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ABSTRACT. Freezing processes in temperate ice 
consisting of a mixture of pure ice with water inclusions 
are studied for the case that the initial amount of moisture 
content is uniform . By introducing a cold source at the 
center of the ice specimen, the cold front propagates 
outwards leaving behind pure cold ice with a temperature 
distribution dictated by the exact set-up of the cold source. 
The speed of the front is directly related to the water 
content of the temperate ice and depends essentially on the 
Stefan condition. 

Three types of initial and boundary conditions are 
considered and realized in uniaxial, cylindrical, and / or 
spherical symmetry: (I) a metallic core at a temperature 
below the freezing point is initially brought into contact 
with the ice and the system is left free to evolve; (2) the 
metallic core is kept at constant temperature below freezing; 
(3) Case (2) is repeated with an insulating air layer between 
the metallic core and the ice. 

I . INTRODUCTION 

The dynamic role of the liquid-water content in 
temperate ice remains one of the unsolved problems in 
glaciology despite the fact that it has been shown to affect 
flow at the melting point (Lliboutry, 1976; Lliboutry and 
Ouval, 1985) and that first theoretical models (Hutter, 1982; 
Fowler, 1984; Hutter and others, 1988) have pointed out its 
significance in the global boundary conditions. In fact, very 
little is known about water content in temperate glaciers. 
Typical values found by Vallon and others (1976) in an ice 
core of an alpine glacier are between 0 and 4%. 

Two methods have been proposed for measuring liquid 
water in glaciers. (i) The dielectric constant of the mixture 
ice-water depends on the relative presence of the two 
components and may serve as an indicator of water content. 
But this method , used for snow, is not sensitive enough and 
the dielectric constant may vary with other parameters such 
as grain boundaries or point defects. (ii) The calorimetric 
method consists of measuring the amount of energy needed 
to freeze the water in a given volume of temperate ice. It 
has the advantage of being very sensitive , and the results 
are less influenced by the other parameters. However, the 
use of an adiabatic calorimeter requires the extraction of an 
ice core . Stresses in the probe are thus changed, and this 
modifies the water content (Raymond, 1976). 

The need for a calorimetric method for in- situ 
measurements (i.e. in the bulk of the glacier, without 
extracting a core) led us to study the problem of the 
propagation of a "cold wave" in an ice-water mixture. The 

wave front consists of a surface of phase change tha t 
separates cold ice from the ice-water mixture. Its speed 
depends on the imposed boundary conditions on the 
specimen and the water content. By determining the 
migration of this well-defined boundary, we may thus infer 
the water content in the specimen (Fig. I) . 
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Fig . 1. Temperature 0/ the ice Qnd position 0/ the illter/ace 
during the experiment. 

The method of determining IV by this procedure is an 
inverse problem, because its distribution must be inferred 
essentially from information gained along the boundary of 
the domain. Such problems tend to be difficult and sensitive 
to measurement and numerical error. Here, however , two 
simplifications may be justifiably invoked which make the 
problem tractable and, as our results show, reasonably stable 
to numerical error. First, length scales that are considered 
are a few centimetres (less than 0.25 m) over which water 
contents in the vein system and the inclusions may be 
regarded as constant. Secondly, the region outside the 
phase-change surface may be considered to be a "bath" with 
uniform conditions. This bath will only affect the solution 
of the freezing problem at the phase-change surface . This 
implies that the water content should only vary very slowly 
over length scales of the above-mentioned 0.25 m. Field 
observations lead us to be confident about these 
assumptions. 
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Approximate analytical solutions of the solidification 
problem exist for one-dimensional geometries (see 
Vujanovic, 1989). We chose to solve the problem 
numerically as it seemed most suitable for the various 
boundary conditions we consider. 

2. THE INITIAL VALUE PROBLEM 

2. I. Hypotheses 
Consider a specimen of temperate ice at 0

0 

C. Assume 
that a metal mass has been inserted at its center and that 
the contact between the metal and the temperate ice is 
perfect. We may consider two types of Gedankenexperimellls: 

(I) Assume that at time I = 0 the metal mass is suddenly 
set at a prescribed temperature To below the freezing 
point and the system is subsequently left free to evolve. 

(2) Assume that at time I = 0 the metal mass is subject to 
a temperature jump and that its new temperature (below 
freezing) is kept constant while the surrounding ice is 
free to adjust its thermal state to the new conditions. 

