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MODELS FOR OFFICIAL ENTAILMENT

TORE FJETLAND ØGAARD

Department of Philosophy, University of Bergen

Abstract. This paper shows how to set up Fine’s “theory-application” type semantics so as to
model the use-unrestricted “Official” consequence relation for a range of relevant logics. The
frame condition matching the axiom (((A→ A) ∧ (B → B)) → C ) → C—the characteristic
axiom of the very first axiomatization of the relevant logic E—is shown forth. It is also shown how
to model propositional constants within the semantic framework. Whereas the related Routley–
Meyer type frame semantics fails to be strongly complete with regards to certain contractionless
logics such as B, the current paper shows that Fine’s weak soundness and completeness result
can be extended to a strong one also for logics like B.

§1. Introduction. This paper shows that there is a natural way to define semantical
consequence using the “theory-application” type semantics first set forth in [17]1 which
for a range of logics yields a strong soundness and completeness result relative to what
Anderson and Belnap, tongue-in-cheek, called the “Official” relation of deducibility
(cf. [1, sec. 22.2.1]).2

One of the striking features of Fine’s presentation is that it doesn’t present a frame
condition matching to the axiom

(((A→ A) ∧ (B → B)) → C ) → C.
This is the characteristic axiom of the first system for the logic E ever pres-
ented [2].3 One of the merely admissible rules of E is the
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strong completeness.
1 The content of Fine’s paper is also to be found as Section 51 of [3]. For a historical and

conceptual account of how this type of semantics relates to the ternary Routley–Meyer
semantics, see Dunn and Restall [16], Bimbó and Dunn [10], and Tedder [41].

2 Although the term is meant to carry a significant flavor of disapproval, I argued in Øgaard
[26] that Anderson and Belnap, in fact, acknowledge it as one of the correct accounts of
consequence.

3 Later Anderson and Belnap came to prefer an axiomatization in which this axiom was
replaced by two axioms—((A→ A) → B) → B and (�A ∧ �B) → �(A ∧ B), where �A :=
(A→ A) → A. The latter of these, however, fails to be a logical theorem of weaker logics
than E even though the mentioned characteristic axiom (A13) is. For instance, the logic
obtained from the system B (as set forth in this paper) augmented by A13, fails to have
(�A ∧ �B) → �(A ∧ B) as a logical theorem.
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2 TORE FJETLAND ØGAARD

following:4

(assertion rule) {A} � (A→ B) → B.
The system named ‘E’ in [17], however, has the assertion rule rather than the above

axiom as its characteristic feature. Furthermore, the frame condition which is specified
as adequate for the assertion rule, is as claimed, but fails, then, to adequately model
the E-axiom (((A→ A) ∧ (B → B)) → C ) → C . Although Fine’s set-up does suffice
for a weak completeness result—every semantically valid formula is a logical theorem
of E—it doesn’t yield a strong completeness result in any straight forward sense.5

This paper shows how to model the characteristic axiom of E, and how to tweak
Fine’s semantics so as to yield strong completeness. It is also shown how to model
propositional constants—such as the Ackermann constant—within Fine’s semantics.

Fine’s semantics is a type of frame semantics, the evaluation points of which are best
thought of as theories—sets of sentences closed under conjunction and what Anderson
and Belnap called entailment, so that the consequent of a provable conditional belongs
to the theory if the antecedent does. The ground theory, relative to a set of premises
Θ, of any frame can in general be thought of as the theory generated by the Official
consequence relation—the set of Official consequences of Θ. In Fine’s set-up, such a set
need not be prime. For instance, p ∨ ∼p is a logical theorem of E, but neither p nor ∼p
need to belong to the ground theory. The related ternary Routley–Meyer semantics,
on the other hand, dispenses with all such nonsaturated evaluation points.

The Routley–Meyer semantics can also model Official consequence for a range of
logics, including E.6 It cannot, however, model this relation for all logics. Examples
of this failure include the contractionless relevant logics B, DW, TW, and EW. The
set of logical theorems of each of these logics is prime (cf. [38, 39]). This, however,
does not extend in the requisite way to Official consequence in that the mentioned
contractionless logics all fail to have derivable the disjunctive version of all of their
primitive rules. In the case of the first three, {A ∨ C, (A→ B) ∨ C} � B ∨ C fails
to be a derivable rule, whereas in the case of the latter, the disjunctive version of

A system is here to be understood as an axiom system—a set of axioms and rules—
together with a definition of derivability. A logic is the consequence relation generated by
such a system, relative to a language. To be precise, then, a logic is to be identified as a pair
〈L,�L〉, whereL is a language, and�L is the consequence relation generated using the system
L over the language L. The languages considered in this paper are set forth in Definition 2.2.
To avoid confusion, I’ll use bold-faced capital letters to refer to logics, and italicized capital
letters to refer to systems. The system E defined in Definitions 2.3 and 2.5, then, axiomatize
the logic E as understood in this paper.

4 Assertion is a name for the axiom A→ ((A→ B) → B); restricted assertion a name for
(A→ C ) → (((A→ C ) → B) → B) (cf. [1, p. 26]).

5 I should hasten to note that Official consequence is representable as enthymematical
consequence in the case of logics like E—B is Officially derivable from a set of formulas
Δ if and only if A ∧ Tm → B is a logical truth of E, where A is a conjunction of a subset
of Δ, and Tm is a logical truth of E. No such result, however, has been shown to hold in
case of weaker logics like B. Hence the need for the more direct approach to be provided in
this paper. Furthermore, the enthymematical deduction theorem does not hold using Fine’s
axiomatization E, seeing as for any propositional variable p, there are no logical theorem
T of E such that (p ∧ T ) → ((p → p) → p) is a logical theorem. That this is so is easily
checked using MaGIC [37].

6 Cf. [3] and [28].
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its characteristic rule—the already mentioned assertion rule—fails to be derivable.
This is indeed the case not only for EW, but even for the logic obtained from Fine’s
axiomatization E mentioned above.7 The semantical consequence relation used in the
Routley–Meyer semantics, however, counts a rule as truth-preserving just in case it
is truth-preserving over—depending on the set-up—a single or collection of ground
points. Since each point validates a disjunction if and only if it validates at least one
disjunct, it follows that if a rule {A1, ... , An} � B is truth-preserving, then so is its
disjunctive version {A1 ∨ C, ... , An ∨ C} � B ∨ C . It follows, then, that such a set-up
cannot yield a strong completeness result for the mentioned contractionless logics. In
allowing for nonsaturated theories, then, Fine’s semantics allows one to model Official
consequence for a range of logics outside the reach of, if not all, then at least the
standard ways of setting up the Routley–Meyer semantics.

