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On the Structure of the Set of Symmetric
Sequences in Orlicz Sequence Spaces

Bünyamin Sari

Abstract. We study the structure of the sets of symmetric sequences and spreading models of an Orlicz

sequence space equipped with partial order with respect to domination of bases. In the cases that these

sets are “small”, some descriptions of the structure of these posets are obtained.

1 Introduction

This paper is motivated by the following general problem considered by Androulakis,
Odell, Schlumprecht and Tomczak-Jaegermann [AOST]. Let SPw(X) be the partially

ordered set of all spreading models (x̃i) generated by seminormalized weakly null
sequences (xi) in X. The partial order is defined by domination, that is, (x̃i) ≤ (ỹi)
if there exists a constant K ≥ 1 such that ‖

∑

i ai x̃i‖ ≤ K‖
∑

i ai ỹi‖, for all scalars
(ai). Moreover, identify (x̃i) and (ỹi) in SPw(X) if they are equivalent, that is, if

(x̃i) ≤ (ỹi) and (ỹi) ≤ (x̃i). What can be said about the structure of the partially
ordered set (SPw(X),≤)?

The following theorem proved in [AOST] asserts that every countable subset of
SPw(X) admits an upper bound in SPw(X).

Theorem 1.1 Let (Cn) ⊂ (0,∞) such that
∑

n C−1
n < ∞ and let X be a Banach

space. For all n ∈ N, let (xn
i )i be a normalized weakly null sequence in X having spread-

ing model (x̃n
i )i . Then there exists a semi-normalized weakly null basic sequence (yi) in

X such that (ỹi) Cn-dominates (x̃n
i )i for all n ∈ N.

The purpose of this paper is to study the structure of the set SPw(X) when X is
an Orlicz sequence space. For Orlicz spaces X = ℓM , as we shall see, every spreading
model of ℓM is actually equivalent to a symmetric sequence in ℓM . In particular, for a

reflexive ℓM , SPw(X) coincides with the set of symmetric sequences in X. The above
quoted theorem takes a simple form for Orlicz spaces and it is particularly well illus-
trated. One of our main observation is the following. If a separable Orlicz sequence

space ℓM contains a symmetric sequence (equivalently, admits a spreading model) (xi)

which dominates (but is not equivalent to) the unit vector basis of ℓM , then it contains

an uncountable increasing chain of symmetric sequences (equivalently, SPw(ℓM) con-

tains an uncountable increasing chain). As a consequence, we obtain a description of
the structure of the set of symmetric sequences of Orlicz sequence spaces ℓM which

have only countably many of them. We show that in this case the structure of this
set (respectively, of SPw(ℓM)) has a very special form: it contains both the upper
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Symmetric Sequences in Orlicz Spaces 139

and the lower bounds and moreover the upper bound is the space ℓM itself and the
lower bound is some ℓp space. Moreover, we also show that if the set of symmet-

ric sequences in ℓM is countable, then it cannot contain a strictly increasing infinite
chain.

The paper is organized as follows. The main results, mentioned above, are con-
tained in Section 3. Section 2 contains basic definitions and facts about the structure

of Orlicz sequence spaces which are followed by some preliminary results.
For more on spreading models and a more general discussion of the structure of

SPw(X) we refer the reader to the paper [AOST]. Here we only recall the definition
of a spreading model, which is as much as we shall use.

It is a well-known consequence of Ramsey theory that for every normalized basic
sequence (yi) in a Banach space X and for every (εn) ց 0 there exist a subsequence
(xi) of (yi) and a normalized basic sequence (x̃i) in some Banach space X̃ such that
for all n ∈ N, (ai)

n
i=1 ∈ [−1, 1]n and n ≤ k1 < · · · < kn,

∣

∣

∣

∣

∥

∥

∥

n
∑

i=1

aixki

∥

∥

∥
−

∥

∥

∥

n
∑

i=1

ai x̃i

∥

∥

∥

∣

∣

∣

∣

< εn.

