
THE COVERING OF SPACE BY SPHERES 

E. S. BARNES 

1. Introduction, Bambah (1) has recently determined the most econo­
mical covering of three dimensional space by equal spheres whose centres 
form a lattice, the density of this covering being 

(1.1) », = ^ x. 

As is well known, this problem may be interpreted in terms of the inhomo-
geneous minimum of a positive definite quadratic form. If f(x) = f(xi, 
x2, . . . , xn) (n > 2) is a positive quadratic form of determinant D, then, for 
any real a = (ah a2, . . . , an), we define nt(/; a) to be the minimum oîf(x+a) 
for integral x. The inhomogeneous minimum off(x) is then defined as 

m(f) = max m(/;«). 
a 

If now ûn is the density of the most economical covering of ^-dimensional 
space by lattice-ordered spheres, we have 

where Jn is the volume of the unit sphere : 

x\ + x\ + . . . + xl < 1. 
Thus (1.1) is equivalent to the assertion that 

(1.2) W>{%k°Î 
for all /(xi, x2, x3), and that the equality sign holds for some form/. 

It is natural to introduce here the notion of an extreme form, by analogy 
with the corresponding homogeneous problem. We shall say that /(#) is extreme 
if the ratio m(J)/D1/n is a (local) minimum, i.e. is not increased by any suffi­
ciently small variation of the coefficients of/. Forms for which m(f)/D1/n is an 
absolute minimum may be called absolutely extreme. Since m (J) and D are 
invariant under equivalence transformations (integral unimodular transforma­
tions of xu • • • ,xn), while m(f)/D1/n is unaltered by multiplying / by an 
arbitrary positive constant, the property of being extreme is shared by the 
class of forms consisting of all forms equivalent to a multiple of some one form 
of the class. 
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I prove here: 

THEOREM 1. If n = 3, there is just one class of extreme forms represented 
by 

(1.3) /o(#i, x2, x3) = 3x1 + 3x2 + 3x3 — 2xix2 — 2xix3 — 2x2x3; 

and for this class 

(1-4) m ( / ) _ ( i | p ) \ 

This theorem clearly includes the results of Bambah (1) (where the question 
of the existence of other classes of extreme forms is left open). 

The object of this paper is, however, not so much to establish the above 
refinement of Bambah's results as to give a much simpler proof, which also 
suggests a method of attacking the problem when n > 4. 

The starting point of the proof is Voronoï's method of reduction of a 
positive form / and the construction of the polyhedron II associated with / . 
These are discussed in §2. Theorem 1 is proved in §3, while §4 contains some 
remarks on the method and the possibility of extending it to higher dimensions. 

2. Reduced forms and their polyhedra. Voronoï (3, p. 150) has shown 
that every class of equivalent positive forms in 3 variables contains a form 
expressible as 

(2.1) f(xi, x2, x) = poiXi + P02X2 + po3#3 + Pn(xi — x2)2 + pisfri — *s)2 

+ P2S(X2 — X 3 ) 2 

where p{j > 0 (i, j — 0, . . . , 3); 

and clearly the p i ; are uniquely determined by / . We call such a form reduced 
(in the sense of Voronoï). 

The ptj are not in general determined by the class of / . We have in fact, 
defining for convenience 

Pij — PjU l > J J 

LEMMA 2.1. If p, q, r, s is an arbitrary permutation of 0, 1, 2, 3, then the form 

(2.2) ppgXi + pPTX2 + ppsXz + Pqr(Xl ~ X2)~ + Pqs(Xl ~ Xz) + prS(x2 ~ XZ) 

is equivalent to the form (2.1). 

Proof. The result is obvious if p = 0, since then (2.2) arises from (2.1) by 
the transformation Jv g * Jv 1 , J\i j ' X2f Xg * » ^ 3 ' 

I t therefore suffices to prove the 
result for p, q, r, s = 1, 0, 2, 3; this however corresponds to transforming 
(2.1) by 

X i •—» X i , X 2 —» X i — X 2 , X3 —•> X i — X 3 . 