In both cases, the cold will propagate from the metal 
into the ice and freeze the interstitial water. The cold front 
that forms the surface of phase change between the wholly 
cold ice and the ice-water mixture can be identified 
experimentally as the location where the temperature 
gradient suffers a jump and thus a kink in the temperature 
profile arises. Observations have shown these to be clearly 
identifiable. 

We impose the following idealized initial conditions: 

The temperate ice is an homogeneous mixture of water 
and ice uniformly at the melting temperature = O°C. 

The specimen is thought of as infinitely large so as to 
eliminate the influence of finite boundaries. 

The cold source (metal) is an infinite sheet, an infinitely 
long wire, or a spherical ball, i.e. linear, axial, or 
spherical symmetry prevails. 

The metal is a perfect conductor and the contact between 
the ice and the metal is perfect. (This condition will 
be relaxed later on.) 

2.2. Equations 
Because of the spatial symmetry, only posll1ons with 

o < r < R(I) need be considered . The metal mass ranges 
from r = 0 to r = a, the ice from r = a to r = "", whereas 
the cold ice occupies the domain a ~ r ~ R(I), R(I) being 
the position of the phase-change surface. In this latter 
domain, the heat-conduction equation is 

a < r < R(I), > 0 (I) 

where PI' is the ice density (= 918 kg m-3), c' is the heat 
.1 

capacity of ice (= 2.12 x 103 J kg- I K- I), ki IS the thermal 
conductivity of ice (= 2.2 W K- I m-I), 9 is the temperature, 
and l1 is the Laplacian. Throughout this text, the dot 
represents the time derivative. 

Boundary conditions have to be satisfied at the 
interface "cold ice-temperate ice" r = R(I) and at r = a. At 
the former, the heat flow from the phase-change surface is 
balanced by the latent heat released by freezing, viz. 

Be 
k·- = L·w·p·R(t) (2) 

I an I I 

at r R(I), I > 0, and 

El = O. (3) 

Here, Li is the latent heat of fusion, w is the moisture 
content just ahead of the freezing front, and B/ all denotes 
the spatial derivative perpendicular to the phase-change 
surface. 

At r = a, heat flow and temperature must be 
continuous . However, for very small values of a and a 
perfect conduction, we may regard the metal as a body 
with uniform temperature and heat capacity V cpcc". Here, 
Vc is the volume of the metal (copper) piece. The I1me rate 
of change of the heat stored in the copper, V cpccce must 

42 

then be balanced by the heat flow through the contact 
surface with the ice, 

Be 
-dS 
all (4) 

at r = a, 
experimenl 
have 

I > 
(I ). 

O. This condition applies to Gedanken­
When the temperature is held constant, we 

(5) 

at r = Q, I > O. Finally, we have the following initial 
conditions: 

9(a,1 = 0) To' (6) 

R(I) = 0) Q. (7) 

To simplify the equations, we use the problem 
symmetries and then introduce dimensionless variables. If the 
cold source is a plate, a cylinder or a sphere, we will use 
Cartesian, cylindrical, or spherical coordinates. Equation (I) 
will be respectively 

(I' ) 

(I ") 
Be 

P'C -
I C al 

[

. a2e Cartesian, 

k:a[;:~' • C as] , cylindrical, 
ar r Br 

[
a2

9 2 Be] 
. - + - - , spherical. 
I ar2 r Br 

Equation (2) can be written as 

Be 
k· -

I ar 

and Equation (4) becomes 

(4')-W) 

dR 
L·wp·­

I I dl 

where >- = I, 2, 3 for Cartesian, cylindrical, and spherical 
geometry, for which equation numbers are (4'), (4 "), and 
(4 ~), respectively. Next, we introduce the dimensionless 
variables r = Xox, I = 101', El = uou, R = Xos, where 

[m], 

for experiment (I) when 
prescribed, and 

[:~. ] 
t 

Xo = [m], 10 I 
I I 

the initial 

[s], Uo 

heat 

Liw 

C' I 

[KJ, 

content 

[K], 
c, 

I 

is 

when, as in experiment (2), the temperature of the metal is 
held fixed. The problem can then be summarized by the 
equations given in Table l. 