The sequence (x̃i) is called the spreading model of (xi) (or a spreading model of
X) and it is a suppression 1-unconditional basic sequence if (yi) is weakly null. The

subsequence (xi) of (yi) which generates the spreading model (x̃i) is called a good

subsequence and it has the property that every further subsequence of (xi) generates
the same spreading model (x̃i).

2 Orlicz Sequence Spaces and Preliminary Results

We recall the basics of Orlicz sequence spaces following the book [LT] with which
our notation is consistent.

An Orlicz function M is a real valued continuous non-decreasing and convex
function defined for t ≥ 0 such that M(0) = 0 and limt→∞ M(t) = ∞. If M(t) = 0
for some t > 0, M is said to be a degenerate function.

To any Orlicz function M we associate the space ℓM of all sequences of scalars

x = (a1, a2, . . . ) such that
∑

∞

n=1 M(|an|/ρ) < ∞ for some ρ > 0. The space ℓM is
equipped with the norm

‖x‖ = inf
{

ρ > 0 :

∞
∑

n=1

M(|an|/ρ) ≤ 1
}

,

which makes ℓM into a Banach space called an Orlicz sequence space.
The subspace hM of ℓM consisting of those sequences x = (a1, a2, . . . ) ∈ ℓM for

which
∑

∞

n=1 M(|an|/ρ) < ∞ for every ρ > 0 is closed and the unit vectors {en}
∞

n=1

form a symmetric basis of hM .
An Orlicz function M is said to satisfy the ∆2-condition at zero if

lim
t→0

sup
M(2t)

M(t)
< ∞.
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140 B. Sari

Some other conditions, each of which is equivalent to the ∆2-condition [LT, Propo-
sition 4.a.4], are :

(i) ℓM = hM ,
(ii) ℓM does not contain a subspace isomorphic to ℓ∞,
(iii) the unit vectors form a boundedly complete symmetric basis of ℓM .

Two Orlicz functions M1 and M2 are equivalent at zero if there exist positive con-
stants K, k, t0 such that K−1M2(k−1t) ≤ M1(t) ≤ KM2(kt) for all 0 < t ≤ t0. When
M1 or M2 satisfies the ∆2-condition, they are equivalent (at zero) if there exist con-
stants K > 0 and t0 > 0 such that K−1 ≤ M1(t)/M2(t) ≤ K for all 0 < t ≤ t0. This

is the case if and only if ℓM1
and ℓM2

consist of the same sequences, that is, the unit
vector bases in ℓM1

and ℓM2
are equivalent.

For an Orlicz function M consider the following subsets of the Banach space
C(0, 1

2
) of all real valued continuous functions on (0, 1

2
);

EM,Λ =

{ M(λt)

M(λ)
; 0 < λ < Λ

}

, EM =

⋂

0<Λ

EM,Λ

CM,1 = convEM,1, CM = convEM ,

where the closure is taken in the norm topology of C(0, 1
2
). Then EM,1, EM , CM,1

and CM are non-empty norm compact subsets of C(0, 1
2
) consisting entirely of Orlicz

functions [LT, Lemma 4.a.6].

The importance of these sets is due to the following result [LT, Proposition 4.a.7,
Theorem 4.a.8].

Theorem 2.1 For every Orlicz function M the following assertions are true.

(i) Every infinite-dimensional subspace Y of hM contains a closed subspace Z which

is isomorphic to some Orlicz sequence space hN .

(ii) Let X ⊂ hM with a subsymmetric basis {xi}. Then X is isomorphic to some

Orlicz sequence space hN and {xi} is equivalent to the unit vector basis of hN .

(iii) An Orlicz sequence space hN is isomorphic to a subspace of hM if and only if N

is equivalent to some function in CM,1.

By (ii) of the above theorem, every subsymmetric basic sequence in an Orlicz

sequence space is symmetric.

Finally we recall that every Orlicz sequence space hM contains isomorphic copies
of some ℓp or c0. Moreover the set of p’s for which ℓp is contained in hM is a closed

interval [LT, Theorem 4.a.9].