This Lemma is the genesis of the suffix notation in (2.1), and provides an 
"argument by symmetry" which will be frequently used in what follows. 
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The set of points of space which are at least as near to the origin as to any 
integral point / (with the metric defined b y / ) forms a closed bounded convex 
polyhedron n , the intersection of the half-spaces 

where / runs through all integral points. II may in fact be defined by a finite 
number 2a < 2(23 — 1) of these inequalities of the type 

/(*) <f(x±lk) (k = 1 , . . . , (7) . 

The planes f(x) — f(x zfc lk) are then the faces of II. 
Perhaps the simplest method of obtaining Zi, . . . , /, is to use the criterion 

established by Voronoï (4, p. 277): a point / ( ^ 0 ) appears in the set 
± / i , . . . , ±/a if and only if the minimum of f(x) over x = / (mod 2) is attained 
only for x = db /. 

It is clear that, for the form (2.1), the minimum of f(x) for prescribed 
parities of Xi, x2j #3 is attained when the even xt are zero and the odd x^are all 
1 or all — 1; and in general (e.g., if all p^ > 0) only for these two sets. Thus, 
in general, II has 7 pairs of parallel faces, for which we can find a symmetrical 
notation as follows: 

Define x0 = 0, so that 
3 

/ = 53 PiMi— Xif> 
0 

and set 

df 3 w 
yt = J — = 53 PuiXi ~ XJ) (i = 0, . . . , 3) ; 

OX x j*=0 

then the 14 faces of II are given by 

Ft: tyt = 53 Pih 

(2.3) F^: 2(yt + yj) = 53 <J>u + Pu), 

Fijk: 2(yt + yj + yk) = 53 (PU + PJI + Pki), 
l9*i,j,k 

where all indices and summations run from 0 to 3. Since clearly ^ ^ = 0, 
the faces Fiy Fjkl and the faces Fijy Fkl are parallel, where i, j , k, I is any 
permutation of 0, 1, 2, 3. 

I t is easy to verify the faces 

Fi: 2yi = 2p0iXi + 2p12(xi — x2) + 2pi3(*i - x3) = poi + P12 + P13, 

(2.4) F12: 2(yi + y2) = 2p0iXi + 2p02x2 + 2pi8(*i - xz) + 2p2Z(x2 - xz) 

— P01 + P02 + Pl3 + P23, 

^123: 2(3/1 + y2 + yz) = 2p0iXi + 2p02x2 + 2p03#3 = Poi + P02 + P03, 
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determine a vertex vm of II; thus for example we have 

|2(yo + 3>i + yz)\ = |2y2 | = |po2 — P12 + P23I < P02 + P12 + P23. 

Applying all 4! permuta t ions of the suffixes 0, 1, 2, 3, we obtain 4! dis t inct 
sets (Fu Fijt Fijk) of faces determining 4! vertices vijk. Since II has a t mos t 4 ! 
vertices (4, p . 205), we have therefore determined all vertices of II. 

Our next task is to determine m ( / ) . From the definition of II it is clear 
t h a t 

m(f) = m a x / ( x ) ; 
xeU 

and by the convexity of II and of the ellipsoid f(x) < m(f) , it follows t h a t 

m (/) = m a x / 0 ) 

over all vertices v of II. 
T o calculate the values of/(*/), it suffices to e v a l u a t e / O m ) and then to apply 

all permuta t ions of suffixes in the ptj\ and the evaluat ion of f(vuz) m a y be 
simplified by observing t h a t 

f(x) = xiyi + x2y2 + xzyz. 

A direct calculation gives 

(2.5) 4:Df (Vi2z) = D(poi + P02 + P03 + Pl2 + Pl3 + P23) — K — 4p0lp03Pl2P23 

where D is the de te rminan t o f / (and of the equat ions (2.9)) and 1 

K = Yl PoiPo2Po3(pi2 + P13 + P23). 

Since D, ^2ptj a n d K are invar iant under permuta t ion of suffixes of the 
pij, it follows from (2.5) t h a t f(y) has a t most 3 dist inct values for vertices 
v of II. Denot ing these b y / 1 , / 2 , / 3 a n d set t ing 

( 2 . 6 ) Xl = p0lP23» X2 = P02P13, ^ 3 = P03pl2r 

we have 

4 0 / i = DÇLPU) - K - 4X2X3 

(2.7) 4Df2 = DÇZpv) - K - 4XiX3 

4Z>/3 = D(EPij) - K - 4XiXt. 

