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ABSTRACT. Freezing processes in temperate ice
consisting of a mixture of pure ice with water inclusions
are studied for the case that the initial amount of moisture
content is uniform. By introducing a cold source at the
center of the ice specimen, the cold front propagates
outwards leaving behind pure cold ice with a temperature
distribution dictated by the exact set-up of the cold source.
The speed of the front is directly related to the water
content of the temperate ice and depends essentially on the
Stefan condition.

Three types of initial and boundary conditions are
considered and realized in uniaxial, cylindrical, and/or
spherical symmetry: (1) a metallic core at a temperature
below the freezing point is initially brought into contact
with the ice and the system is left free to evolve; (2) the
metallic core is kept at constant temperature below freezing;
(3) Case (2) is repeated with an insulating air layer between
the metallic core and the ice.

I. INTRODUCTION

The dynamic role of the liquid-water content in
temperate ice remains one of the unsolved problems in
glaciology despite the fact that it has been shown to affect
flow at the melting point (Lliboutry, 1976; Lliboutry and
Duval, 1985) and that first theoretical models (Hutter, 1982;
Fowler, 1984; Hutter and others, 1988) have pointed out its
significance in the global boundary conditions. In fact, very
little is known about water content in temperate glaciers.
Typical values found by Vallon and others (1976) in an ice
core of an alpine glacier are between 0 and 4%.

Two methods have been proposed for measuring liquid
water in glaciers. (i) The dielectric constant of the mixture
ice—water depends on the relative presence of the two
components and may serve as an indicator of water content.
But this method, used for snow, is not sensitive enough and
the dielectric constant may vary with other parameters such
as grain boundaries or point defects. (ii) The calorimetric
method consists of measuring the amount of energy needed
to freeze the water in a given volume of temperate ice. It
has the advantage of being very sensitive, and the results
are less influenced by the other parameters. However, the
use of an adiabatic calorimeter requires the extraction of an
ice core. Stresses in the probe are thus changed, and this
modifies the water content (Raymond, 1976).

The need for a calorimetric method for in-situ
measurements (i.e. in the bulk of the glacier, without
extracting a core) led us to study the problem of the
propagation of a "cold wave" in an ice—water mixture. The
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wave front consists of a surface of phase change that
separates cold ice from the ice—water mixture. Its speed
depends on the imposed boundary conditions on the
specimen and the water content. By determining the
migration of this well-defined boundary, we may thus infer
the water content in the specimen (Fig. 1).
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Fig. 1. Temperature of the ice and position of the interface
during the experiment.

The method of determining w by this procedure is an
inverse problem, because its distribution must be inferred
essentially from information gained along the boundary of
the domain. Such problems tend to be difficult and sensitive
to measurement and numerical error. Here, however, two
simplifications may be justifiably invoked which make the
problem tractable and, as our results show, reasonably stable
to numerical error. First, length scales that are considered
are a few centimetres (less than 0.25m) over which water
contents in the vein system and the inclusions may be
regarded as constant. Secondly, the region outside the
phase-change surface may be considered to be a "bath" with
uniform conditions. This bath will only affect the solution
of the freezing problem at the phase-change surface. This
implies that the water content should only vary very slowly
over length scales of the above-mentioned 0.25m. Field
observations lead us to be confident about these
assumptions.
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Approximate analytical solutions of the solidification
problem  exist for one-dimensional geometries (see
Vujanovic, 1989). We chose to solve the problem
numerically as it seemed most suitable for the various
boundary conditions we consider.

2. THE INITIAL VALUE PROBLEM

2.1. Hypotheses =

Consider a specimen of temperate ice at 0 C. Assume
that a metal mass has been inserted at its center and that
the contact between the metal and the temperate ice is
perfect. We may consider two types of Gedankenexperiments:

(1) Assume that at time ¢ = O the metal mass is suddenly
set at a prescribed temperature T below the freezing
point and the system is subsequently left free to evolve.

(2) Assume that at time { = 0 the metal mass is subject to
a temperature jump and that its new temperature (below
freezing) is kept constant while the surrounding ice is
free to adjust its thermal state to the new conditions.