By Theorem 2.1, the set CM,1 “coincides” (i.e., there is a one-to-one correspon-
dence) with the collection of all subspaces of hM which have a subsymmetric (or

symmetric) basis. The following proposition asserts that the collection SPw(hM) of
all spreading models of hM generated by seminormalized weakly null basic sequences
is also “contained” in the set CM,1. The proof is a simple generalization of the argu-
ment given in [LT, Proposition 4.a.7].
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Proposition 2.2 Let M be an Orlicz function. Let (x̃i) be a spreading model generated

by a normalized weakly null sequence (xi) in hM . Then there exists N ∈ CM,1 such

that (x̃i) is equivalent to the unit vector basis of hN . Moreover, (x̃i) is equivalent to a

subsequence of (xi).

Proof Let (yi) be the good subsequence of (xi) which generates (x̃i). Since (xi) is
weakly null, by passing to a further subsequence if necessary we can assume that (yi)

is a block basic sequence of the unit vector basis of hM .

For each i = 1, 2, . . . , let yi =
∑ni

l=ni−1+1 clel. To every vector yi we associate the

function Mi(t) =
∑ni

l=ni−1+1 M(|cl|t). Since yi is normalized,
∑ni

l=ni−1+1 M(|cl|) = 1

and hence the functions {Mi}
∞

i=1, as elements of C(0, 1
2
), belong to the set CM,1.

Now by the norm compactness of CM,1 (in C(0, 1
2
)), there exists a subsequence

{Min
}∞n=1 of {Mi} and an Orlicz function N ∈ CM,1, which might be degenerate, so

that |Min
(t)−N(t)| ≤ 2−n for 0 ≤ t ≤ 1/2 and n = 1, 2, . . . . Assume for simplicity

of notation that the subsequence {Min
}∞n=1 coincides with the whole sequence {Mi}.

Thus for any a = (ai)
m
i=1 ∈ c00, we have

∥

∥

∥

m
∑

i=1

ai x̃i

∥

∥

∥
= lim

k1→∞

· · · lim
km→∞

∥

∥

∥

m
∑

i=1

ai yki

∥

∥

∥

= lim
k1→∞

· · · lim
km→∞

inf
{

ρ :

m
∑

i=1

Mki
(|ai |/ρ) ≤ 1

}

= inf
{

ρ :

m
∑

i=1

N(|ai|/ρ) ≤ 1
}

=

∥

∥

∥

m
∑

i=1

aiei

∥

∥

∥

hN

.

Moreover, the above argument yields that (x̃i) is actually equivalent to a subse-
quence of (xi). Indeed, since |Min

(t)−N(t)| ≤ 2−n for 0 ≤ t ≤ 1/2 and n = 1, 2, . . . ,
it follows that

∑

∞

n=1 Min
(|an|) < ∞ if and only if

∑

∞

n=1 N(|an|) < ∞, provided that
N is non-degenerate. Hence the corresponding subsequence (yin

) is equivalent to

unit vector basis of hN [LT, Proposition 4.a.7]. If N(t) = 0 for some t > 0, then (yin
)

is equivalent to unit vector basis of c0 which, in this case, is isomorphic to hN .

Obviously, by Theorem 2.1, for every N ∈ CM,1, hN is a spreading model of hM .
Hence, with some abuse of notation, we can write SPw(hM) ⊂ CM,1 ⊂ SP(hM),
where SP(hM) denotes the set of all spreading models of hM .

We recall the following well-known fact [LT, Proposition 4.a.5].

Proposition 2.3 Let M1 and M2 be two Orlicz functions. Then the unit vector basis

of hM1
dominates the unit vector basis of hM2

if and only if there exist constants K > 0,

k > 0 and t0 > 0 such that M2(t) ≤ KM1(kt) for all 0 < t ≤ t0.

