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Abstract

Given n distinct points x1, . . . , x= in R3 , let K denote their convex hull, which we assume to be d-dimensional,

and � = m its (3 − 1)-dimensional boundary. We construct an explicit, easily computable one-parameter family

of continuous maps fY : S3−1 →  which, for Y > 0, are defined on the (3 − 1)-dimensional sphere, and whose

images fY (S
3−1) are codimension 1 submanifolds contained in the interior of K. Moreover, as the parameter Y

goes to 0+, the images fY (S
3−1) converge, as sets, to the boundary B of the convex hull. We prove this theorem

using techniques from convex geometry of (spherical) polytopes and set-valued homology. We further establish

an interesting relationship with the Gauss map of the polytope B, appropriately defined. Several computer plots

illustrating these results are included.

1. Introduction

Given a configuration - = (x1, . . . , x=) of = distinct points in R3 , computing their convex hull  =

Conv(-) is a famous problem in computational geometry. Many algorithms have been developed for

this task, including the gift wrap or Jarvis march algorithm, the Graham scan algorithm, QuickHull,

divide and conquer, the monotone chain or Andrew’s algorithm, Chan’s algorithm, the incremental

convex hull algorithm, the ultimate planar convex hull algorithm and others (see, for instance, [3] and

the references therein).

In this paper, we develop an alternative, direct approach to this problem that does not rely on

any underlying computer algorithm. Instead, assuming dim = 3 – meaning that its interior  ◦

is a nonempty open subset of R3 – we construct a one-parameter family of approximations to its

(3 − 1)-dimensional boundary � = m , which is a convex polytope, as the images of continuous maps

fY : S3−1 → R3 for Y > 0, that are defined explicitly, and fairly simply, in terms of the points x1, . . . , x=.

Initial computer-generated plots suggest that the images fY
(
S3−1

)
of our family of maps provide

excellent approximations to the boundary � for all configurations that we have tried; see Figures 1

and 2 for some representative examples. Our main result, Theorem 2.1, states that the images fY
(
S3−1

)

converge, as sets, to the boundary � as the parameter Y → 0+. We will also explain in detail the

mechanism of convergence. We then establish a relationship with the Gauss map of a smooth surface

[8], thereby defining set-valued versions of the Gauss map and its inverse for the boundary of the convex

hull. Indeed, our proof of the main theorem relies on techniques from the theory of set-valued homology.
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(a) n = 3 (b) n = 4 (c) n = 5

(d) n = 7 (e) n = 10 (f) n = 15

Figure 1. Plots of the image fY
(
S1
)

with Y = 0.01 for some planar point configurations - .

(b) cube(a) tetrahedron

(c) dodecahedron (d) icosahedron

Figure 2. Plots of the images of ≈ 15, 000 sample points on S2 under the map fY , with Y = 0.1

corresponding to point configurations - consisting of the vertices of four of the regular polyhedra in

dimension 3 = 3.
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On the other hand, the convergence of the approximating sets fY
(
S3−1

)
to the boundary � is highly

nonuniform. Indeed, as we will see, the images fY (n) of almost every point n ∈ S3−1 converge to

one of the vertices of �. Thus, if one discretely samples S3−1 by a large but finite number of points

y1, . . . , y# , most of their image points fY (y: ) ∈ fY
(
S3−1

)
will accumulate around the vertices of �, and

the remainder of � will be increasingly sparsely approximated as Y → 0+. This nonuniform sampling

property can be observed in the three-dimensional illustrative plots in Figure 2.

The primary focus of this paper is to prove the convergence theorem and to establish interesting

and potentially useful connections with convex analysis, with the geometry of polytopes and spherical

polytopes and with the Gauss map from differential geometry. A future research project that has

served to inspire these constructions will be the development of potential new practical algorithms for

approximating or computing the convex hull of a point configuration. An interesting further extension

of our techniques could be to the approximation of Wulff shapes of crystals [15].

Methods for approximating the boundary of convex polytopes by smooth submanifolds date back to

Minkowski [14]; see [7] for more recent results and [6] for the construction of approximating algebraic

sets. In these approaches, one is required to a priori know the facets of the polytope, whereas our method

works directly on the point configurations themselves.

2. A family of maps defined by a point configuration

Let us begin by introducing the basic setup and our notation, before defining the family of maps that

will be our primary object of study.