In both cases, the cold will propagate from the metal
into the ice and freeze the interstitial water. The cold front
that forms the surface of phase change between the wholly
cold ice and the ice—water mixture can be identified
experimentally as the location where the temperature
gradient suffers a jump and thus a kink in the temperature
profile arises. Observations have shown these to be clearly
identifiable.

We impose the following idealized initial conditions:

The temperate ice is an homogeneous mixture of Jwater
and ice uniformly at the melting temperature = 0 C.
The specimen is thought of as infinitely large so as to

eliminate the influence of finite boundaries.

The cold source (metal) is an infinite sheet, an infinitely
long wire, or a spherical ball, ie. linear, axial, or
spherical symmetry prevails.

The metal is a perfect conductor and the contact between
the ice and the metal is perfect. (This condition will
be relaxed later on.)

2.2. Equations

Because of the spatial symmetry, only positions with
0 < r < R(t) need be considered. The metal mass ranges
from r = 0 to r = a, the ice from r = a to r = =, whereas
the cold ice occupies the domain a 2 r 2 R(f), R(r) being
the position of the phase-change surface. In this latter
domain, the heat-conduction equation is

pici® = k;h8, derLER, EED (1)
where p; is the ice density (= 918 kg m-3%), c; is the heat
capacity of ice (= 2.12 x 10®Jkg'1K™!), k; is the thermal
conductivity of ice (= 22 W K™ 'm™), @ is the temperature,
and A is the Laplacian., Throughout this text, the dot
represents the time derivative.

Boundary conditions have to be satisfied at the
interface "cold ice—temperate ice" r = R(¢) and at r = a. At
the former, the heat flow from the phase-change surface is
balanced by the latent heat released by freezing, viz.

o)
kig, = Liw-piR() @)

at po= Rg) 2 = 0, and
e =0. (3)

Here, L; is the latent heat of fusion, w is the moisture
content just ahead of the freezing front, and 3/0n denotes
the spatial derivative perpendicular to the phase-change
surface.

At r = a, heat flow and temperature must be
continuous. However, for very small values of a and a
perfect conduction, we may regard the metal as a body
with uniform temperature and heat capacity V.p.c.. Here,
Vc is the volume of the metal (copper) piece. The time rate
of change of the heat stored in the copper, V .p.c.© must
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then be balanced by the heat flow through the contact
surface with the ice,

an
surf

)
ki ” —dS = Vopeec®, 4)

at r=a, (> 0. This condition applies to Gedanken-
experiment (1). When the temperature is held constant, we
have

e = To 2 (5)

at r =a, t > 0. Finally, we have the following initial
conditions:

ot = 0) = T,, (©)

R(t) = 0)

[]

a. ()

To simplify the equations, we use the problem
symmetries and then introduce dimensionless variables. If the
cold source is a plate, a cylinder or a sphere, we will use
Cartesian, cylindrical, or spherical coordinates. Equation (1)
will be respectively

; &%e :
) ig7" Cartesian,

., 80 e 100 L
{1") picca = {kj ﬁ + :; , cylindrical,

[aze 2ae] .
:|=— + =—]| , spherical.
ilg2 ¥ rar) "

Equation (2) can be written as

00 dR
ki a—r" = Liwpi;

and Equation (4) becomes

s % d0
(@)-4") Miz- = apeCoy

where . = 1, 2, 3 for Cartesian, cylindrical, and spherical
geometry, for which equation numbers are (4'), (4"), and
(4™), respectively. Next, we introduce the dimensionless
variables r = X x, t = (', © = ugu, R = X5, where

a PcCe a® pgcg Liw
[m], ‘g [s], Wy = T [K],
1

B PiCi

XD
4 piciki

for experiment (1) when the initial heat content is
prescribed, and

ki Liw
X = b o 1 4 = ="
0 [pici ] [m], £ [sl, uy P K]

when, as in experiment (2), the temperature of the metal is
held fixed. The problem can then be summarized by the
equations given in Table I

2.3. Numerical solution

We describe in this paragraph a numerical solution for
the equation with cylindrical symmetry at fixed energy. The
difficulty induced by the moving boundary can be avoided
by use of the boundary position instead of the time as
second independent wvariable, as shown by Garofalo
(unpublished), which introduces an artificially fixed domain
of integration and is possible because the position of the
phase-change surface is a monotonically increasing function
of time. We shall then define

u' (x,5(0)) = u(x,t)
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TABLE I. NON-DIMENSIONAL EQUATIONS