Definition 2.4 Let N1 and N2 be two Orlicz functions. We say that N1 dominates

N2 and denote by N2 ≤ N1 if there exist constants K > 0, k > 0 and t0 > 0 such that
N2(t) ≤ KN1(kt) for all 0 < t ≤ t0. We write N2 < N1 if N2 ≤ N1 but N1 6≤ N2.
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142 B. Sari

Obviously, N2 ≤ N1 and N1 ≤ N2 mean that N1 is equivalent to N2. Thus by
Proposition 2.3, we have N2 ≤ N1 if and only if hN2

≤ hN1
, where by the latter

relation we mean that the unit vector basis of hN1
dominates the unit vector basis

of hN2
.

As mentioned earlier, it is shown in [AOST] that for an arbitrary Banach space X

every countable subset of SPw(X) admits an upper bound in SPw(X). When X is an
Orlicz sequence space, the corresponding result becomes an easy observation. Before
stating this result we need the following lemma, which will be used in the sequel.

Lemma 2.5 Let M be an Orlicz function. The unit vector basis (ei) of hM is weakly

null if and only if hM is not isomorphic to ℓ1 if and only if limt→0 M(t)/t = 0. In

particular, hN ∈ SPw(hM) if and only if N ∈ CM,1 and limt→0 N(t)/t = 0.

Proof The first equivalence follows from standard known results: if hM is isomor-
phic to ℓ1, since ℓ1 has a unique symmetric basis, then the unit vector basis (ei) of hM

is equivalent to the unit vector basis of ℓ1 and hence it is not weakly null. Moreover,

if (ei) is not weakly null, since it is symmetric, it is equivalent to the unit vector basis
of ℓ1 [LT, Proposition 3.b.5].

For the second equivalence, first we note that for every Orlicz function M,

limt→0 M(t)/t exists. This follows from the fact that the function M(t)/t is mono-
tone. Indeed, by convexity of M, for all 0 < t < s, we have M(t) ≤ (t/s)M(s) +
(1 − t/s)M(0) = (t/s)M(s), i.e., M(t)/t ≤ M(s)/s.

Moreover, for all n, by definition of the norm of hM , we have

‖
∑n

i=1 ei‖hM

n
=

1

nM−1(1/n)
=

M(tn)

tn

,

where M−1 is the inverse function of M and for all n, M−1(1/n) = tn. (Note also

that tn tends to zero.) It follows that limn→∞ ‖
∑n

i=1 ei‖hM
/n exists as well. Now recall

a well-known fact [LT] that a symmetric (even subsymmetric) basis (yi) is equiva-
lent to the unit vector basis of ℓ1 if and only if limn→∞ ‖

∑n
i=1 yi‖/n > 0. Since

the unit vector basis (ei) of hM is symmetric, consequently it follows that the unit

vector basis (ei) of hM is not equivalent to the unit vector basis of ℓ1 if and only if
limn→∞ ‖

∑n
i=1 ei‖hM

/n = 0 if and only if limt→0 M(t)/t = 0.

Finally, if hN ∈ SPw(hM), then by the remark following Proposition 2.2 the unit

vector basis of hN is equivalent to a subsequence of the generating weakly null basic
sequence in hM , therefore it is weakly null, and by the above, limt→0 N(t)/t = 0.

Remark It follows from the above Lemma and the remark following Proposition
2.2 that if an Orlicz sequence space hM does not contain an isomorphic copy of ℓ1,
then the sets SPw(hM) and CM,1 coincide, that is, SPw(hM) = CM,1.

Proposition 2.6 Let M be an Orlicz function. Suppose that hN1
, hN2

, . . . ∈ SPw(hM).

Then there exists hN0
∈ SPw(hM) such that hN0

dominates hNi
for every i ∈ N.
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Proof By Lemma 2.5, N1, N2, . . . ∈ CM,1 and limt→0 Ni(t)/t = 0 for all i. Define
N0(t) =

∑

∞

i=1 2−iNi(t); then clearly N0 ∈ CM,1. For every i ∈ N, N0(t) ≥ 2−iNi(t)

for all t > 0. Hence hN0
dominates hNi

for every i ∈ N. It remains to show that
limt→0 N0(t)/t = 0.