Some systems for relevant logics come equipped with disjunctive rules.8 This paper
also shows that there is but a single frame condition which must be added so as to
obtain a semantics fit for the disjunctive extension of a given logic. All in all, then,
this makes Fine’s semantics both very flexible as well as more encompassing than the
Routley–Meyer semantics.

The Official consequence relation for relevant logics fails to satisfy the standard
notion of relevance—variable sharing from premises to conclusion—as it allows every
logical theorem to follow from any set of formulas. The question arises, therefore,
as to the very motivation for studying Official consequence for these logics. Here are
two reasons for doings so. First of all, relevant logicians often do apply the Official
consequence relation.9 A useful formal semantics ought to be able to model such
applications. The other reason that I want to highlight is the following: In order to
have an informed debate within the philosophy of logic as to how best to understand
the core ideas of logical consequence—such as the very notion of relevance—it is
arguably preferable not to have formal results restricted by the particular aims of a
specific school of logic. To show that this latter point also pertains to the current case,
note that some logicians have argued that the Official consequence is the correct notion
of logical consequence whilst claiming that the Official consequence relation of any
acceptable logic must satisfy certain properties of relevance. For instance, Avron [4]
sets forth the property called the basic relevance criterion (BRC) and argued it to be the
“most basic criterion for relevance” [4, p. 28].10 Avron [5] showed that R satisfies BRC
using a weak completeness theorem for the Routley–Meyer semantics. Avron’s proof
relies on the enthymematical deduction theorem mentioned in fn. 5. Avron’s proof
can, however, be tweaked so as not to rely on this feature if a strong completeness
theorem is available (cf. [29]). It is easily shown that a strong completeness result using

7 See [28] for a discussion of this.
8 According to Brady [13], the use of such rules trace back to Meyer. The use of disjunctive

rules as in this paper can be found in for instance [12], [31], and [32].
9 Here are but a few examples: For the case of relevant arithmetic, see for instance [14],

[35], [40], [25], and [34]. McKubre–Jordens and Weber [23] explicitly acknowledges the use
of Official consequence in investigating relevant analysis, whereas the naı̈ve set theories
investigated in [35], [13], [30], [42] and [18] are all closed under Official consequence.

10 See [29] for a discussion of Avron’s suggestion. A consequence relation � satisfies BRC just
in case Γ � A if Γ ∪ Δ � A, where Δ shares no propositional variable with Γ ∪ {A}.
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Fine’s semantics would do as well.11 This paper shows for the first time that a range
of familiar relevant logics—logics like B—which fail to have the disjunctive version of
all of their rules derivable, are strongly sound and complete with regards to a frame
semantics. The result, then, can be used to prove that such weak logics satisfy BRC.

The plan for the paper is as follows: The next section sets forth some initial
definitions, including how axiomatizations of logics are to be pieced together and
how Official consequence is to be understood. Then follows a section setting forth
the proof-theoretic machinery, then one dedicated to the semantics. The trailing two
sections show soundness and completeness, respectively, before the final section gives
a short summary. There is also an appendix which goes into a slight trouble with Fine’s
semantic clause for the propositional constant expressing “maximum necessity.” The
appendix explains a different fix suggested by one of the referees than what is found in
the main part of the paper.

§2. Initial definitions.

Definition 2.1 (Parenthesis conventions). ∨ and ∧ are to bind tighter than →, and so
I’ll usually drop parenthesis enclosing conjunctions and disjunctions whenever possible.
Association is otherwise to the left and so ∼A ∧ B ∧ C → D ∨ E is simply shorthand
for ((∼A ∧ B) ∧ C ) → (D ∨ E).

Definition 2.2. The languages considered in this paper are all to be built up from the
set of propositional variables Var := {p0, p1, ...} together with any subset of the set of
propositional constants Con := {c0, c1, ...}, using the connectives ∼,∧,∨, and →.

For presentational purposes, it will suffice to restrict the attention to a single
propositional constant—c—and so the axioms and rules to be considered for
propositional constants will all be stated using ‘c.’12

Definition 2.3 (Official consequence/entailment13). An Official proof of a formula
A from a set of formulas Γ using the axiom systemL is defined to be a finite listA1, ... , An
such that An = A and every Ai≤n is either a member of Γ, a logical axiom of L, or there
is a set Δ ⊆ {Aj | j < i} such that Δ � Ai is an instance of a rule of L. The existential
claim that there is such a proof is written Γ �OL A.

Although the only derivability relation which will be used in this paper is the Official
one, it is worth stating clearly the one used in Fine’s paper (cf. [17, p. 351]).

Definition 2.4 (L-deducibility). For any system L, B is L-deducible from Δ if there
is a sequence of formulas A0, ... , An such that B = An and ∀i ≤ n: Ai ∈ Δ or ∃j, k < i
such that Ai = Aj ∧ Ak or ∃j < i such that ∅ �OL Aj → Ai .

11 The main ingredient of the BRC-proof is that the class of frames for a logic is closed under
products, something the Fine-type frames set forth in this paper are easily verified to be.

12 See [27] for a more general inquiry into propositional constants for relevant logics in the
context of the so-called simplified Routley–Meyer semantics.

13 This notion of a proof yields what is called an E-theory in [20]. See [9] for a detailed
investigation into Maksimova’s contribution to relevant logics.
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Definition 2.5 (Systems).

B A1–A7; R1–R5
DW A1–A8; R1–R4
TW A1–A10; R1–R2
EW TW [R6]
T TW [A11, A12]
E T [A13]
Π′ E[R7]
R T [A14].

Definition 2.6 (Logic). If ‘L’ is a name for a system over a language L, then ‘L’ is a
name for the logic obtained from L, i.e., the consequence relation {〈Θ, A〉 | Θ �OL A &
Θ ∪ {A} ⊆ wffL}.

Definition 2.7. A logic L2 extends a logic L1 just in case every well-formed formula
(wff ) of L1 is a wff of L2 and that for every set of L1-wffs Γ ∪ {A}, if Γ �OL1

A, then also

Γ �OL2
A.

Every logic considered in this paper will be extensions of the relevant logic B. The
system for B used in this paper, along with some of the more common systems for
relevant logics, is set forth in Definition 2.5. The axioms and rules of any system to be
considered in this paper are all found in Table 1. Universal claims on the form “every
system ...” are, then, to be understood as tacitly restricted to this rather restricted class
of systems.

Definition 2.8. For any system L and axioms/rules �1, ... , �n:L[�1, ... , �n] is the system
obtained by adding �1, ... , �n as axioms/rules and expanding the language to include any
connective occurring in �1, ... , �n which is not already present in L.

Definition 2.9 (Derivable versus admissible rules).

• A rule Δ � A is said to be derivable in a logic L just in case Δ� �OL A� for every
uniform substitution �.

• A rule Δ � A is said to be admissible in a logic L just in case for every uniform
substitution �, if (∅ �OL �� for every � ∈ Δ), then ∅ �OL A� .