Plate Cylinder Sphere
Diffe.remial du 8% ou 1 8u a%u Au 28 %
equation — = — — = —— 4 — — = —— 4 —
ot Fx ot ¥O0x "~ pu2 ot x 8x 52
au du
BC e i
ox o«
: du du Ou 2 du
a — = — 0 — = ——
ax & ‘ ax &
' TO
X = 4a U=
Uy
BC
) a_ds a_ds o _ as
ax dt ax dr ax  dt
X =5
Ty
IC wa Q) = —
Hy
fics s(0) = — = &'
Xg
and 3. YARIABLE COEFFICIENTS AND INSULATING
e LAYER
e @(s)

where ¢ is the speed of the phase-change surface. As s(z)
is a strictly growing function, the time corresponding to a
given position is calculated by

N

'

a

ds!
ofs")

(8)

With the new variables u', s, and ¢, the equations for the
cylinder become (upon omitting the primes)

1 Bu 8%

—_—— —_—— s

Ou
o " xox’ Tox?

©®)

for ' < x <5 and a' < s < =, subject to the boundary
conditions
du du (10)
ax (Pas :
at x = @, and
81 (11)
ax =i s
= 0 (12)

along the line x = s.
The numerical scheme for its solution is described in
Appendix A.
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In this section, we introduce the thermal variability of
the thermodynamical quantities. We also examine the effect
of an insulating layer between the ice and the cold source.
Only the case of a constant temperature source with
cylindrical symmetry will be developed.

3.1. Variable coefficients
Allowing for variations of the coefficients, Equation (1)
becomes

paeg = 22 2 (ke)T]
PRV ™ F 8 © B ar)’

Equations (2), (3), and (4) remain the same as before.
The dimensionless variables are identical to those of section
2.1 with the mere addition of

K(©) = kik' (u) ,
(pc)(®) = (pic;) - (pe)’ ()
where p;, c;, and k; are reference values at ODC, and
primes denote dimensionless quantities. Replacing the
independent variable ¢ by the position of the moving
boundary, we obtain the initial boundary-value problem
(primes are again omitted)
du kadu a [kau] (13)
= =g ] el
p“’as x0x @GxlL Ox
for @’ = %< 5
Bu
i e (14)
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for x = s and @ < s < =, and

o = 5 (15)

for x = 5 = @', of which a solution scheme is constructed
in Appendix B.

Initial values are the same as before. In the calculation
we use for k and pc the values given by Hobbs (1974,
p. 360-61)

k = 21725 — 3.403 x 10°%@ + 9.085 x 10°6® (Wm K],

R &

pc =

where
a =843 x 107 = 0.101 x 107e[m?s™]
is the thermal diffusivity.

3.2. Insulating layer

We will now model the influence of an insulating air
layer between the cold source and the ice. The heat transfer
in the layer is supposed to be stationary. In this case, the
heat flow through a layer of thickness € is, for a cylinder
of unit length, given by

n being the thermal conductivity of the layer. The boundary
condition at x = a now becomes (Carslaw and Jaeger, 1959,
p. 19)

e s R
Br_E( D)'

The introduction of the dimensionless variables defined by

E
X, = k-,
n

by = Pk —
n

gives a system formed by Equations (13), (14) and

du Ty
fo—m qp ™ —, (16)
ax Uy

at x = a'; see Appendix B for the numerical peculiarities.

4. NUMERICAL RESULTS

4.1. Test of the numerical solution

An analytical solution for the freezing of water exists
in the case of a constant temperature T at x = 0 (classical
Stefen problem slightly modified for an ice—water mixture
with a water content w). The cold-ice temperature T is
given by

TD X

T=T,+ erf

Erft 2(Dl)* 2
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in which all variables are dimensional and where £ is given
by

cT
Eeczerfi = —D.
Lw(m)?

D is the thermal diffusivity of the ice, ¢ is the heat
capacity, and L is the latent heat of melting. The position
of the interface in time is described by the equation

R(1) = 28(D1)E .