Observe that, since Ni(t)/t is non-decreasing, Ni(t)/t ≤ 2Ni(1/2) ≤ 2 for all
i ∈ N and 0 < t ≤ 1/2.

Let ε > 0 and m ∈ N such that 2−m < ε/4. Since limt→0 Ni(t)/t = 0 for all i,
there exists tε > 0 such that for all 0 < t < tε,

∑m
i=1 2−i Ni (t)

t
< ε/2. Then for all

0 < t < tε,

N0(t)

t
=

m
∑

i=1

2−i Ni(t)

t
+

∞
∑

i=m+1

2−i Ni(t)

t
<

ε

2
+ 2

∞
∑

i=m+1

2−i < ε.

Consequently, limt→0 N0(t)/t = 0, as desired.

3 The Structure of SPw(ℓM)

We have seen by Proposition 2.2 that every spreading model (x̃i) of an Orlicz se-
quence space hM generated by a weakly null sequence in hM corresponds to a func-

tion N in CM,1. This reduces the study of the partially ordered set SPw(hM) to the
study of the partially ordered set CM,1. Hence our next results are on the structure of
the set CM,1.

We start with an easy observation.

Lemma 3.1 Let M be an Orlicz function satisfying the ∆2-condition. Then for all N ∈
CM,1, there exists a sequence (Gn) of Orlicz functions which belong to the equivalence

class of M in CM,1 such that (Gn) converges uniformly in the norm topology of C(0, 1
2
)

to N.

Proof The fact that for every N ∈ CM,1 there exists a sequence (Gn) of the form

Gn =

∑

i∈σn

α(n)
i

M(λ(n)
i t)

M(λ(n)
i )

for some finite subset σn ∈ N and scalars α(n)
i with

∑

i∈σn
α(n)

i = 1 and 0 < λi ≤ 1/2

so that the (Gn) converges uniformly to N (in the norm topology of C(0, 1
2
)), follows

from the definition of CM,1.
To show that Gn is equivalent to M for every n ∈ N, it is sufficient to show that

the functions M(λt)

M(λ)
(0 < λ ≤ 1/2) are equivalent to M. Since M satisfies the ∆2-

condition and it is non-decreasing, it follows that for every λ > 2−m we have

M(t)

KmM(λ)
≤

M(λt)

M(λ)
≤

M(t)

M(λ)
,

where K is the ∆2-condition constant. Also due to the ∆2-condition, M is not de-
generate, hence M(λ) 6= 0. This concludes that the functions M(λt)

M(λ)
and hence Gn’s

are equivalent to M, for every n ∈ N.
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For our main result on the structure of the set CM,1, we also need the following
lemma, which is a reformulation in our context of [AOST, Proposition 3.7].

Lemma 3.2 Let C ⊂ CM,1 be a non-empty subset satisfying the following two condi-

tions:

(i) C does not have a maximal element with respect to domination.

(ii) For every (Ni) ⊂ C there exists N ∈ C such that Ni ≤ N for every i ∈ N.

Then for all ordinals α < ω1, there exists Nα ∈ C such that if α < β < ω1 then

Nα < Nβ .

Sketch of the proof We use transfinite induction. Suppose that Nα has been con-

structed for α < β < ω1. Then Nβ is chosen using (i) if β is a successor ordinal. If
β is a limit ordinal, then use (ii) to choose Nβ and use (i) to show that Nα < Nβ for
α < β < ω1.

The following theorem gives an important criterion on the structure of the
set CM,1.

Theorem 3.3 Let M be an Orlicz function satisfying the ∆2-condition. Suppose that

there exists N0 ∈ CM,1 such that N0 is not dominated by M. Then the set CM,1 contains

an uncountable increasing chain of mutually non-equivalent Orlicz functions.

Proof We will show that there exists a subset C of CM,1 which satisfies the conditions
(i) and (ii) of Lemma 3.2.