Let �=
(
R3

)
denote the configuration space of = distinct points in R3; in other words, - =

(x1, . . . , x=) ∈ �=
(
R3

)
means that each x8 ∈ R

3 and x8 ≠ x 9 whenever 8 ≠ 9 . Assuming = ≥ 3 + 1,

let �∗=
(
R3

)
⊂ �=

(
R3

)
denote the dense open subset of nondegenerate configurations, meaning those

whose points do not all lie on a proper affine subspace of R3 . From here on we fix the nondegenerate

point configuration - ∈ �∗=
(
R3

)
and suppress all dependencies thereon.

Let  = Conv(-) ⊂ R3 denote the convex hull of the points in - , which by nondegeneracy is a

bounded convex polytope of dimension 3 whose interior is a nonempty open subset  ◦ ⊂ R3 [9, 18].

Let � = m = m Conv(-) be its boundary, which is a closed polyhedral (piecewise linear) hypersurface

in R3 .

Let R+ = {0 < C ∈ R}. Given any pair of indices 1 ≤ 8, 9 ≤ = with 8 ≠ 9 , we define real-valued

functions 28 9 : R
+ × S3−1 → R+ by

28 9 (Y, n) = Y + max
{
0,−〈n , n8 9 〉

}
, Y > 0, n ∈ S3−1, (2.1)

where 〈 · , · 〉 denotes the Euclidean inner product in R3 and where

n8 9 =
x 9 − x8

‖x 9 − x8 ‖
∈ S3−1, 8 ≠ 9 , (2.2)

is the unit vector pointing from x8 to x 9 , with ‖ · ‖ denoting the Euclidean norm. Note that n8 9 = −n 98 .

The 28 9 in equation (2.1) are continuous maps; moreover, 28 9 (Y, n) > 0, since we are assuming (for now)

that Y > 0. We further define, for any 1 ≤ 8 ≤ =, the map 28 : R
+×S3−1 → R+ by the (=−1)-fold product

28 (Y, n) =
∏

1≤ 9≤=
9≠8

28 9 (Y, n). (2.3)

Finally, let us set

_8 (Y, n) =
28 (Y, n)

Δ (Y, n)
, 8 = 1, . . . , =, (2.4)
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Figure 3. - consists of the vertices of a triangle, with Y = 0.1. One can see that fY
(
S1
)

is indented at

the points fY (n), shown as small red squares, which correspond to n ∈ (8 9 for 1 ≤ 8, 9 ≤ 3 and 8 ≠ 9 .

where

Δ (Y, n) =

=∑

9=1

2 9 (Y, n) > 0 for all Y > 0, n ∈ S3−1. (2.5)

Thus,

0 < _8 (Y, n) < 1 and

=∑

8 = 1

_8 (Y, n) = 1. (2.6)

Given a point configuration - ∈ �=
(
R3

)
, we can now define the main object of interest in this paper:

the one-parameter family of maps fY : S3−1 → R3 defined by

fY (n) =

=∑

8 = 1

_8 (Y, n) x8 , Y > 0, n ∈ S3−1. (2.7)

From formulas (2.6) and (2.7), one immediately deduces that

fY (n) ∈  
◦ for any Y > 0, n ∈ S3−1.

Inspection of Figures 1 and 2, and others that can be easily generated by computer, indicates that for

a given - ∈ �∗=
(
R3

)
and small Y > 0, the image of S3−1 under fY may be used as a good approximation

of the boundary � = m ⊂ R3 of the convex hull of - . More precisely, the main theorem to be proved

in this paper is as follows:

Theorem 2.1. Given a nondegenerate point configuration - ∈ �∗=
(
R3

)
, let  = Conv(-) be its convex

hull, which has dimension 3. Let fY be defined by equation (2.7). Then for Y > 0, the images of the unit

sphere under fY lie in the interior of the convex hull of - , so fY
(
S3−1

)
⊂  ◦ and, moreover, converge

to its boundary as sets in R3:

lim
Y→0+

fY

(
S3−1

)
= m . (2.8)

The set-theoretic convergence in equation (2.8) is uniform in the sense that the images fY
(
S3−1

)

lie in an O(Y) neighbourhood of the boundary m , even though their pointwise convergence is highly

nonuniform. See later for precise details on what this means.