This equation allows us to test the algorithm., The results
presented in Figure 2 show that for large values of the

1
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Fig. 2. Error between analytical and numerical solutions for
constant  coefficients and  mirror  symmetry: G, =

(ds/dt)(0).

dimensionless initial velocities, G; = ds/di(0), the phase-
boundary position is accurately predicted, the error being of
the order of 0.1% when x > 0.01[m]. Other tests with
different values of r, X, His and hs (for definitions see
Appendix A) have demonstrated that the most suitable
values are r = X = 0.5 and hy = hy = 0.0l. However, a
problem arises for very short time.

In a similar way, the equation having temperature-
dependent coefficients has been tested by blocking its
temperature dependence and comparing the results with runs
for the constant-coefficient algorithm. The results show
again a satisfactory large time behaviour with an important
divergence for short time. Nevertheless, this solution can be
trusted for ¢ > 1[s].

5
——|onset of instability
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= —_|eylinder, fixed en.
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0 1 q i}
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Fig. 3. Time for a displacement of the boundary of 10cm
as functions of Ty/w (in 0°C). Solution at constant
coefficients for the cylinder with fixed temperature and
fixed energy, the plate and the sphere with fixed energy.
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Fig. 4. Phase-boundary velocity plotted against its posr’té’on. Onset of the oscillations for the experiment
at fixed temperalure, as shown in the inset. Tyfw in C.

4.2. Constant coefficients

As it appears from our scalings, we can for the case
of constant coefficients combine the two parameters T, and
w, and present the results as functions of T /w. The time
required for a phase-boundary movement of 10cm is given
in Figure 3 for the  different geometries of
Gedankenexperiment (1) and for the cylindrical symmetry of
Gedankenexperiment (2). Alternatively, Figure 4 shows for
the experiment with a fixed initial heat content the phase-
boundary velocity as a function of its position. The inset
displays the continuation of the graph with T, = —50°C
when oscillating "instabilities" arise. These oscillations are
typical of Crank—Nicholson schemes and cannot be avoided,
but they falsify somewhat the evaluation of the travel time
of the phase boundary. The onset of such oscillations is
expected whenever the available energy is very near the
energy needed for the boundary displacement. It can be
seen in Figure 3 that the oscillation begins at different
values of the parameter 7,/w for the plate, the cylinder, or
the sphere, owing to the different amounts of energy that
are needed per unit displacement of the phase boundary.
The difficulty is due to the use of the phase-boundary
position instead of time as an independent variable. This
method breaks down when the phase boundary approaches a
static equilibrium position. Under these conditions, another

o
|

%4
ik Cylinder, T fixed variable
< coelficients without Insulation
(3
o
Q
-
.
2 T T T T
0 1 8 3 4 5
log |-Tg/w)
Fig. 5. Time for a displacement of 10 cm plotted against
To/w (in C) for several values of w. Solution for

variable coefficients for the cylinder.
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computational technique would be more suitable (see, for
example, Crank, 1984).

In the experiment at fixed boundary temperature, the
computation yields convergent results at all values of Ty/w
(Fig. 4).

4.3. Variable coefficients

With the variable-coefficients scheme, results depend on
To/w and w; many more iterations are required for the
convergence test to be successful and their numbers increase
with increasing values of T'y/w|. The maximum number of
iterations is as high as 11 at the beginning of the
computation, compared with 4 for the constant-coefficient
equation. Moreover, the larger w is, the more will the
dimensionless coefficients & and pec in Equation (13) vary
and thus destabilize the scheme, as has been observed by
Garofalo (unpublished). But for reasonable values of T, and
w, the solution is satisfactory.

For comparison with Figure 3, we display in Figures 5
and 6 the time for a boundary displacement of 10cm as a
function of Ty/w and for different values of w. Comparing
Figure 5 with Figure 3, we infer that, as expected, the
displacement for larger values of w is more rapid if we
take into account the increase of thermal conductivity with
a decrease of temperature. Also of interest is the enormous

Ao Cylinder, T fixed variable
= coefficient with Insulation
w
s
=
o
(]
E

3

W=0001%
A T T T T
0 1 2 3 L] 5

log (= Tosw)

Fig. 6. As Figure 5 with an insulating layer of air of
I mm.
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Fig. 7. Position of the bounc{)ary as a function of time for a
fixed temperature of —5 C and various water contents.
Solution with variable coefficients.

impact of an insulating layer of air as small as 0.1 [mm],
which tends to hide the water-content effect (Fig. 7).