First, we observe that the assumption implies that there exists N ′

0 ∈ CM,1 satisfying
N ′

0 6≤ M which is, additionally, of the form

∞
∑

i=1

ci
M(λit)

M(λi)
,

for some ci > 0 with
∑

i ci = 1, and for 0 < λi < 1/2.
Indeed, let (Gn) be a sequence in the equivalence class of M which converges uni-

formly to N0 (Lemma 3.1). Since N0 6≤ M, there exists a sequence (tk) ց 0 such that
for all k ∈ N,

M(tk)

N0(tk)
<

1

k2k
.

For every k, let nk be such that Gnk
(tk) ≥ (1/2)N0(tk), and put

N ′

0(t) =

∞
∑

k=1

2−kGnk
(t) ∈ CM,1.

Then N ′

0(tk) ≥ 2−kGnk
(tk) ≥ 2−(k+1)N0(tk) ≥ (k/2)M(tk), i.e., lim supt→0

N ′

0
(t)

M(t)
=

∞ and hence N ′

0 6≤ M. And clearly,

N ′

0(t) =

∞
∑

k=1

2−kGnk
(t) =

∑

k

2−k
∑

i

α(nk)
i

M(λ(nk)
i t)

M(λ(nk)
i )

=

∑

i

ci
M(λit)

M(λi)
,
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for some ci such that
∑

i ci = 1 and 0 < λi < 1.

For convenience of notation we denote N ′

0 by N0 again. So suppose that N0(t) =
∑

i ci
M(λit)

M(λi )
. Observe that ci 6= 0 for infinitely many i’s, due to the assumption that

N0 6≤ M.

For all n, let sn be the normalized partial sum,

sn(t) =
1

∑n
i=1 ci

n
∑

i=1

ci

M(λit)

M(λi)
.

Then sn ∈ CM,1. Let k0 ∈ N such that
∑k0

i=1 ci ≥ 1/2. Then for all n ≥ k0, we have

sn(t) ≤ 2N0(t) for all 0 ≤ t ≤ 1. Let us relabel the sequence {sn}
∞

n=k0
and denote it

again by {sn}
∞

n=1.

Let

C =
{

N ∈ CM,1 : N(t) =

∞
∑

n=1

bnsn(t), for some bn ≥ 0 and
∑

n

bn = 1
}

.

First, we remark that for all N ∈ C , we have N0 6≤ N. Indeed, let N =
∑

∞

n=1 bnsn(t) ∈
C for some bn ≥ 0 with

∑

n bn = 1 and let ε > 0 be arbitrary. Let m ∈ N be such that
∑

∞

n=m+1 bn < ε/4. Using the fact that
∑m

n=1 bnsn(t) is equivalent to M and N0 6≤ M,

we pick tε > 0 such that
∑m

n=1 bn
sn(tε)
N0(tε)

< ε/2. Then, since sn(t) ≤ 2N0(t) for all n

and t , we have

N(tε)

N0(tε)
=

m
∑

n=1

bn
sn(tε)

N0(tε)
+

∞
∑

n=m+1

bn
sn(tε)

N0(tε)

<
ε

2
+ 2

∞
∑

n=m+1

bn < ε.

That is, lim inft→0
N(t)

N0(t)
= 0, and N0 6≤ N.

Now we check the conditions (ii) and (i) of Lemma 3.2 for the set C .

(ii) If Ni(t) =
∑

n b(i)
n sn(t) ∈ C for some b(i)

n ≥ 0 with
∑

n b(i)
n = 1 and i =

1, 2, . . . , then we put N(t) =
∑

∞

i=1 2−iNi(t). Then

N(t) =

∑

i

2−i
∑

n

b(i)
n sn(t) =

∑

n

cnsn(t),

where cn ≥ 0 with
∑

n cn = 1. That is, N ∈ C . Moreover, for all i, we have Ni ≤ N.