As we’ll see, Fine’s semantics can easily be set up so as to yield strong soundness
and completeness for systems with added primitive disjunctive rules. The following
definition allows for easier reference to such systems.

Definition 2.10. If L is a system with {�1, ... , �n} ⊆ {R1 – R7, c6} as rules, then Ld is
the system obtained by adding �d1 – �dn as further rules, where �di is the disjunctive version
of the rule �i .

Definition 2.11. Ld is the logic obtained from any systemMd , where M axiomatizes L.

Proposition 2.1. Ld is well defined.

Proof. It suffices to show that the disjunctive rules of a system Md are derivable
using the system Nd , where M and N both axiomatize L. This follows easily from the
fact that for any system L, if A1, ... , An �OLd B , then A1 ∨ C, ... , An ∨ C �O

Ld
B ∨ C .

Proposition 2.2. E = Ed .
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Table 1. Axioms and rules

(A1) A→ A
(A2) A→ A ∨ B and B → A ∨ B
(A3) A ∧ B → A and A ∧ B → B
(A4) A ∧ (B ∨ C ) → (A ∧ B) ∨ (A ∧ C )
(A5) (A→ B) ∧ (A→ C ) → (A→ B ∧ C )
(A6) (A→ C ) ∧ (B → C ) → (A ∨ B → C )
(A7) ∼∼A→ A and A→ ∼∼A
(A8) (A→ B) → (∼B → ∼A)
(A9) (A→ B) → ((C → A) → (C → B))
(A10) (A→ B) → ((B → C ) → (A→ C ))
(A11) (A→ (A→ B)) → (A→ B)
(A12) (A→ ∼A) → ∼A
(A13) ((A→ A) ∧ (B → B) → C ) → C
(A14) A→ ((A→ B) → B)
(A15) A ∨ ∼A
(R1) {A,B} � A ∧ B
(R2) {A,A→ B} � B
(R3) {A→ B} � (C → A) → (C → B)
(R4) {A→ B} � (B → C ) → (A→ C )
(R5) {A→ B} � ∼B → ∼A
(R6) {A} � (A→ B) → B
(R7) {A,∼A ∨ B} � B
(c1) c

(c2) c → (A→ A)
(c3) c → (A ∨ ∼A)
(c4) (c → c) → c

(c5) (c → A) → A
(c6) {A} � c → A
(c7) A→ (c → A)
(c8) A ∧ ∼A ∧ c → B
(c9) c ∧ ∼c → A
(c10) A1 → (...→ (An → c) ...) (1 ≤ n)

Proof. This follows from the fact that Rd1 and Rd2—disjunctive adjunction and
disjunctive modus ponens—are derivable rules of E. That this is the case follows easily
from the fact that reasoning by cases holds in E, so that if {A} �OE C and {B} �OE C ,
then also {A ∨ B} �OE C (cf. [24, p. 461]).

A quick note on commonly used propositional constants is in order. The Church
constant� is often added to relevant logics with the intended reading of being a “trivial”
truth. The frame condition corresponding to c10 ensures that c holds throughout the
frame and ensures, then, that any c so axiomatized is indeed a trivial truth. The
more interesting category of propositional constants often goes by the name of
the Ackermann constant. There are two “standard” readings of such a constant. The first
is as the conjunction of the theory at hand. Ifw is to be read as such a constant, one may
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consider w as an axiom, along with the rule {A} � w → A, or its stronger axiomatic
formA→ (w → A). The other standard reading is of a logical truth of some sort. If t is
to express logical truth, then it seems unfitting in the context of Official consequence to
have the rule {A} � t → A become derivable. One may therefore consider axiomatizing
it using t → (A→ A) (and in some cases also further axioms such as t → (A ∨ ∼A))
to ensure that t relevantly implies every logical truth, along with either t or, if a modal
reading is sought after, �t, to ensure that t itself comes out as (necessarily) true.14

§3. Models for Official entailment. The semantics set forth in [17] is a frame
semantics in which the evaluation points are to be thought of as theories. There is
a distinguished ground theory in every frame which truth in a model is defined with
respect to. Fine uses ‘l’ to designate this ground theory. Seeing as this theory ends
up being the set of logical theorems of the logic in question, the name can be read
as short for logic. The ground theory when Official consequence is the study object,
however, ends up containing not only the set of logical theorems, but every Official
consequence of the set of premises. So as to avoid confusion, I will therefore use ‘@’
to refer to the distinguished theory of any frame. I follow Fine’s example in letting
T be the set of theories (the evaluation points) of a frame, and S its set of saturated
such. The theories in S are called saturated because they “contain a disjunct of any
contained disjunction” and as such “answer every either-or question they raise” [17,
p. 349]. Every frame comes with what has become known as the Routley star operator
which interprets negation,15 and a partial order on the set of theories for the relation
of subtheory-hood. The last ingredient of a frame is a binary function on theories
intended to be interpreted as theory application. For theories t and u, t · u is committed
to a proposition P just in case there is a proposition Q in u such that t is committed
to Q being sufficient for P.16 I follow Fine in letting t, u, v, ... range over elements
of T, whereas a, b, c, ... range over elements of S. I will therefore suppress restricted
quantifiers to T and S whenever this increases readability.17

Definition 3.1. A B-frame is a sextuple

F = 〈T, S,@, ·, ∗,�〉
such that for every a, b, c ∈ S and t, u, v, w ∈ T ,

14 See [1] for Anderson and Belnap’s discussion of such constants, and [27] for a discussion
of their view. Propositional constants often come in pairs, one positive and one negative.
For want of space, this paper focuses on positive constants. Negative one—those constants
ci for which A→ ci is to read as some form of negation of A—can be modeled using the
defined compatibility relation tCiu := ∃v(t · u � v & v 	∈ Ci ) in line with [27] with, then,
t � A→ ci ⇔ ∀u(tCu ⇒ u � A). For more on such a compatibility relations, see Dunn
[15], Berto [6], Berto and Restall [7], and Restall [33, sec. 11.4].

15 The Routley star in the form stated below dates back to [36]. It is, however, a mere notational
variant of the semantic clause for negation given in [8] (cf. [16, sec. 3.4]) Fine calls the star-
mate of a theory its co-theory.

16 For more on how to interpret the semantics philosophically, the reader is referred to [19] and
[21].

17 Normally a class of frames is defined with reference to a logic rather than a system as will be
the case in this paper. The reason frames are defined this way here is because it’s convenient
to differentiate frames fit for L-systems and Ld -systems even though L and Ld might be the
same logic as is the case for E.
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1. @ ∈ T
2. S ⊆ T
3. · : T 2 �→ T
4. ∗ : S �→ S
5. � is a reflexive, transitive and antisymmetrical relation on T
6. u � t & v � w ⇒ u · v � t · w
7. t · u � a ⇒ ∃b∃c((t � b & u � c) & (b · u � a & t · c � a))
8. @ · t = t
9. a∗∗ = a
10. a � b ⇒ b∗ � a∗.