Since D{ft - fj) = \k(\t - X )̂ 

for i, j , k a permuta t ion of 1, 2, 3, the value of 

(2.8) m(f) = max(f i , /2 , /8) 

is easily decided from the relative magni tudes of Xi, X2, X3. 
T h e above analysis has been carried ou t on the assumption t h a t II has 14 
xWe use here the usual summation convention for symmetric functions, so that K is the 

sum of the four distinct terms obtainable by cyclic permutations of 0, 1, 2, 3. 
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faces. If some of the ptj vanish, some of the planes (2.4) are linearly dependent 
on the others and may be discarded. T h e effect of this is t h a t certain of the 24 
vertices coincide; thus if pi2 = pn = P23 = 0, II degenerates to a parallele­
piped, and/(z>) is the same for each of its 8 vertices. Such degeneration, how­
ever, does not affect the validity of our final results (2.7), (2.8). 

I t is convenient to note here, before proceeding to the proof of Theorem 1, 
some formulae concerning D, K and their derivatives. 

We have 

D = P01 + Pl2 + Pl3 — P\2 —Pl3 
-~Pl2 P02 + Pl2 + P23 —P23 
— P13 —P23 P03 + P13 + P23 

(2.9) = £ P01P02P03 + ]£ P01P23(P02 + P03 + P12 + Pl3) 

and, writ ing for convenience 

(2.10) <J\ = pjkpjl + PjkPkl + PjlPkl 

(where i, j , k, I is any permutat ion of 0, 1, 2, 3), 

(2.11) ~ = (TO + ai + X2 + X3. 
opoi 

Using symmetry , we obtain 

(2.12) 1 ^ - ^ ~ - = (70 " CT3 - Xx + X2, 
Cpoi opn 

(2.18) | ^ + | ^ _ | £ _ | ^ = _ 2 ( X l _ X 2 ) . 
OPOl OP2Z C7P02 OPlZ 

Similarly we find 

(2.14) T = P02P03(pi2 + P13 + P23) + P12P13(P02 + P03 + P23) 
OpQl 

+ P02P12P23 + P03P13P23 

(2.15) — = (X2 ~ Xi)(po3 + P12) — X3(poi — P02 + P23 ~ P13) 
opoi opn 

~~ (P03 + Pl2)(p01P02 — Pl3P23)î 

interchanging 1 and 2 and subtract ing gives 

(2.16) | ^ + | ^ - ^ - | ^ = 2(X2 - X 0 ( P . . + Pi.) 
CpOl OP23 Op02 Opu 

— 2X3(poi — P02 + P23 — Pl3)-

3. Proof of T h e o r e m 1. We take / in the form (2.1), and suppose t h a t 
/ is extreme. W e prove successively: (i) the two greater of Xi, X2, X3 mus t be 
equal ; (ii) Xi = X2 = X3; (iii) all ptj are equal. In each case the proof proceeds 
by exhibiting a variat ion of the coefficients ptj which, if the stated conditions 
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are not satisfied, contradicts our supposition t h a t / is extreme. It will always 
suffice to work to the first order of small quantities; we denote generally by 
8R the first order variation in a function R of the pij resulting from small 
variations ôptj. 

In order to apply the analysis of §2 to both / and the neighbouring form 
/ ' = Y,(pij + àpij)(xt — Xj)2, we must of course ensure that ptj + ôp{j > 0 
for all i, j . If all pt;- > 0, this will obviously hold for sufficiently small bptjol 
either sign. If our hypotheses do not allow us to infer that ôptJ ?£ 0 for some 
iy j we shall always choose the corresponding 5p0 > 0. 

LEMMA 3.1. If f is extreme, it is impossible that 

(3.1) Xi > X2 > X3. 

Proof. If (3.1) holds, we have m(f) = fu by (2.7), (2.8) ; and we shall have 
m(f') = f'i for any sufficiently near form/ ' . 