(i) Suppose that there is a maximal element M ∈ C . Then M(t) =
∑

n bnsn(t) for
some bn ≥ 0 such that

∑

n bn = 1. By the above remark, N0 6≤ M, and hence there
exists a sequence (tk) ց 0 such that for all k,

M(tk)

N0(tk)
<

1

k2k
.
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Since the partial sums sn converge to N0, for all k we may choose (nk) such that
snk

(tk) ≥ (1/2)N0(tk). Let M0(t) =
∑

k 2−ksnk
(t) ∈ C . Then for all k,

M0(tk) ≥ 2−ksnk
(tk) ≥ 2−(k+1)N0(tk) ≥ (k/2)M(tk).

That is, lim supt→0
M0(t)

M(t)
= ∞ and M0 6≤ M, a contradiction. Therefore, C does not

contain a maximal element.

The proof is now complete by Lemma 3.2.

Remark As it was observed in [FPR], the set of all block bases (or spreading models
generated by block bases) of a Banach space is either countable (up to equivalence)
or has cardinality continuum. Thus the following consequence of Theorem 3.3 is
immediate.

Corollary 3.4 Let M be an Orlicz function which satisfies the ∆2-condition. Suppose

that there exists a spreading model generated by a normalized weakly null sequence (or

a symmetric sequence) in ℓM which is not dominated by the unit vector basis of ℓM .

Then the set SP(ℓM) (respectively, the set of all symmetric sequences in ℓM) has, up to

equivalence, cardinality continuum.

The next consequence of Theorem 3.3 gives a description of the structure of the
set of symmetric sequences (respectively, of SPw(ℓM)) in ℓM for which these sets are

“small”.

Corollary 3.5 Let ℓM be an Orlicz sequence space which is not isomorphic to ℓ1. Sup-

pose that the set of symmetric sequences, up to equivalence, (respectively, SPw(ℓM)) is

countable. Then

(i) the unit vector basis of ℓM is the upper bound of the set of symmetric sequences in

ℓM (respectively, it is the upper bound of SPw(ℓM));

(ii) the unit vector basis of ℓp for some 1 < p < ∞ is the lower bound of the set of

symmetric sequences in ℓM (respectively, it is the lower bound of SPw(ℓM)).

Proof Observe that the assumptions immediately imply that M satisfies the ∆2-
condition. Indeed, otherwise ℓ∞ embeds into ℓM , which implies that the set of sym-
metric sequences (respectively, SPw(ℓM)) is uncountable, e.g., for all 1 < p < ∞,

ℓp ⊂ ℓ∞ ⊂ ℓM . Moreover, the assumptions also imply that ℓM does not contain
an isomorphic copy of ℓ1 (hence it is reflexive). Indeed, if ℓ1 ⊂ ℓM , since the unit
vector basis of ℓ1 trivially dominates the unit vector basis of ℓM(= hM), it follows
from Corollary 3.4 that either the set of symmetric sequences in ℓM (respectively,

SPw(ℓM)) is uncountable or ℓM is isomorphic to ℓ1.

Therefore by the remark following Lemma 2.5, we have that SPw(hM) = CM,1.
Moreover, by reflexivity, these sets coincide with the set of all symmetric sequences

in ℓM . That is, the structure of these sets is isomorphic with respect to corresponding
partial orders.

(i) By Proposition 2.6, CM,1 contains an upper bound. Suppose that there exists
N ∈ CM,1 such that N is not equivalent to M and the unit vector basis of hN is the
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upper bound for the set of symmetric sequences in ℓM (respectively, of SPw(ℓM)). It
follows that N 6≤ M and by Theorem 3.3, CM,1 contains uncountable mutually non-

equivalent Orlicz functions, and thus the set of symmetric sequences in ℓM (respec-
tively, SPw(hM)) is uncountable, a contradiction. Therefore ℓM must be the upper
bound.

(ii) Since the set of p’s for which ℓp embeds into ℓM is a closed interval [LT, The-

orem 4.a.9], it follows from the assumption that this set is a singleton. (Hence there
exists a unique 1 < p < ∞ such that ℓp ∈ SPw(hM).) Moreover, it follows from
Theorem 2.1 that ℓM is ℓp-saturated. That is, every subspace of ℓM has a further sub-
space which contains an isomorphic copy of ℓp. For Orlicz sequence spaces, by The-

orem 2.1, ℓp embeds into hM if and only if t p ∈ CM,1. In particular, for all N ∈ CM,1,
the function t p belongs to CN,1. Moreover, the assumption that M satisfies the ∆2-
condition implies that N also satisfies the ∆2-condition for all N ∈ CM,1.