2.3 . Numerical solution 
We describe in this paragraph a numerical solution for 

the equation with cylindrical symmetry at fixed energy. The 
difficulty induced by the moving boundary can be avoided 
by use of the boundary position instead of the time as 
second independent variable, as shown by Garofalo 
(unpublished), which introduces an artificially fixed domain 
of integration and is possible because the position of the 
phase-change surface is a monotonically increasing function 
of time. We shall then define 

u' (x,s(!) U(X,I) 
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TABLE I. NON-DIMENSIONAL EQUATIONS 

Plale Cy linder Sphere 

Diff erenlial 
equal ion 

BC 

at 

x a' 

BC 

at 

aU 

ax 

au 

at 

au ds 

au 
-

al 

au 

ax 

or 

u 

au 

1 au 

x ax 

au 
--
al 

To 

Uo 

ds 

a2u 
+ 

ax2 

au 

al 

au 2 au 

ax 3 al 

ax dt ax dl 

au 

ax 

ds 

dt 

and 

x = s 

lC 

° 

ds 

dl 

u(a' ,0) 

s(o) 

<pes) 

where <p is the speed of the phase-change surface . As S(I) 
is a strictly growing function, the time corresponding to a 
given position is calculated by 

J
s ds' 

<p(s') . 
a' 

(8) 

With the new variables u', s, and <p, the equations for the 
cylinder become (upon omitting the primes) 

(9) 

for a' < x < S and a' < S < "", subject to the boundary 
conditions 

au au 

ax <p as ' 
(10) 

at x 
, 

a , and 

au 

ax 
- <p , (11) 

u = ° , ( 12) 

along the line x = s. 
The numerical scheme for its solution is described in 

Appendix A. 

a 

Xo 

To 

Uo 

a 

3. VARIABLE COEFFICIENTS AND INSULATING 
LAYER 

In this section, we introduce the thermal variability of 
the thermodynamical quantities. We also examine the effec t 
of an insulating layer between the ice and the cold so urce . 
Only the case of a constant temperature source w ith 
cylindrical symmetry will be developed. 

3 .1. Variable coefficients 
Allowing for variations of the coefficients, Equation (I ) 

becomes 

ae keel ae a [ ae] 
(pc)(e)- = + - k(e)- . 

al ar ar ar 

Equations (2), (3), and (4) remain the same as be fo re. 
The dimensionless variables are identical to those of sec tio n 
2 . 1 with the mere addition of 

keel = kik' (u) , 

(pc)(e) = (Pici) . (pc)' (u) 

where Pi , ci , and k i are reference values at ° cC , a nd 
primes denote dimensionless quantities. Replacing th e 
independent variable I by the position of the mov ing 
boundary, we obtain the initial boundary-value prob le m 
(primes are again omitted) 

(13 ) 

for a' < x < s , 

au 
ax - <p, (14) 
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for x = s and a < s < GO, and 

u (15) 

for x = s = a', of which a solution scheme is constructed 
in Appendix B. 

Initial values are the same as before. In the calculation 
we use for k and pc the values given by Hobbs (1974, 
p . 360--61) 

k 

k 
pc 

a 

where 

a = 8.43 x 10-7 - 0.101 x 10-7 8[m2 s-l) 

is the thermal diffusivity. 

3.2. Insulating layer 
We will now model the influence of an insulating air 

layer between the cold source and the ice. The heat transfer 
in the layer is supposed to be stationary. In this case, the 
heat flow through a layer of thickness [ is, for a cylinder 
of unit length, given by 

q 
8 - To 

-n--[--, 

n being the thermal conductivity of the layer. The boundary 
condition at x = a now becomes (Cars law and Jaeger, 1959, 
p.19) 

as n 
k- = -(8 - T) . 

Br [ 0 

The introduction of the dimensionless variables defined by 

LiW 
Uo c· 

I 

[2 

la p·c·k· -
1 1 1 n2 

g ives a system formed by Equations (13), ( 14) and 

Bu To 
k - u -

Bx Uo 
(16) 

at x a'; see Appendix B for the numerical peculiarities. 

4. NUMERICAL RESULTS 

4.1. Test of the numerical solution 
An analytical solution for the freezing of water exists 

in the case of a constant temperature To at x = 0 (c lassica l 
Stefen problem slightl y modified for an ice-water mixture 
with a water content w). The cold-ice temperature T is 
given by 

T 
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in which all variables are dimensional and where ~ is given 
by 

2 
~ e ~ erf ~ 

D is the thermal diffusivity of the ice, c is the heat 
capacity, and L is the latent heat of melting. The position 
of the interface in time is described by the equation 

This equation allows us to test the a lgorithm. The results 
prese nted in Figure 2 show that for large values of the 