We choose 

dpoi = 5p23 = —• e, 6po2 — dpn =6 (e > 0), 

noting that (3.1) implies that p0i > 0, p23 > 0. Then, by (2.13), 

(3.2) 8D = - el T — + -r T — J = 2€(Xi - X2) > 0. 

We set 

(3.3) L = P(Po3 + P12) - X - 4X2X3, 

so that, by (2.7), 

(3.4) 4/1 = poi + P02 + P13 + P23 + L/D. 

Using (3.2) and (2.16) we find easily that 

ÔL = (Po3 + pit) ÔD - ÔK - 4Ô(X2X3) 

= — 2eX3(poi + P02 + P23 + P13), 
whence 

(3.5) ÔL < 0. 

We have also 

(3.6) L > 0. 

This may be verified by direct computation, using (3.3) and (3.1). We may 
argue more simply as follows: 

Since/(x) > / ( l , 1,0) = poi + P02 + Pu + P2ziorxi,x2,xz = 1,1,0 (mod 2), 
we have f(x) > Î(POI + P02 + P13 + P23) for xu x2, xz = J, J, 0 (mod 1); 
hence m(f) > }(POI + P02 + P13 + P23). Since/1 = m(/), (3.6) follows at once 
from (3.4). 

We have thus shown that 

3D > 0, Of 1 < 0, 
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whence, for all sufficiently small e > 0, 

m{f)D'-h =f\D'-t </xZr* = m(f)ZT*. 

This contradicts our assumption that / is extreme. 

LEMMA 3.2. Iffis extreme, it is impossible that 

(3.7) Xi = X2 > X«. 

Proof. If (3.7) holds, we have m(f) = f\ = / 2 > /3 ; and, for any sufficiently 
near form/' , m(/') = max ( / ' I , / ^ ) . We choose 

Ôpoi = ôp2Z = — €i, 5po2 = 5pi3 = — €2, 

5p03 ^ fy>12 = €i + €2, 

where ei > 0, e2 > 0 (noting that (3.7) implies that poi, p23, P02, P13 are all 
positive). By restricting €1, c2 to satisfy 

€l(p01 + P23) = €2(p02 + P23)» 

we ensure that 

d(\i - X2) = 0. 

By (2.13) and (3.7), and writing for convenience 

X ==: Xi == X2, 

we have 
( dD , dD dD dD\ , / dD , dD dD 

dD = e\ — - + —- - —- J + e2[~— + - —-
\dpo3 dpi2 apoi ap23/ \opoz opu apo2 

= 2ei(Xi - X») + 2€2(X2 - X3) 
= 2(€l + € 2 ) (X- X3) > 0. 

We set 

M = (pi2 + P13 + P2Z)D - K ~ 4X2X3, 
so that 

4/i = (poi + P02 + P03) + M/D. 

Arguing as in Lemma 3.1, we have 

h = m(/) >f(h i 4) = i(poi + P02 + P03), 

whence 
M > 0. 

Also, using (2.16) (with suitable permutations of the suffixes), we obtain 

ÔM = (pi2 + pu + P23)ôD - ôK - 4Ô(X2X3) 

= — (ei + €2)[(X — X3)(poi + P02) + Xpo3 + X3pi2] 

<0, 
since X > X3, poi + P02 > 0. 

dD 
do 1 3 / 
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Since 8D > 0, ô(p01 + p02 + P03) = 0 and SM < 0, we see that <5/\ < 0; 
and by symmetry df2 < 0. Hence for all sufficiently small ei, e2 we have 

D' > D, m(/') < m(f), 

contradicting our assumption t h a t / is extreme. 

LEMMA 3.3. If f is extreme, then 

(3.8) Xi = X2 = X3. 

Proof. By a suitable permutation of suffixes we can ensure that Xi > X2 >X3; 
the result now follows from Lemmas 3.1, 3.2. 

LEMMA 3.4. If f is extreme, it is impossible that 

(3.9) poi > Pl3, P02 > P23. 

Proof. Suppose that (3.9) holds. By Lemma 3.3, (3.8) holds and 

m(/) = / ! = / , = / , . 