It will also be convenient to use the following abbreviations:

• S(t) := {a ∈ S | t � a}
• L := {t | ∀u(u � t · u)}.

Definition 3.2. If F is any frame for a system L, and ci is a propositional constant
not occurring in the language of L, then a frame for L augmented by this propositional
constant is obtained by adding a truth set— a frame element Ci , which can be any
subset of T that satisfies the condition that

∀t(t ∈ Ci ⇔ S(t) ⊆ Ci).

I’ll use ‘C’ for the truth set of the generic propositional constant ‘c.’

Definition 3.3. A function φ : T × At �→ {0, 1} is an evaluation function for a frame
provided it satisfies the condition that

φ(t, p) = 1 ⇔ ∀a(t � a ⇒ φ(a, p) = 1)

for every t ∈ T and p ∈ At (and a ∈ S).
If φ is an evaluation function on a frame F , then M = 〈F , φ〉 is called a model over F .

Definition 3.4. For every model there is a commitment relation � generated as follows:

(i) t � p ⇔ φ(t, p) = 1
(ii) t � A ∧ B ⇔ t � A & t � B
(iii) t � A ∨ B ⇔ ∀a(t � a ⇒ (a � A or a � B))
(iv) t � ∼A ⇔ ∀a(t � a ⇒ a∗ � A)
(v) t � A→ B ⇔ ∀u(u � A⇒ t · u � B)
(vi) t � ci ⇔ t ∈ Ci .

Definition 3.5.

• A formula A is true in a model M—M � A—just in case @ � A.
• A rule {A1, ... , An} � B preserves truth in M, just in case (∀i ≤ n : M �
Ai ) ⇒ M � B .

• A formula (rule) holds in a frame F just in case it is true (preserves truth) in
every model M over F .

• Official semantic consequence in a model: for any set of formulas Θ ∪ {A},

Θ �OM A⇔ (M � B for every B ∈ Θ ⇒ M � A).

• An L-model is a model which satisfies all the frame conditions corresponding to
the axioms and rules of L.
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Table 2. Fine’s frame conditions

Frame condition

F(A8) t · a � b ⇒ t · b∗ � a∗
F(A9) t · (u · v) � (t · u) · v
F(A10) t · (u · v) � (u · t) · v
F(A11) (t · u) · u � t · u
F(A12) a · a∗ � a
F(A14) t · u � u · t
F(A15) ∀a(@ � a ⇒ a∗ � a)
F(R6) t · @ � t
F(R7) ∀a(@ � a ⇒ ∃b(@ � b & b � a & b � b∗))

• Official semantic consequence for a system L: for any set of formulas Θ ∪
{A},

Θ �OL A⇔ Θ �OM A for every L-model M.

Lemma 3.1 (Saturatedness lemma). For any model M, with t ∈ T and A any formula,

t � A⇐⇒ ∀a(a ∈ S(t) ⇒ a � A).

Proof. By induction on the complexity of A.

1. The atomic case is by definition of an evaluation function at the commitment
relation for such.

2. c: Trivial given the requirement on C that ∀t(t ∈ C ⇔ S(t) ⊆ C).
3. ∨: From Definition 3.4(iii) using the fact that � is reflexive.
4. ∼, ∧ and →: See [17].

Lemma 3.2 (Persistence lemma). For any model M, with t, u ∈ T and A any formula,

t � u & t � A =⇒ u � A.
Proof. Since t � u ⇒ S(u) ⊆ S(t), the claim follows from Lemma. 3.1.

To obtain, then, a frame for any logic extending B axiomatized using any of the
axioms and rules displayed above, one adds the associated frame conditions. These are
listed in Tables 2 and 3. To obtain a frame for any such system augmented with the
disjunctive version of every one of its primitive rules—if the system in question is one
of the Ld -systems of Definition 2.10—one must in addition add the frame condition
F(d ).

Fine makes use of a defined disjunction. The following lemma simply shows that the
commitment clause used here is equivalent to the defined one used by Fine.

Lemma 3.3. For any t in any model, t � A ∨ B ⇔ t � ∼(∼A ∧ ∼B).

Proof. Left for the reader.

Lemma 3.4. For any model M,

1. @ ∈ L

2. t ∈ L & t � u ⇒ u ∈ L

3. t ∈ L ⇒ t � A→ A
4. a � A ∨ B ⇔ a � A or a � B.
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Table 3. Frame conditions for A13, c-principles, and disjunctedness

Frame condition

F(A13) ∀t∃u(u ∈ L & t · u � t)
F(c1) @ ∈ C

F(c2) C ⊆ L

F(c3) C ⊆ {t | ∀a(t � a ⇒ a∗ � a)}
F(c4) ∀t(∀u(u ∈ C ⇒ t · u ∈ C) ⇒ t ∈ C))
F(c5) ∀t∃u(u ∈ C & t · u � t)
F(c6) C ⊆ {t | @ � t}
F(c7) C ⊆ {t | ∀u(u � u · t)}
F(c8) ∀t(t ∈ C ⇒ ∃a(t � a & t � a∗))
F(c9) ∀t(t ∈ C ⇒ ∃a(t � a & a∗ ∈ C))
F(c10) ∀t(t ∈ C)
F(d ) @ ∈ S

Proof.

1. From Definition 3.1(5 & 8).
2. Assume that t ∈ L & t � u. For u ∈ L, it must be the case that v � u · v, for

every v ∈ T . Since t ∈ L, v � t · v, and since t � u, it follows from Definition
3.1(5–6) that t · v � u · v. Since � is transitive, it therefore follows that v � u · v.

3. Assume that t ∈ L. To show that t � A→ A, let u ∈ T be such that u � A.
Since t ∈ L, it follows that u � t · u, and so t · u � A by Lemma 3.2. But then
t � A→ A by Definition 3.4(v).

4. See [17, p. 350].

Before we turn to soundness, note the following.

Proposition 3.1. L ⊆ C in any F(c5)-frame.

Proof. Assume that t ∈ L. To show that t ∈ C it suffices by Definition 3.2 to show
that a ∈ C for every a ∈ S(t). By F(c5) there is some u ∈ C such that a · u � a. Since
t ∈ L and t � a, it easily follows that a ∈ L. But then u � a · u, and so u � a. By
Definition 3.2 it now follows that a ∈ C.

§4. Soundness. The goal of this section is simply to prove the strong soundness
theorem. The main work that goes into this is simply to check that the frame conditions
are sufficient for ensuring that the axioms and rules hold true.

Lemma 4.1.