ERROR In % lor different values 
o f the initial phase-bouooary velocity G 1 

0.8 -

~ 0.6 

'" o 
'" '" w 

0.4 

0.2 

o 
o. 0.02 0.04 0 .06 0.00 

PHASE-BOUNDARY POS ITION [m) 

Fig . 2. Error between analytical and numerical solutions for 
constant coefficients and mirror symmetry: Cl = 

( ds / dt)(O). 

dimensionless initial velocities, G l = ds/dt(O) , the phase­
boundary position is accurately predicted, the error being of 
the order of 0.1 % when x > 0.0 I [m). Other tests with 
different values of r, >.., hx' and hs (for definitions see 
Appendix A) ha ve demonstrated that the most suitable 
values are r =).. 0.5 and hx = hs = 0.01. However, a 
problem arises for very short time. 

In a similar way, the equation having temperature­
dependent coefficients has been tested by blocking its 
temperature dependence and comparing the results with runs 
for the constant-coeffic ient algorithm. The results sho w 
again a satisfac tory large time behaviour with an important 
divergence for short time. Nevertheless, this solution can be 
trusted for t > I [s). 

5,-------------------------, 

3 

- - Ionset of in stability 

Cylinder. To fixed co nstan t 
coefficients 

_-I Plate . fixed energy 
_ _ ICYlinder. fixed en. 

~ --~~=~d ~O" 

2+--------r--------,--------,--------,-------~ 
o 3 

log (-To/w) 

Fig . 3. Time for a displacement of the bOUl/dary of 10 cm 
as functions of To/ w (in aOC). Solution at constant 
coefficients for the cylinder with fixed temperature and 
fixed energy, the plate alld the sphere with fixed energy. 
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4.2. Constant coefficients 
As it appears from our scalings, we can for the case 

of constant coeffi cients combine the two parameters To and 
IV, and present the results as function s of To/w, The time 
req uired for a phase-boundary movement of 10 cm is g iven 
in Figure 3 f o r the different geometries of 
Gedankenexperimelll ( I) and for the cylindrical symmetry of 
Gedankenexperiment (2). Alternati ve ly , Figure 4 shows for 
the ex per iment with a fi xed initial heat co ntent the phase­
boundary ve loci ty as a function of its position. The inset 
displays the co ntinua tion of the graph with To = -50°C 
when osc illating "instabilities" arise. Th ese osc illations a re 
t yp ical of Crank-Nicholson sc hemes and cannot be avo ided, 
but they falsify somewhat the evalua tio n of the trave l tim e 
of the phase boundary. The onset of such oscillations is 
expected whenever the available energy is very near th e 
e nerg y needed for the boundary displace ment. It ca n be 
seen in Figure 3 tha t the osci llation begins at different 
va lues of the parameter TO/ IV for the plate, the cy linder, or 
the sphere, owi ng to the different a mounts of energ y that 
are needed per unit displacement of the phase boundary. 
The difficulty is due to the use of the phase-bo undar y 
position instead of time as an indepe ndent va riable. Thi s 
me thod breaks down when the phase boundary approaches a 
sta tic equilibrium pos ition. Under these co nditions, ano th er 

5 ,---------------------------------------------------, 

3 

o 

Cylin de r . T fi xed variab le 
coefficienls without insu l ation 

w= .5% 
w= 1% 
W=1.5% 

3 
log (-To /w I 

W = .00 1 

5 

computational technique would be more suitable (see, for 
example, Crank, 1984). 

In the experiment at fix ed bo undary te mperature , th e 
computation yields conve rgent results at all values of TO / IV 
(Fi g. 4). 

4.3. Variable coefficients 
With the va riab le-coe ffi c ients sche me, results depend on 

To/ wa nd w; many mo re iterations a re req uired for the 
convergence tes t to be successful and their numbers increase 
with in c reas in g va lues of 1 To / IV I. The maximum num ber of 
iterations is as high as II at the beg innin g of th e 
computation, co mpared with 4 for the constant-coefficient 
equation . Moreover, the la rger w is, the more will the 
dimens ionless coefficients k and pc in Equation ( 13 ) va r y 
and thus destab ili ze the sc heme, as has been observed by 
Garofalo (unpublished) . But for reasonable va lues of To a nd 
IV, the solution is sa ti sfac tor y. 