Remark. On the other hand, if the point configuration is degenerate – meaning - ∈ �=
(
R3

)
\�∗=

(
R3

)

– and so its convex hull  = Conv(-) has dimension strictly less than 3, then one can show that

limY→0+ fY
(
S3−1

)
=  . Indeed, observe that the maps fY depend continuously on the point configuration.
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If one slightly perturbs - to a nondegenerate configuration -X ∈ �∗=
(
R3

)
, then their perturbed convex

hull  X is of dimension 3 and, by Theorem 2.1, fY
(
S3−1

)
→ m X . But as X → 0, their boundaries

converge to the entire convex hull: m X →  , which enables one to establish the result. Since this case

is of less importance for our purposes, the details are left to the reader.

Remark. In this paper, we have used the language of convergence of sequences (or nets) of compact sub-

sets of an ambient metric space (upper limits and lower limits). According to [2], these notions originated

with Painlevé in 1902, although they are usually named after Kuratowski, who popularised them in his

book [10]. In our case, the ambient metric space is the convex hull  = Conv(-) of the points. Because

 is compact, the convergence of a sequence of compact subsets in the Kuratowski sense is equivalent

to the convergence of the same sequence with respect to the Hausdorff metric. Thus, under the condi-

tions of Theorem 2.1, our result also shows that the limit, in the Hausdorff metric, of fY
(
S3−1

)
as Y → 0

is m .

In Section 3, we present notions from convex geometry that are relevant to this work, including normal

cones and normal spherical polytopes. The latter enable us to associate with a convex polytope � a

spherical complex (∗� [13], meaning a tiling of S3−1 by spherical polytopes, with the property that it has

the same combinatorial type as the dual polytope �∗. Then in Section 5, we connect our constructions

with the differential geometric concept of the Gauss map of a convex hypersurface, generalised to the

boundary of the convex polytope. We explain how our maps converge to the inverse Gauss map of

the boundary of the convex hull of the point configuration, which is viewed as a set-valued function.

Finally, in Section 7, we prove our main result using a combination of convex geometry and set-valued

homology theory, the latter described in Appendix A.

3. Convex geometry, polytopes and spherical polytopes

Let us recall some basic terminology and facts about convex sets and cones and both flat and spherical

polytopes, many of which can be found in [4, 17]. The closed cones appearing in this paper are convex;

pointed, meaning they do not contain any positive dimensional linear subspace of R3; and polyhedral,

meaning they can be characterised as the intersection of finitely many, and at least two, closed half

spaces [5, 18]. On the other hand, for us an open cone # ⊂ R3 is a cone such that # \ {0} is an open

subset of R3 and its closure # is of the earlier type.

Let us fix a nondegenerate point configuration - ∈ �∗=
(
R3

)
consisting of = distinct points

x1, . . . , x= ∈ R3 . Let  = Conv(-) ⊂ R3 denote the convex hull of the points in - , which is a

bounded convex 3-dimensional polytope [9, 18]. Let � = m = m Conv(-) be its boundary, which is

itself a polytope of dimension 3−1, and hence a closed, convex polyhedral hypersurface inR3 . Assume,

by relabelling if necessary, that x1, . . . , x^ are the vertices of  , while x^+1, . . . , x= are the remaining

points, which may lie either in the interior  ◦ or at a nonvertex point of the boundary �. The faces of �

range in dimension from 0, the vertices, to 1, the edges, up to 3 −1, the facets. Two vertices are adjacent

if they are the endpoints of a common edge. Note that each face � ⊂  is itself a convex polytope. If

0 < < ≤ 3 − 1, we denote the interior of an <-dimensional face � by �◦ = � \ m�, which is a flat

<-dimensional submanifold of R3 . (Keep in mind that this is not the same as its interior as a subset of

R3 , which is empty.)

Define the normal cone at the point x8 by

#8 =
{

y ∈ R3
�� 〈 y , n8 9 〉 ≤ 0 for all 9 ≠ 8

}
=

⋂

9≠8

�8 9 , (3.1)

where the unit vectors n8 9 ∈ S
3−1 are given in equation (2.2) and

�8 9 =
{

y ∈ R3
�� 〈 y , n8 9 〉 ≤ 0

}
(3.2)
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is the closed half space opposite to n8 9 . Further, let

#◦
8 =

{
y ∈ R3

�� 〈 y , n8 9 〉 < 0 for all 9 ≠ 8
}

(3.3)

denote the interior of the normal cone #8 . It is easy to see that #◦
8 ≠ ∅ if and only if x8 is a vertex. Also,

#◦
8 ∩#

◦
9 = ∅ whenever 8 ≠ 9 . Indeed, if y ∈ #◦

8 , then 〈 y , n8 9 〉 < 0. But then 〈 y , n 98 〉 = 〈 y ,−n8 9 〉 > 0,

and hence y ∉ #◦
9 . Furthermore, the union of the vertex normal cones is the entire space:

⋃̂

8=1

#8 = R
3 , (3.4)

that is, every vector is in one of the normal cones. This is a direct consequence of the supporting

hyperplane theorem (see, for instance, [4, pp. 50–51]).