• The axioms and rules of B are true / preserve truth in any model.
• For 8 ≤ n ≤ 15 and n �= 13: An holds true in any model which satisfies F(An).
• For 6 ≤ n ≤ 8: Rn preserves truth in any model which satisfies F(Rn).

Proof. See [17].18

18 There is a slight lacuna in Fine’s soundness proof for R7 (cf. [17, p. 358]) in that it does
not cover the case in which S(@) = ∅. Note, however, that if so then S = ∅—if a ∈ S,
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The following lemma allows for slightly shorter proofs in that in order to establish
that @ � A→ B it suffices to show that t � B for any t ∈ T such that t � A. I will in
the following do so without reference to the lemma.

Lemma 4.2. @ � A→ B ⇐⇒ ∀t(t � A⇒ t � B).

Proof. Trivial given Definitions 3.1(8) and 3.4(v).

Lemma 4.3 (F(A13) � A13). A13 holds in any model which satisfies F(A13).

Proof. In order to show that @ � (((A→ A) ∧ (B → B)) → C ) → C , assume that
t � ((A→ A) ∧ (B → B)) → C . It suffices to show that t � C . By F(A13) there is
some u such that u ∈ L and t · u � t. That u � (A→ A) ∧ (B → B) follows from
Lemma 3.4(3), and so by the commitment clause Definition 3.4(v) it follows that
t · u � C . That t � C follows then from Lemma 3.2.

Lemma 4.4 (F(c1) � c1). c1 holds in any F(c1)-frame.

Proof. Trivial.

Lemma 4.5 (F(c2) � c2). c2 holds in any F(c2)-frame.

Proof. From Lemma 3.4(3).

Lemma 4.6 (F(c3) � c3). c3 holds in any F(c3)-frame.

Proof. To show that @ � c → (A ∨ ∼A), let t � c. Then t ∈ C. We must show that
t � A ∨ ∼A, so let a ∈ S(t). We must show that a � A or a � ∼A, so assume that
a � ∼A. By the commitment clause for negation, there is some b � a such that b∗ � A.
Since a � b, it follows by Definition 3.1(10) that b∗ � a∗. By F(c3) it then follows
that b∗ � a, and so Lemma 3.2 yields that a � A.

Lemma 4.7 (F(c4) � c4). c4 holds in any F(c4)-frame.

Proof. To show that @ � (c → c) → c, let t be any theory such that t � c → c. Then
for every u ∈ C, t · u ∈ C. By F(c4), then, t ∈ C, and t � c by the commitment clause
for c.

Lemma 4.8 (F(c5) � c5). c5 holds in any F(c5)-frame.

Proof. Similar to the case for A13.

Lemma 4.9 (F(c6) � c6). c6 holds in any F(c6)-frame.

Proof. Assume that @ � A. To establish that @ � c → A, let t be any theory such
that t � c. Then t ∈ C, and so @ � t by F(c6). Lemma 3.2 yields then that t � A from
the assumption that @ � A.

Lemma 4.10 (F(c7) � c7). c7 holds in any F(c7)-frame.

Proof. To show that @ � A→ (c → A), let u be any theory such that u � A. To
show that u � c → A, we must show that u · t � A for any theory t such that t � c. If
t � c, then t ∈ C, and so u � u · t by F(c7). By Lemma 3.2 it therefore follows that
u · t � A.

then @ · a � a and so by Definition 3.1(7) there is some b ∈ S such that @ � b. It is easily
realized that the only possible assignment function for such a frame is the one for which
φ(t, p) = 1 for every t and p. An easy induction then yields that t � A for every t and A. It
follows that R7 preserves truth in such a frame.
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Lemma 4.11 (F(c8) � c8). c8 holds in any F(c8)-frame.

Proof. Similar to the case for c9.

Lemma 4.12 (F(c9) � c9). c9 holds in any F(c9)-frame.

Proof. To show that @ � c ∧ ∼c → A, assume for contradiction that there is a theory
t such that t � c ∧ ∼c. Then t � c and so t ∈ C. By F(c9) there is some a ∈ S(t) such
that a∗ ∈ C, and so a∗ � c. However, since t � ∼c it follows that a∗ � c. Contradiction.
Trivially, therefore, t � c ∧ ∼c ⇒ t � A.

Lemma 4.13 (F(c10) � c10). c10 holds in any F(c10)-frame.

Proof. Since (... (@ · t1) · ...) · tn ∈ T = C, it easily follows that @ � A1 → (...→
(An → c) ...).

Lemma 4.14. For any rule � and model M based on a frame F : if � preserves truth in
M and F(d ) holds true in F , then �d also preserves truth in M.

Proof. Let � be some rule {A1, ... , An} � B . To show, then, that �d , that is, {A1 ∨
C, ... , An ∨ C} � B ∨ C , preserves truth, assume that @ � Ai ∨ C for every i ≤ n.
Since @ ∈ S, it follows using Lemma. 3.4(4) that either @ � Ai for every i ≤ n, or
@ � C . If the latter is the case, then it follows that @ � B ∨ C . If @ � Ai≤n, then since
� preserves truth in the model in question, it follows that @ � B , and therefore that
@ � B ∨ C .

We have now seen that the axioms and rules all hold true provided the corresponding
frame conditions are enforced. As an easy corollary, then, we have the following result.

Theorem 4.1 (Strong soundness).

Θ �OL A =⇒ Θ �OL A,

where L is any system obtainable from one listed in Definition 2.5 by adding any number
of the axioms and rules listed in Table 1 as well as the disjunctive extension of any such.

§5. Completeness. The goal of this section is to prove that for any set of formulas
Θ ∪ {A},

Θ �OL A =⇒ Θ �OL A,

where L is as in the above soundness theorem. It will be assumed, therefore, that
Θ ∪ {A} is any set of formulas such that Θ �

O

L A and use this to construct a model in
which Θ holds true, but A does not. The construction is that of [17], taking cues for
how to generalize this to the Official setting from [31].

Definition 5.1. For any set of formulas Π,Δ and Θ:

• �Π is the set of all members of Π on the form A→ B .
• Δ is a Π-theory :=

1. A,B ∈ Δ ⇒ A ∧ B ∈ Δ
2.

→
Π �OL A→ B ⇒ (A ∈ Δ ⇒ B ∈ Δ)

• Δ is prime := A ∨ B ∈ Δ ⇒ (A ∈ Δ or B ∈ Δ)
• Δ · Θ := {B | ∃A(A ∈ Θ & A→ B ∈ Δ)}
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• Δ is Π-deductively closed := Δ ∪ �Π �OL A⇒ A ∈ Δ
• Δ is nontrivial := A �∈ Δ for some formula A, and Δ �= ∅.
• Δ is Π-canonical := Δ is a nontrivial Π-theory.