Figure 7 shows the phase-boundary position versus time
for an initial temperature of —5°C and different water
contents, in the absence of an insulating layer. It can be
seen that the measurement of the boundary position, as an
indicator of the water content, should yield a good
sensitivity, and therefore be suitable as a measuring
technique.

5. CONCLUSION

An analytical solution for solidification has been
described for various types of boundary conditions. The
problem with constant coefficients gives satisfactory results.
The variation of the coefficients introduces an instability at
high wvalues of the water content of temperate ice, w.
Nevertheless, the scheme works for small values of w. In
the view of a practical application of this problem to the
measurement of the water content, we infer that this
method should provide reasonable sensitivity. However, a
small insulating layer between the cold source and the ice
causes an important delay in the movement of the phase
boundary and tends to hide the influence of the water
content.
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APPENDIX A

We outline a numerical solution scheme for Equations

(9)<(12). Supposing that a solution wu(x,s) exists, we can

discretize the domain as shown in Figure 8 and write

U= wxpsi),

¢j = 9(s;).

Ui, j Yis1,j
| |

Uj.j Ui,

Fig. 8. Discretization of the domain.

Using finite differences, Equation (9) can now be replaced
by the approximate equation

. ] Ugwa " By
(rguy + U1 = = -
i 1 B ftew T B e
C G+ Dhy v hy

Wipn,je1l ~ Mijaq ¥ Mg je

2
hx
| Wi 1, T M
3 BT = B = ot S,
(i-l)hx+a hx
iy ~ MWigtUong
"
v
kX

where r and X are two weights used to stabilize the
calculation and h, and hg are the step sizes, This particular
scheme has been used to avoid problems arising from the
initial conditions. We need for this equation the value of
ui,, ;i which lies outside the computational domain. This
value "is approximated by using a Taylor series expansion
for the function wu, as will be explained below. After re-
arrangment, we obtain
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%
| X“ifl,j+1+(rj+€+2)“)“

(VRS O
X
- (¢_ i )”)‘ui+1.j+1 =
1
(A1)
x el O r
= (l )uf-l,j ( 01 + 2( \) J-)u,,j -
1 =%
+ (1 =%+ . )“i+1.j
1
with
2
Poa X 2
j=hs (rej oy + (1 = 1)¢p) (A2)
and
@i = j—=14% e
hx
Moreover, condition (10) at x = a' can be written as
g gt = Wij4d Hifel = Biyg
- (P-
Iy i g
or
hy hy
Gt = Wnjan = Bagey = oy .  (AD)
Equations (Al) and (A3) form a tridiagonal system which

can be solved for the unknowns Hi e gv 2= 15 g Sy I thE
values of u; ; and ¢: are known. Tlhe system is first solved
for T; = (hi/hs)wj; 9j, is then updated (we shall explain
below” how this i§ done) and the system solved again with
T; given by Equation (A2), until the following convergence
test, proposed by Garofalo (unpublished), is verified:

ABS(e} , | - ¢ 1D < BABS(eY 1 D,

where N is the number of iterations.
To complete the solution scheme, we still need

an equation to update Pi,is
the values at the boundary u; ; g,
the initial values u; 1, 4 5 13, 5, @5 ’

5 ?21
an equation to calculate the time iy

and u;

Using a Taylor series expansion for v on the boundary
X = 5, we obtain

du L 8%

R Wiat N L ot
= hx6x|1+1+2hxax2|1+1

uj,j+1—uj+l‘j+l b ey

From Equations (9) and (11) we deduce

du 1 Fu
= =y ==y
ds x ax?