A spherical polytope is characterised as the intersection of finitely many closed hemispheres that

does not contain any antipodal points (compare [5, §2.2]). It can alternatively be characterised as the

intersection � ∩ S3−1 of the unit sphere with a pointed polyhedral cone � ⊂ R3 . Let us consequently

define the normal spherical polytope

(8 = #8 ∩ S
3−1

=
{

n ∈ S3−1
�� 〈n , n8 9 〉 ≤ 0 for all 9 ≠ 8

}
, (3.5)

associated with the point x8 . Its interior

(◦8 = #◦
8 ∩ S3−1

=
{

n ∈ S3−1
�� 〈n , n8 9 〉 < 0 for all 9 ≠ 8

}
(3.6)

is nonempty if and only if x8 is a vertex, in which case it is an open submanifold of the unit sphere. Note

that, by equation (3.4) and the preceding remarks,

⋃̂

8=1

(8 = S
3−1, (◦8 ∩ (◦9 = ∅, 8 ≠ 9 . (3.7)

The normal cone and normal spherical polytope associated with a general point x ∈  in the convex

hull are similarly defined:

#x =
{

y ∈ R3
�� 〈 y , z − x 〉 ≤ 0 for all z ∈  

}
,

(x = #x ∩ S3−1
=
{

n ∈ S3−1
�� 〈n , z − x 〉 ≤ 0 for all z ∈  

}
.

(3.8)

As before, #x = {0} if x ∈  ◦, while #x8 = #8 when x8 is a vertex. More generally, if � ⊂ � = m 

is an <-dimensional face, then the normal cone #x is independent of the point x ∈ �◦ lying in its

interior, and we thus define #� = #x for any such x ∈ �◦. If the face � has dimension <, then #� is a

(3 − <)-dimensional cone. Define its interior to be #◦
� = #� \ m#� , which is a (3 − <)-dimensional

submanifold of R3 . Warning: unless < = 0, so that � is a vertex, #◦
� is not the same as the interior

of #� considered as a subset of R3 , which is empty. In particular, if � is a facet – that is, a (3 − 1)-

dimensional face – then #� is a one-dimensional cone – that is, a ray in the direction of its unit outward

normal n� – with #◦
� = { 2 n� | 2 > 0 }. Observe that if � ⊂ m� is a subface, then #� ⊂ m#� . Further,

the convexity of  implies that #◦
� ∩ #◦

�
= ∅ whenever � ≠ � are distinct faces of �; in particular,

n� ≠ n� whenever � ≠ � are distinct facets.

The collection of the interiors of all the normal cones to the faces of � forms the complete normal

fan associated with the polytopes � and  , and their disjoint union fills out the entire space, except for

the origin (which can be identified with # ):

R3 = {0} ⊔
⊔

� ⊂�

#◦
� , (3.9)

where we use the symbol ⊔ to emphasise that the union is disjoint.
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We further define the normal spherical polytope associated with the <-dimensional face � as

(� = #� ∩ S3−1. When< < 3−1, its interior (◦� = #◦
� ∩ S3−1 is a (3−<−1)-dimensional submanifold

of S3−1, while for < = 3 − 1, the normal spherical polytope (� is a single point, namely the facet’s unit

outward normal n� . As an immediate consequence of the complete normal fan decomposition (3.9), we

can write the sphere as a disjoint union

S3−1
=

⊔

dim�<3−1

(◦� ⊔
⊔

dim�=3−1

(� , (3.10)

where the second term runs over the facets and the first over all other faces of � = m . As before, if

� ⊂ m� is a subface, then (� ⊂ m(� .

The collection of all normal spherical polytopes (� , where � runs over all faces of �, forms a spherical

complex [13], denoted (∗�, that tiles the sphere by spherical polytopes as shown in equation (3.10). We

note that (∗� has the same combinatorial type as the dual polytope �∗ [9], and hence we regard the

normal spherical complex (∗� as the spherical dual to �.