Definition 5.2 (The canonical frame & model). The canonical frame for a set of
formulas Θ ∪ {α} such that Θ �

O

L α, where L �= Ld , is defined as follows:
canonical frame C = 〈T, S,@, ·, ∗,�,C〉, where

1. @ := {B | Θ �OL B}
2. T := {t | t is @-canonical}
3. S := {t ∈ T | t is prime}
4. t · u := {C | ∃B(B ∈ u & B → C ∈ t)}
5. for a ∈ S : a∗ := {B | ∼B �∈ a}
6. t � u ⇔ t ⊆ u
7. C := {t | c ∈ t}.

The canonical frame for Ld is defined in the same way as in the nondisjunctive case,
except that @ is defined to be some—any will do—disjunctive extension of {B | Θ �OL B}.
The other elements in the frame are, then, to be @-canonical relative to this disjunctive
extension.

The canonical model for the frame defined above is given by the evaluation function
φ(a, p) = 1 ⇔ p ∈ a.

Lemma 5.1. @ in canonical frames for logics axiomatized using disjunctive rules exists.

Proof. That one may extend a set t = {B | Θ �OL B}, where Θ �
O

L α, to one prime and
deductively closed set a ⊇ t in which α is not a member is the content of the corollary
in [31].

Lemma 5.2. If t is any @-theory, Γ is closed under disjunction, and Γ ∩ t = ∅, then
there is a prime @-theory a ⊇ t such that Γ ∩ a = ∅.

Proof. See [31]

Lemma 5.3. If t is any @-theory with some A �∈ t, then there is a a ∈ S(t) such that
A �∈ a.

Proof. This is an easy corollary to Lemma 2 in [31].

Theorem 5.1. The L-canonical frame defined above is a frame.

Proof. We need to check that any canonical frame satisfies Definition 3.1(1–10), and
that ∀t(t ∈ C ⇔ S(t) ⊆ C).

(1) @ ∈ T : Trivial.
(2) S ⊆ T : Trivial.
(3) · : T 2 �→ T : See [17].
(4) ∗ : S �→ S: That any a∗ is prime and closed under conjunction is shown in

[17]. To show that it is closed under
→
@-derivable conditionals, assume that

→
@ �OL A→ B and that A ∈ a∗. Then by definition of the Routley star we have

that ∼A �∈ a, and furthermore that
→
@ �OL ∼B → ∼A. Since a ∈ T it follows

that ∼B �∈ a, and therefore that B ∈ a∗.
(5) � is a reflexive, transitive and antisymmetrical relation on T: Trivial.
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(6) u � t & v � w ⇒ u · v � t · w: Straightforward.
(7) t · u � a ⇒ ∃b, c((t � b & u � c) & (b · u � a & t · c � a)): Let t · u ⊆ a.

ū := {A | ∃B[B �∈ a & A→ B ∈ t]}
t̄ := {A | ∃B∃C [

→
@ �OL A→ (B → C ) & B ∈ u & C �∈ a]}.

Rather straightforwardly, then, u ∩ ū = t ∩ t̄ = ∅. That ū is closed under
disjunction (see [17]). That t̄ is closed under disjunction: Assume thatA1, A2 ∈
t̄. Then there areB1, B2 ∈ u andC1, C2 �∈ a such that both

→
@ �OL A1 → (B1 →

C1) and
→
@ �OL A2 → (B2 → C2). Since a is prime it follows that C1 ∨ C2 �∈ a,

but since u ∈ T that B1 ∧ B2 ∈ u. Using the rules of the system B it is easy

to establish that
→
@ �OL A1 ∨ A2 → (B1 ∧ B2 → C1 ∨ C2), and so it follows that

A1 ∨ A2 ∈ t̄. By Lemma 5.2 it now follows that there are prime b, c such
that t ⊆ b and u ⊆ c which fail to intersect, respectively, t̄ and ū. b and
c are therefore nontrivial and as such @-canonical theories and therefore
members of S. It remains to show that b · u ⊆ a and t · c ⊆ a. Suppose first
thatB ∈ b · u. By canonical · there is someA ∈ u such thatA→ B ∈ b. b does
not intersect t̄, so A→ B �∈ t̄, and so by definition of the latter together with

the fact that
→
@ �OL (A→ B) → (A→ B) it follows that B ∈ a. Now suppose

that B ∈ t · c. There is, then, some A ∈ c such that A→ B ∈ t. Since c does
not intersect ū, it follows that A �∈ ū, and so by definition of the latter it
follows that B ∈ a.

(8) @ · t = t: Suppose thatB ∈ @ · t. Then by definition there is someA ∈ t with
A→ B ∈ @. Since t is @-canonical it follows that B ∈ t. Assume now that
A ∈ t. Since A→ A ∈ @ it follows that A ∈ @ · t.

(9) a∗∗ = a: See [17].
(10) a � b ⇒ b∗ � a∗: See [17].

(C) Lastly, we must show that ∀t(t ∈ C ⇔ S(t) ⊆ C). First, assume that t ∈ C. Then by
definition of C in the canonical model, c ∈ t, and so c ∈ a for every a ∈ S(t). Lastly,
assume that t �∈ C. Then c �∈ t by the definition ofC in the canonical model. By Lemma
5.3 there is a prime extension a of t not containing c, and so S(t) �⊆ C.

Lemma 5.4. A ∈ t ⇔ t � A for any formula A and any t ∈ T in any L-canonical
theory.

Proof. The base case for propositional variables and for c are immediate from
definition of the canonical model.

The inductive case for B → C is the only one in which the proof given in [17] makes
reference to L-derivability (cf. Definition 2.4). It suffices, then, to make sure that this
case also holds in the context of Official derivability, so assume for inductive hypothesis
that it is true for B and C. Assume first thatB → C ∈ t and that u is any theory such that
u � B . By IH we then have that B ∈ u, and so by canonical definition of · it follows
that C ∈ t · u. IH then yields that t · u � C . Since u was arbitrary it then follows that

t � B → C . Lastly assume that t � B → C . Let u := {D |
→
@ �OL B → D}. u is clearly

@-canonical with B ∈ u. By IH it follows that u � B , and so t · u � C which by IH
yields that C ∈ t · u. By canonical definition of · it follows that there is some A ∈ u
such thatA→ C ∈ t. But then

→
@ �OL B → A and therefore

→
@ �OL (A→ C ) → (B → C )
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since every system L has the suffixing rule R3 as at least derivable. But thenB → C ∈ t
since t is @-canonical.

Lemma 5.5. For any system L which yields A13 as a theorem, with �A :=
(A→ A) → A,

1. ∅ �OL �(A→ A)
2. {�A,�B} �OL �(A ∧ B)
3. {A→ B,�A} �OL �B

4. {�A} �OL (A→ B) → B.

Proof. See [28].