For comparison with Figure 3, we display in Figures 5 
and 6 the time for a boundary displaceme nt of 10 cm as a 
func tio n of To/ IV and for different va lues of IV. Co mpari ng 
Figure 5 with Figure 3, we infer that , as expected, th e 
displacement for larger values of IV is more rapid if we 
take into account the increase of thermal conductivity with 
a decrease of temperature. Also of interest is the enormous 

Cl 

S 

o 

Cy lind er, T fi xed variab le 
coef fi cie nt wit h insulation 

W = .5% 
W = 1 % 
W= 1. 5~, 

2 
log(-To/w) 

W = 0.001% 

5 

Fig. 5. Time [or a displacement of 10 cm plaited against 
To/ w ( in C) for several values of w. Solution for 
variable coefficients for the cylinder. 

Fig. 6. As Figure 5 with all insulating layer 0/ air of 
1 mm. 
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Fig. 7. Position of the boundary as a function of time for a 
fixed temperature of -5 ° C and various water contents. 
Solution with variable coefficients. 

impact of an insulating layer of air as small as 0.1 [mm] , 
which tends to hide the water-content effect (Fig. 7). 

Figure 7 shows the phase-boundary position versus time 
for an initial temperature of -5°C and different water 
contents, in the absence of an insulating layer. It can be 
seen that the measurement of the boundary position, as an 
indicator of the water content, should yield a good 
sensitivity, and therefore be suitable as a measuring 
technique. 

5. CONCLUSION 

An analytical solution for solidification has been 
described for various types of boundary conditions. The 
problem with constant coefficients gives satisfactory results. 
The variation of the coefficients introduces an instability at 
high values of the water content of temperate ice, w. 
Nevertheless, the scheme works for small values of w. In 
the view of a practical application of this problem to the 
measurement of the water content, we infer that this 
method should provide reasonable sensitivity. However, a 
small insulating layer between the cold source and the ice 
causes an important delay in the movement of the phase 
boundary and tends to hide the influence of the water 
content . 
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APPENDIX A 

We outline a numerical solution scheme for Equations 
(9)-( 12). Supposing that a solution u(x,s ) exists, we can 
discretize the domain as shown in Figure 8 and write 

x 

U . I,J 
r 

- -0-
I 
I 

Ui ,j = u(xi's) , 

~j = ~(s) . 

Ui+1. j 
r 

-0-
I 

U i+1, j-1 
o 
I 

/ U . J.J Uj +1. j 
- - - --0-

Fig. 8. Discretization of the domain. 

Using finite differences, Equation (9) can now be replaced 
by the approximate equation 

+ 

+ 

{ 

1 ui + l, j + 1 Ui,j + 1 

).. (i + J)h
x 

+ a' -----'-'-----h-
x
----'-'-- + 

ui + l ,j + 1 - 2Ui,j + 1 

h~ 

+ ui - l ,j + 1] + 

ui + l,j - Ui,j 

hx 

Hi - U 1 
+ 

where rand ).. are two weights used to stabilize the 
calculation and hx and hs are the step sizes. This particular 
sc heme has been used to avoid problems arising from the 
initial conditions. We need for this equation the value of 
U j + l ,j. which l!es outside th.e computational .domain. This 
value IS approxImated by usmg a Taylor senes expansion 
for the function u, as will be explained below. After re ­
arrangment, we obtain 

https://doi.org/10.3189/S0022143000005530 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000005530


with 

and 

}.. 

- }..ui _ I, j + I + (r j + - + 2}..)ui,j + I -
<l>i 

).. 

- (~ + }..)ui + I,j + I 
I 

I - >. 
(I ->,)ui _ I,j - (-- + 2(1 - >.) - r)ui,j + 

<l>i 

1->' 
+ (I - >. + --)ui+lj 

<l>i ' 

a' 
<1>. = i-I + - . 

I hx 

Moreover, condition (10) at x = a' can be written as 

or 

U 2,j + I - UI,j + I 

hx 

(A I ) 

(A2) 

(A3) 

Equations (A I) and (A3) form a tridiagonal system which 
can be solved for the unknowns ui . + I' i = I, ... , j, if the 
values of ui j and 'P j are known. the system is first solved 
for r j = (h~1 hs)'P j; 'P j + I is then updated (we shall explain 
below how this is done) and the system solved again with 
r j given by Equation (A2), until the following convergence 
test , proposed by Garofalo (unpublished), is verified: 

where N is the number of iterations. 

To complete the solution scheme, we still need 

an equation to update 'P j + l ' 

the :a.l~es at the boundary U j,j and U j + I, j' 
the initial values uI l' ul2 ' 11' 12, 'PI' '1'2' 
an equation to calculate fhe time I j + I . 

