
ξy1

)

+ H(−ξy1)H
(

x − 1/2
y

ξy1 − ξx1

)]
e−ξ2

x1
−ξ2

y1 , (B6)

in the density-impulse case and

J(δT )
m,n (t, x, y < 0) = 1

πt2
ξm

x1
ξn

y1
(ξ2

x1
+ ξ2

y1
− 1)

[
H(−ξy1)H

(
ξx1 − x + 1/2

y
ξy1

)

+ H(−ξy1)H
(

x − 1/2
y

ξy1 − ξx1

)]
e−ξ2

x1
−ξ2

y1 , (B7)

for the delta-heating set-up, in both specular- and isothermal-wall configurations.
Expressions for the hydrodynamic fields in the upper and lower half-planes follow by

substitution of the above expressions for y > 0 and y < 0 into (A4) and (A8), respectively.
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