Lemma 5.6 (A13 � F(A13)). If A13 is a theorem, then any canonical frame satisfies
F(A13).

Proof. Let � := {B | ∅ �OL �B}. To complete the proof it suffices to prove the
following three statements:

1. � ∈ T in every canonical frame.
2. � ∈ L in every canonical frame.
3. t · � � t for every t ∈ T of any canonical frame.

1. � is nontrivial since A→ A ∈ � (Lemma 5.5(1)) and the logics in question are
all sublogics of classical logic. That it is closed under adjunction follows from
Lemma 5.5(2) and closed under �@-derivable conditionals follows from Lemma
5.5(3). Thus � ∈ T .

2. To show that � ∈ L, we must show that for every u ∈ T , u ⊆ � · u. Let, therefore,
B ∈ u. B → B ∈ � by Lemma 5.5(1), and so B ∈ � · u by the definition of · in
the canonical frame.

3. To show that t · � ⊆ t for every t ∈ T , let C ∈ t · �. By definition of · in the
canonical frame there is some B ∈ � such that B → C ∈ t. But then ∅ �OL �B ,
and so it follows from the assumption that t ∈ T together with Lemma 5.5(4)
that C ∈ t and so t · � ⊆ t.

Lemma 5.7 (c1 � F(c1)). If c1 is a theorem, then any canonical frame satisfies F(c1).

Proof. If c is a theorem, then c ∈ @, and so @ � c by Lemma 5.4. Since the canonical
model is a model, it follows that @ ∈ C by the commitment clause for c.

Lemma 5.8 (c2 � F(c2)). If c2 is a theorem, then any canonical frame satisfies F(c2).

Proof. Let t ∈ C. To show that t ∈ L, we must show that u ⊆ t · u for any u ∈ T ,
so assume that A ∈ u. Since t ∈ C, c ∈ t, and so A→ A ∈ t. But then A ∈ t · u by the
definition of · in the frame-canonical.

Lemma 5.9 (c3 � F(c3)). If c3 is a theorem, then any canonical frame satisfies F(c3).

Proof. Let t ∈ C, and a be any prime @-theory such that t ⊆ a. We must show
that a∗ ⊆ a, so assume that A ∈ a∗. By definition of the Routley star in the canonical
model, it follows that ∼A �∈ a. Since t ∈ C, a ∈ C, and soA ∨ ∼A ∈ a. But thenA ∈ a
since a is prime.

Lemma 5.10 (c4 �F(c4)). If c4 is a theorem, then any canonical frame satisfiesF(c4).
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Proof. We must show that ∀t(∀u(u ∈ C ⇒ t · u ∈ C) ⇒ t ∈ C) holds in the canoni-
cal model. To that end, let t be such that t �∈ C, and κ := {B | ∅ �OL c → B}. It is easy to
verify that κ thus defined is @-canonical. That κ ∈ C is obvious. The proof ends if we
can show that t · κ �∈ C. Assume for contradiction that t · κ ∈ C. There must then be
someB ∈ κ such thatB → c ∈ t. But then∅ �OL c → B , and so∅ �OL (B → c) → (c → c)
by the suffixing rule R4. Since t is @-canonical it then follows that c → c ∈ t and by c4
that c ∈ t. Contradiction.

Lemma 5.11 (c5 �F(c5)). If c5 is a theorem, then any canonical frame satisfiesF(c5).

Proof. Let κ be as in the above lemma. From the proof above, it follows that κ ∈ C,
since c4 is a theorem if c5 is. The only thing left to check is that t · κ ⊆ t for every
t ∈ T . Assume to that end that A ∈ t · κ. By definition of the application operator, it
follows that there is some B ∈ κ such that B → A ∈ t. Since B ∈ κ, ∅ �OL c → B , from
which it easily follows that ∅ �OL (B → A) → (c → A). Since c4 is a logical theorem, it
follows that ∅ �OL (B → A) → A. Since t is an @-theory, it now follows that A ∈ t.

Lemma 5.12 (c6 � F(c6)). If c6 is a derivable rule of the logic, then any canonical
frame satisfies F(c6).

Proof. Let t ∈ C. Then t � c, and so c ∈ t by Lemma 5.4. To show that @ ⊆ t,
let A ∈ @. Since @ is @-deductively closed, it follows that c → A ∈ @. Since t is an
@-theory, it follows that A ∈ t.

Lemma 5.13 (c7 �F(c7)). If c7 is a theorem, then any canonical frame satisfiesF(c7).

Proof. Let t ∈ C and u be any theory. We must show that for every u ∈ T , u ⊆ u · t,
so assume that B ∈ u. Since u is a theory and c7 holds in the logic, it follows that
c → B ∈ u from which Lemma 5.4 yields that u � c → B . Since t ∈ C it follows that
t � c and so u · t � B . Lemma 5.4 then yields that B ∈ u · t which ends the proof.

Lemma 5.14 (c8 �F(c8)). If c8 is a theorem, then any canonical frame satisfiesF(c8).

Proof. Let t ∈ C. Then c ∈ t. By Lemma 5.2 there is some nontrivial a ∈ S such
that t ⊆ a. We must show that t ⊆ a∗, so assume for contradiction that there is some
A such that A ∈ t and A �∈ a∗. By definition of the Routley star in the canonical frame
it follows that ∼A ∈ a. But then A ∧ ∼A ∧ c ∈ a. Since c8 is a theorem it now follows
that a is the trivial theory which it cannot be since a ∈ T . Contradiction.

Lemma 5.15 (c9 �F(c9)). If c9 is a theorem, then any canonical frame satisfiesF(c9).

Proof. Similar to the proof of Lemma 5.14.

Lemma 5.16 (c10 � F(c10)). If c10 is a theorem, then any canonical frame satisfies
F(c10).

Proof. Let t be any @-canonical theory. t is, then, nonempty, so assume that A ∈ t
for some formula A. Since t is @-canonical and A→ c is an instance of c10, it follows
that c ∈ t. By lem. 5.4 it then follows that t � c, which by definition of C yields that
t ∈ C.

Lemma 5.17. The frame condition F(d )—that @ ∈ S—holds true in any canonical
frame for any logic Ld.

Proof. By definition of the canonical frame for such logics.
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We have now seen that the frame conditions hold in the canonical model provided the
logic in question validates the corresponding logical axiom/rule. As an easy corollary,
then, we have the following result.

Theorem 5.2 (Strong completeness).

Θ �OL A =⇒ Θ �OL A,

where L is any system obtainable from one listed in Definition 2.5 by adding any number
of the axiom and rules listed in Table 1 as well as the disjunctive extension of any such.