Given that on the line x = §

and that dx/ds = 1, we infer 8u/8x = —8u/8s and thus

obtain, in view of Equations (9) and (11)

du

as -

2

Fu 5 1
= 9" ——¢

8)(2 X
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on x = 5. Thus, with condition (12)

1
s i T SRy . S |
i P = _hx‘PjJrl 2xhx‘?j+1 2hx‘Pj+1’
or
‘T
(1 I (1 — Y ;
90 g + "= + = 2 ;.4
4 hx “’jn hx °j+1 gt
(Ad)
In much the same way, we derive
2 5
h *x " 2 (AS)
Ujpq,j = M@ = 59~ ¢
J+ 1,7 J 2¢j+1 J o 2]
and Equation (12) implies
g X b

for j > 1. At time ¢t = 0 when x = s = @', a combination
of Equations (10) and (11) yields

G x4 hy0) —u(x0)  uy,
5 B ol gy =l -
axl hy*o hy hy
(A6)
Hyp = ¥ 1
- hy hy

Furthermore, as is evident from Table I, and from Equation

(A3) with j = | we have
i (ATa)
B = % a
it
hy hy
B id4a ¥ e T o
5
u = = ATb
- - (ATh)
=g o ==y o ]
5 s

With Equation (A2), Equation (A4) for j = 1 yields 9,. By

integrating Equation (8) with Simpson’s rule, we finally
have
ty =0,
hy 1 4 1
y M g =
39y wsp #1
(A8)
”‘x( 1 4 L,
Loy = B0~ + — 4
. ¢ 3 i @ |

where ®3/2 is given by linear interpolation between ¢, and
P,

: We now have all the necessary ingredients for a
numerical solution of the stated initial boundary-value
problem in cylindrical coordinates when the initial heat
content in the metal specimen is given. We first compute
Uy 4 with Equation (A7a), then obtain ¢, from Equation
(A6), u,, from Equation (A7b), and ¢, from Equation
(Ad4). With these quantities being determined, r, follows
from Equation (A2), and uj, (i = 1,2, ..) can be computed
from Equations (Al), (A3), and (AS5). The ensuing steps
then only involve Equations (Al), (A2), (A3), and (AS5)
with the iteration suggested on T and Equation (A8) to
update the time. A solution for other symmetries is easily
derived in the same way. In the case of the problem at
fixed temperature, only the boundary condition (10) is
changed, and Equation (A3) is replaced by
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APPENDIX B

We construct here a numerical solution scheme for
Equations (13)—(15). To solve Equation (13) numerically, we
adopt the finite-difference scheme of Garofalo (unpublished,
p. 17) and set

Y i
o = k(—
( 3 )
and
Mgy oM
ot = K i+ _,'2 J 3.

Re-arranging and using Equation (14), Equations (13) and
(15) imply the following tridiagonal system

4
- + - & a5
Uiyt (]."J- + o+« o+ - )“i.j+1
X
+
o
S
= e W T ; =
( x/hx i % il
g aF
= (of + —u; 5= ot & o r——s 5
x/hx)”l’f ( x/hx)‘w'
+

- LN
il ¥ Lot x/hx)ui+1,j-1

4
= (¥ + o +q—— T Ju; ; — e ; (B1)
x/hy 9 R 1= L=l
TU
u = u_ (B2)
0

The boundary conditions at x = s are obtained by writing
Equation (13) in the form

o k 3 a9k, d
pwa—:‘ - S P 4 kg

and by employing the same reasoning as in section 2.2,
explicitly

e
[
-

a_u

as P,

ﬂu____l.( a_k)i_.l.
ax® kpc+8u¢ ¥

From these relations we deduce in much the same way as
before

1 Qwhy/2%)

g = — 4
FFEL T ok ok
X 1+—
( +8u)
3k
1 +hg/23)? = 2up 5, (pe + 2/K)
+ — = ¢ (B3)
hx (l+'a—k)
du
2 2
P PCY; P ok
A il o cARETEY
Mj+1‘j hxq’j zhx(x o k i k au‘J), (Bd)
2
Pii-di  PORTLE Py .10k
) J+ J - 18k
¥ e hx’*j—l h( z % 3u|j-l ¥
(B5)
LT
o et pc'{zi-l ‘P_::'-18k
=2hxlpj_1_2hx( = k & k ali-l) (B6)

When the equations for the insulating layer are solved
(section 3.2), the new tridiagonal system is composed of
Equations (BI1) and

k(ulg ',-)
A\ . 1)”1 il =
hx s # hx

k(ullj) T

0
RE—R (B7)
Uy

Uy fed ™
Equations (B3)—~(B6) and (B7) also apply here, but the initial
conditions are

Uy o= i 1

T,
(L = Kgfhse) s
Uy

e

from Equation (16), and

from Equations (14) and (16).
The system can then be solved with the same algorithm
as before.
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