Using a Taylor series expansion for U on the boundary 
X = S, we obtain 

From Equations (9) and (11) we deduce 

G ive n tha t on the line x S 

au au 
du -dx + -ds 0 

ax as 

and that dxl ds = I , we infer auj ax = -aul as and thus 
obtain , in view of Equations (9) and (I I ) 

au 

as 

Huller and olhers: Numerical solution of Stefan problems 

on x = s. Thus, with co nditio n ( 12) 

or 

In much the same way, we derive 

and Equation (12) implies 

for j > I. At time I = 0 when x 
of Equations ( 10) and ( 11 ) yields 

aU 
ax il = 0 = lim 

hx ~ 0 

u(x + hx'O) - u(x,O) 

hx 

(A4) 

(AS) 

a', a combination 

(A6) 

Furthermore , as is evident from Table I, and from Eq uation 
(A3) with j = I we have 

(A7a) 

hx hx 
h'Plul,1 + u2 ,2 h 'PIUI,I 

S s 

hx hx 
(A7b) 

h'Pl + I h'PI + I 
s s 

With Equation (A2), Equatio n (A4) for j = I y ields 'P2. By 
integrating Equation (8) with Simpson's r ule, we final ly 
have 

(A8) 

whe re 'P3 / 2 is given by linear interpola tion between 'PI and 

'P2· 
We now have all the necessary ing redie nts for a 

numerical solution of the s ta ted initial boundary-va lue 
problem in cyli ndrica l coordi nates when the initial hea t 
co nten t in the metal specime n is given. We first compute 
uI I with Equation (A 7a), the n obta in 'PI from Equation 
(A'6), uI 2 from Equation (A 7b), and 'P2 from Equation 
(A4) . With these quantities being determined, r I foll ows 
from Eq uatio n (A2), and ui 2 (i = 1,2 , ... ) ca n be computed 
from Equatio ns (A I ), (A3)', and (AS). The ens uing steps 
then onl y in vo lve Equations (AI), (A2), (A3), a nd (AS) 
with the itera tion sugges ted on r and Equation (A8) to 

update the time. A so lutio n for other symme tries is easi ly 
deri ved in the same way. In the case of the problem at 
fixed temperature, onl y the boundary condition (10) is 
changed, a nd Equa tion (A3) is replaced by 
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(A9) 

APPENDIX B 

We construct here a numerical solution scheme for 
Equations (13)---{ J5). To solve Equation (13) numerica lly, we 
adopt the finite-difference scheme of Garofalo (unpublished, 
p. 17) and se t 

ex 

and 

k( ui ,j + U i - I ,j ) 

2 

k( 
ui + I, j + Ui,j 

2 ) . 

Re-arranging and usi ng Equation ( 14) , Equations ( 13 ) and 
( 15) imply the following tridiagonal syste m 

ex+ 
ex u f' _ I ,j' + I + ( r j. + ex+ + ex + --JUl' j ' + I 

x / hx ' 

ex+ 
- (ex+ + --)u x/ h x i + I,j + I 

(B I ) 

(B2) 

T he bou ndary conditions at x = s are obtained by writing 
Eq uation ( 13) in the fo rm 

and by employing the same reasoning as in section 2.2, 
explicitly 

8u 

8x 
<P , 

8u 
as - -<j> , 

J ak 
- - (pc + _)<p2 ax2 - k au 

From these relations we deduce in much the same way as 
before 

(I + hx/ 2x) 

ak 
(I +-) au 

+ 

2 
<P j _ 1 pc<p j + I 

Uj, j _ I hx<pj - I - h~(-x- + --k- + 

(B3) 

(B4) 

2 
<P j - I ak 
-k-auij -1)' 

(B5) 

2 2 
<P j - I pc<p j - I <P j - 1 8k 

=2hx<pj_I-2h~(-x-+ k +-k-8u ij - I ) ' (B6) 

When the equations for the insulating layer are solved 
(section 3.2), the new tridiagonal system is composed of 
Equations (B I) and 

k(u I j-l 
(--' - - J)uI ,j + I 

hx 

k(u I, jl 
---u· 

h 2,j + I 
X 

(B7) 

Equations (B3)---{86) and (B7) also appl y here , but the initia l 
conditions a re 

U1,1 = 0, 

To 
u1,2 = (-)/ (1 + kjlhx) , 

Uo 

f rom Equation (16), and 

from Equations (14) and (16) . 
The system can then be solved with the same algorithm 

as before . 
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