§6. Summary. This paper has shown how Fine’s “theory-application” type seman-
tics for relevant logics can be set up such as to yield a strong soundness and
completeness result relative to what Anderson and Belnap, tongue-in-cheek, called
“Official” consequence. Fine’s own frame condition, although fitting for its intended
purpose of yielding a weak completeness proof for E, is too strong to support a
strong completeness theorem. The frame condition corresponding to the axiom (((A→
A) ∧ (B → B)) → C ) → C was therefore presented. It was furthermore shown how
to model propositional constants and how ten different axioms and rules for such
constants are to be modeled in Fine’s semantics. The completeness result shows then,
that it is possible to set up Fine’s semantics so as to yield a strong completeness result
even for logics—like the contractionless logics B, DW, TW, and EW—which fail to
have the disjunctive version of every derivable rule as yet another derivable rule. This
contrasts with the more familiar Routley–Meyer semantics which, under the standard
ways of setting up the semantics, is only weakly complete with regards to these logics. It
was also shown that a single frame condition can be added to Fine’s semantics to ensure
that such disjunctive rules are truth-preserving, allowing, then, for a strong soundness
and completeness result for, among others, the above mentioned contractionless logics
augmented by the disjunctive versions of their primitive rules. This shows that Fine’s
semantics is both more flexible and more comprehensive than has previously been
noted.

§A. On the commitment criterion for maximum necessity. Fine [17] considers a
“maximum necessity” constant T and sets the commitment clause for it as follows:

t � T ⇔ l � t.

l is the ground theory which in the current context is named ‘@.’ In Fine’s set-up,
l is the theory which in the canonical model ends up being the set of logically true
formulas of the logic in question, and so in this model any theory t is committed to T
just in case it contains the set of logical truths. Fine’s axiomatization of T consists of
T as a sole axiom, as well as the rule {A} � T → A, corresponding, then, to c1 and c6
as used in this paper. First of all, note that Fine’s commitment clause does hold true
in the canonical models for logics in which c satisfies Fine’s criteria for a “maximum
necessity”:

Proposition A.1. t � c ⇔ @ � t holds in the canonical model of any logic dealt with
in this paper provided c is a theorem and {A} � c → A is a derivable rule.

Proof. Left for the reader.
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Figure 1. An E-model.

There is a slight problem with Fine’s commitment criterion for T, however: it fails
to yield the saturatedness lemma (Lemma 3.1), contra to what is claimed in Fine [17,
p. 359]:19

Proposition A.2. The saturatedness lemma fails to hold if the language in question
includes a propositional constant c for which the commitment clause is t � c ⇔ @ � t.

Proof. Consider the E-model displayed in Figure 1.20 @ � c but 1 � c by the assumed
commitment clause. However, since S(1) = {@}, it follows that the saturatedness
lemma fails.

Inspecting the model used in the above theorem it is evident that the saturatedness
lemma fails even if one were to require that every frame be such that S �= ∅ or even
that S(t) �= ∅ for every t ∈ T . Note, however, that S(1) ⊆ S(@), but @ �� 1. One of
the referees suggested that one can hold on to Fine’s commitment clause, provided
every frame is demanded to satisfy

(S�) ∀t∀u(S(t) ⊆ S(u) ⇒ u � t)
Their proof that t � c ⇔ S(t) ⊆ S(@)—which is the needed part in order for the

saturatedness lemma to go through—was as follows:

Suppose that for all a ∈ S(t), a � c. Then for all a ∈ S(t), @ � a, so
S(t) ⊆ S(@), hence @ � t. The other direction is trivial.

As the referee also pointed out, the condition holds true in the canonical model. To
show this, I’ll first prove the following lemma:

Lemma A.1. In any canonical frame, A ∈ t ⇔ A ∈
⋂
S(t).

19 Fine’s commitment clause is also used in the “updated” version of his paper [3, sec. 51], and
in Mares’ recent book (cf. [21, pp. 232f]). The fix mentioned below works in all cases.

I would also like to mention that Fine’s commitment clause for his propositional constant
is also used in the accounts given of Fine’s semantics in Bimbó and Dunn [10, 11]. Note,
however, that the only requirement on an evaluation function therein used is the persistence
requirement familiar from Routley–Meyer semantics—for any propositional variable p and
theories t and s, if φ(t, p) = 1 and t � s , then φ(s, p) = 1—rather than the saturatedness
requirement of Definition 3.3. As a result, the saturatedness lemma is allowed to fail even for
propositional variables. A model in the sense of Bimbó and Dunn [10, 11], therefore, need
not be a Fine model. As an example, consider the model displayed in Figure 1, but with the
evaluation function φ replaced φ′ specified as ∀t ∈ T∀p ∈ At(φ′(t, p) = 1 ⇔ t ∈ S). This
yields a model in the sense of Bimbó and Dunn as it does satisfy the persistence requirement.
It is evident, however, that φ′ fails the saturatedness requirement.

20 The model was found using Mace4 (cf. [22]). In fact it is a model of the logic Æ (cf. [26])
seeing as it validates c2, c5, and c9, provided the truth set C for c is set as = L.
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Proof. If A is a member of t, then it’s also a member of every prime extension of t.
If A �∈ t, then since A ∨ A→ A is a theorem of every logic under question, Γ ∩ t = ∅,
where Γ is the disjunctive closure of {A}. It follows from Lemma 5.2 that there is a
a ∈ S(t) such that Γ ∩ a = ∅. Thus A �∈

⋂
S(t).

Proposition A.3. (S�) holds in any canonical frame.

Proof. Assume that S(t) ⊆ S(u). To show that u ⊆ t, let A ∈ u. From Lemma A.1
it follows that A ∈

⋂
S(u).

⋂
S(u) ⊆

⋂
S(t) by elementary properties of sets, and so

A ∈
⋂
S(t) which by Lemma A.1 suffices for concluding that A ∈ t.

By adding the frame condition, therefore, one can retain the much used commitment
clause for an Ackermann constant.

§B. Correspondence. The proof of Lemma 5.6 establishes something stronger than
needed, namely that the following condition holds:

F(A13)
 ∃u∀t(u ∈ L & t · u � t).
With regards to strong soundness and completeness, then, it would be fine to prune
away F(A13)-frames which fail to validate F(A13)
. There is a sense in which the
sharp frame condition is too strong for A13, however. This can be brought out using
the notion of correspondence:

Definition B.1. A frame condition X corresponds to a logical principle P just in case
for every frame F : F satisfies X if and only if P holds in F .

Proposition B.1. F(Ax13)
 does not correspond to Ax13.

Proof. The frame displayed in Figure 1 satisfies F(A13), but not F(A13)
. By
Lemma 4.3, however, A13 holds in the frame.

It would take us too far afield to go further into the issue of correspondence.21 I
would like to note, however, the following open problem:

Open problem B.1. Does F(A13) correspond to A13?

Acknowledgments. I would like to express my sincere gratitude for the comments
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