We make the variation 

— 5poi = dpu = ci = e(poi + P13), 

•~5po2 = 5p23 = e2 = e(po2 + P23), 

5p03 = — 63 = — e(poi + p02 — Pl3 — P23)i 

5pi2 = 0, 

where e > 0. To justify this, we have to show that p0i > 0, P02 > 0, P03 > 0. 
Clearly p0i > 0, P02 > 0, by (3.9). If now p03 = 0, then X3 = 0, whence Xi = X2 

= 0 by (3.8) ; this gives p23 = 0, p i3 = 0, since p0i ^ 0, p02 ^ 0. But now 
f = poi#i + Po2̂ 2 + Pi2(xi — X2)2 and is clearly not positive definite. 

It is easy to see that, for all sufficiently small e, we have X'i = X'2 > XV 
so that the neighbouring form / ' has 

m(/') = / ' , ( = / ' , ) . 

For 

X'l — X'2 = (P01 — €i)(p23 + €2) — (P02 — €2)(pi3 + <a) 

= Xi — X2 — ei(po2 + P23) + e2(poi + P13) = 0 ; 

a n d 

ÔXi = p0l€2 — p23Cl = €(poipQ2 — Pl3p23) > 0, 

5X3 = ~ C3P12 < 0, 

so that X'i > XV 
We now obtain a contradiction to the fact that / is extreme by showing 

that 

(3.10) W = 0, bfx < 0. 
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By (2.12) and (2.11) we have 

dD dD TL -L\ 
= O"0 — 0"3 — Al "T A2 dpoi dpu 

= (p02 + Pl2 + P23)(pi3 + P23 ~ P01 — P02) + P02 ~ p23> 

and, by symmetry, 

dD dD 2 2 
_ ^p Q i _j_ p i 2 _|_ p 1 3 j ^ p 1 3 - j ~ p 2 3 — p 0 1 — p 0 2 j - j - p 0 1 — p 1 3 . 

CP02 Op23 

Hence 

(dD _ dD\ _ (dD _ dP\ 
\dpoi dpn/ \dp02 dp2z/ 

— ^(POI + P02 ~ Pl3 —• P23)[(p01 + Pl3)(p02 + Pl2 + P23) 

+ (P02 + P23)(P01 + P12 + P13)] 

~~ ^(poi + P13)(P02 ~" P23) ~~ e(po2 + P23)(P01 "~ P13) 

== €3[(poi + Pl3)(p02 + Pl2 + P23) + (p02 + P23)(P01 + Pl2 + P13) 

~~ (pOl 4" P13)(P02 + P23)] 

= e3((To + 0-3 + Xi T X3) 

D 
= €3 — , 

P03 

from which it follows immediately that ôD = 0. 
Writing, as in Lemma 3.1, 

L = (po3 + pu)D-K - 4X2X3 

we have, using W = 0, 

ÔL = Dôpoz - ÔK - 4ô(X2X3); 

and a calculation similar to the above, using (2.14), (2.15) and (3.8), gives 

àL = — 2e3po3[(poi + P12 + pi3)(po2 + P12 + P23) — P12] < 0, 

since e3 > 0, P03 > 0. As in Lemma 3.1 we deduce that ôfi < 0. 
This establishes (3.10), and the Lemma is proved. 

LEMMA 3.5. If f is extreme, then 

(3.11) Xi = X2 = X3 > 0. 

Proof. By Lemma 3.3, it suffices to prove the impossibility of 

(3.12) Xi = X2 = X3 = 0. 

Now if (3.12) holds, at least three ptj are zero. Since in any three ptj some 
suffix occurs at least twice, we may assume by symmetry that 

(3 .13) P13 = P23 = 0. 
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Since X3 = P03P12 = 0 and p03 7̂  0 (else / does not involve #3 and so is not 
definite) we have p i2 = 0. Thus 

r 2 , 2 , 2 
J = pOl^l -T P02#2 "T P03#3, 

and, s ince/ is definite, we have 

(3.14) poi > 0, P02 > 0. 

Now (3.13) and (3.14) contradict Lemma 3.4. 