If (the unit vector basis of) ℓp is not the lower bound of the set of symmetric

sequences in ℓM (respectively, of SPw(ℓM)), then there exists N ∈ CM,1 such that
t p 6≤ N . But, by the above, t p ∈ CN,1, hence it follows from Theorem 3.3 that CN,1 ⊂
CM,1 is uncountable. This implies that the set of symmetric sequences in hN ⊂ ℓM

(respectively, SPw(hN ) ⊂ SPw(ℓM)) is uncountable, a contradiction. Therefore ℓp

must be the lower bound.

Remark It is also worth noting the following. If ℓM is non-reflexive then either ℓM

is isomorphic to ℓ1 or SPw(ℓM) is uncountable. This is obvious if M does not satisfy

the ∆2-condition for then ℓM contains ℓ∞. On the other hand, if M satisfies the ∆2-
condition and ℓM is non-reflexive then it is known [LT, Proposition 4.a.4] that ℓM

contains ℓ1. By the first part of the proof of Corollary 3.5, either ℓM is isomorphic to
ℓ1 or SPw(ℓM) is uncountable.

We give only a sketch of the argument for our next result as it follows along similar

lines to the proof of Theorem 3.3.

Theorem 3.6 Let M be an Orlicz function satisfying the ∆2-condition. Suppose that

CM,1 contains a strictly increasing infinite sequence M1 < M2 < · · · . Then the set

CM,1 contains an uncountable increasing well-ordered chain of mutually non-equivalent

Orlicz functions.

Sketch of the proof By passing to a subsequence, if necessary, assume that (Mn)

converges (uniformly) to some N0 ∈ CM,1. First, assume that there exists a constant
K ≥ 1 such that Mn(t) ≤ KN0(t), for all t > 0.

We proceed as in the proof of Theorem 3.3 by defining

C =
{

N ∈ CM,1 : N(t) =

∞
∑

n=1

bnMn(t) for some bn ≥ 0 and
∑

n

bn = 1
}

.

Next, using the above assumption and the fact that for all m ∈ N and bn > 0,
∑m

n=1 bnMn(t) is equivalent to Mm(t) and Mm < N0 (due to the fact that (Mn) is
strictly increasing), we show that for all N ∈ C , N0 6≤ N (in fact, N < N0).
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Finally, using the fact that (Mn) converges to N0, one can show, similarly as in the
proof of Theorem 3.3, that C satisfies (i) and (ii) of Lemma 3.2.

If the assumption that there exists K ≥ 1 such that Mn(t) ≤ KN0(t) for all t > 0
fails, then put N ′

0(t) =
∑

∞

n=1 2−nMn(t). Now take

M ′

n(t) =
1

∑n
k=1 2−k

n
∑

k=1

2−kMk(t).

Note that M ′

n(t) ≤ 2N ′

0(t) for all t > 0 and, of course, M ′

n converges (uniformly)
to N ′

0 . So now replace (Mn) in the first part of the proof by M ′

n and N0 by N ′

0 . This
finishes the proof.

Corollary 3.7 Let ℓM be an Orlicz sequence space. Suppose that the set of symmet-

ric sequences, up to equivalence, (respectively, SPw(ℓM)) is countable. Then the set of

symmetric sequences in ℓM (respectively, SPw(ℓM)) cannot contain a strictly increasing

infinite sequence.

Question Does there exist an Orlicz sequence space ℓM so that the set of symmet-
ric sequences in ℓM , up to equivalence, (respectively, the set SPw(ℓM)) is precisely
countably infinite?

We have recently [S] extended Corollary 3.7 to arbitrary Banach spaces X for
SPw(X). For a recent discussion of more general form of the above question see
[DOS].
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