LEMMA 3.6. If f is extreme, then 

(3.15) poi = P02 = P03 = Pl2 = Pl3 = P23» 

Proof. We first show that poi = P13. 
If Poi ^ P13, then, after interchanging 0 and 3 if necessary, we have 

Poi > P13. 

Since by Lemma 3.5 
Ai = P01P23 = P02P13 = X2 > 0, 

we have also 

P02 > P23-

By Lemma 3.4, these inequalities cannot hold. 
Thus poi = P13. By symmetry we have 

Pij == Pjk 

for any distinct suffixes i, j , k; from this (3.15) follows immediately. 

Lemma 3.6 shows that the only possible class of extreme forms is that 
represented by 

/o(*i, x2, xs) = x\ + x\ + x\ + (xi — x2)
2 + (xi - x3)2 + (x2 — x3)2; 

and (1.4) of Theorem 1 is simply verified for / = f0 by substituting ptj = 1 in 
the formulae of §2. 

Hence to complete the proof of Theorem 1 we have only to show that / 0 

is in fact extreme. A direct proof of this is not difficult, but is rather tedious. 
It is simpler to appeal to a general theorem of Hlawka (2) which asserts the 
existence of a most economical lattice-covering of space, and hence the exis­
tence of a class of absolutely extreme forms (which can only be the class 
of/o). 

4. Remarks on the method. Voronoï (3; 4; 5) has given two distinct 
methods of reduction of positive quadratic forms. The first is based on the 
concept of perfect forms, and leads to a finite number of regions R0, Ri, . . . , RT 

in the \n{n + 1)-dimensional coefficient space, with the properties: (i) any 
form is equivalent to a form lying in one of the regions R\ (ii) no two forms 
lying in the interior of different regions are equivalent. 
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The second is based on the consideration of types of space-filling polytopes 
(which may be derived from positive forms, as we derived II from / in §2), 
and leads to regions R'0l R'i, . . . , R'T having the same two properties. 

The "principal regions" i?0, R'o are derived respectively from the perfect 
form 

n  

4>o = 2 x2i + 12 xixJ 
1 i<j 

and its adjoint, a multiple of 
n  

1 i<j 

and in fact Ro = R'o-
For n = 2 and n = 3, Ro = R'o is the only region, and we obtain for n = 3 

the definition of reduction used in §2. For general n > 2, Ro is the set of forms 
expressible as 

(4.1) f(x) = £ Pij&i - %jf> Pij > 0 (hj = 0, 1, . . . , »), Xo = 0. 

I t is to be noted that the regions R or R' do not possess the property that 
no two forms interior to the same region are equivalent; for example, the 
result of Lemma 2.1 generalizes in the obvious way for the form (4.1). This 
fact, which (as Voronoï remarks) is normally a disadvantage in a method of 
reduction, is clearly seen from the analysis of §§2 and 3 to be of considerable 
advantage in the problem we have been investigating. What Voronoï's second 
method of reduction achieves is the specification of the broadest type of forms 
whose polytopes II (when not degenerate) are defined by the same set of 
integral points /; there is therefore little doubt that this method of reduction 
is best suited to the covering problem for each n > 2. 

In conclusion, it is perhaps worth noting that the case n = 2 (for which 
there is just one region R0 = R'o) is very simply settled by these methods, 
and leads to 

THEOREM 2. If n = 2, there is just one class of extreme forms, represented 
by 

fo(Xi, X2) = X\ + X2 — #1#2, 

and for this class 

We t a k e / in R0, i.e. 

f(xi, #2) = Poi*i + P02X2 + pn(xi — x2) , ptj > 0, 

for which 

D = P01P02 + P01P12 + P02P12, 

4Dm{f) = 4Df(v) = D(p0i + P02 + P12) - foifo2fi2, 

(the value oif(v) being the same for all vertices v of II). 
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If poi > P02, we take 8p0i = — e, 8p02 = e, e > 0, whence trivially D is 
increased and 

4/(») = (poi + P02) + Pi2(poi + P02V-D 

is not increased ; thus / cannot be extreme. 
By symmetry it now follows that, for extreme / , we require poi = P02, and 

so poi = P02 = P12. Theorem 2 follows at once. 
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