We can explicitly characterise where a given unit vector lies in this complex as follows. For n ∈ S3−1

and 8 = 1, . . . , =, define

`8 (n) = min
{
− 〈n , n8 9 〉

�� 1 ≤ 9 ≤ = and 9 ≠ 8
}
. (3.11)

According to equations (3.5) and (3.6), if `8 (n) > 0, then n ∈ (◦8 and all other ` 9 (n) < 0, while if

n ∈ ) = S3−1 \ (, where ( =

:⊔

8=1

(◦8 , (3.12)

then all `8 (n) ≤ 0 for 8 = 1, . . . , =. In more detail:

Proposition 3.1. Let n ∈ S3−1. Then

(i) n ∈ (◦8 for some 8 = 1, . . . , = if and only if `8 (n) > 0, while ` 9 (=) < 0 for all 9 ≠ 8.

(ii) n ∈ (◦� for some face � with 0 < dim � < 3 − 1 or n ∈ (� for some facet � if and only if `8 (n) ≤ 0

for all 8 = 1, . . . , = and ` 9 (n) = 0 whenever x 9 ∈ �. In other words, � is the convex hull of the

points x 9 for which ` 9 (n) = 0.

Proof. We already established (i). As for (ii), we need only note that if x8 , x 9 ∈ � and n is normal to �,

then 〈n , n8 9 〉 = 0. �

Remark. Maehara and Martini [12] propose a similar construction, which they call the ‘outer normal

transform’ of a convex polytope � ⊂ R3 of dimension 3 − 1. They associate each facet � ⊂ � with its

outward normal n� ∈ S3−1 ⊂ R3 . The outer normal transform of � is defined to be the convex hull of

the facet normals in R3 . They observe that unlike the spherical dual, their transform is not necessarily

combinatorially equivalent to the dual polytope �∗.

On the other hand, if we flatten all the normal spherical polytopes of the spherical dual (∗�, meaning

we replace each (� ⊂ R3 by the convex hull of its vertices, the result will be a polytope �̂ ⊂ R3 contained

within the unit ball, all of whose vertices lie on the unit sphere. Although the resulting polytope �̂ also

has the same combinatorial type as �∗, it is not necessarily convex. The outer normal transform of �

can thus be identified with the convex hull of �̂ and so, when �̂ is not convex, will possess a different

combinatorial structure to �∗.

Indeed, counterexamples to the problem of inscribing convex polytopes of a given combinatorial type

in spheres [16] are of this form. For example, the dual to the truncated tetrahedron, known as the triakis

tetrahedron,1 is not inscribable in a sphere; see Figure 4. The flattened version of the spherical dual to

1A triakis tetrahedron is obtained from a regular tetrahedron by gluing a simplex to each of its four faces. If the altitudes of the
simplices are sufficiently short, the result is a convex polyhedron with 12 triangular faces.
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(a) Truncated

tetrahedron

(b) Triakis

tetrahedron

(c) Cubical triakis

tetrahedron

Figure 4. Polytopes.

a truncated tetrahedron is a cube with diagonals that bisect each square into a pair of triangular facets

and form the edges of an interior tetrahedron. Both the spherical dual and the resulting flattened cube

with diagonals have the same combinatorial type as the triakis tetrahedron. However, the cubical triakis

tetrahedron, while inscribed in the unit sphere, is not a convex polyhedron, since it has pairs of coplanar

triangular facets possessing a common normal. It is, of course, the set-theoretic boundary of a convex

subset of R3, namely the inscribed solid cube, whose cubical boundary (without the diagonals) can be

identified as the outer normal transform of the original truncated tetrahedron, and is not combinatorially

equivalent to the triakis tetrahedron. Furthermore, slightly perturbing the original truncated tetrahedron

leads to a perturbed spherical dual and a perturbed cube with diagonals that is inscribed in the sphere,

again both having the same combinatorial type as the triakis tetrahedron. However, although its triangular

faces are no longer coplanar, the resulting polyhedron is not the boundary of a convex subset of R3,

and hence not equal to its outer normal transform, which is the convex hull of this nonconvex perturbed

cube. All this is a necessary consequence of the noninscribability of the triakis tetrahedron.

In general, if the flattened spherical dual of a polytope is convex, then it has to coincide with its

outer normal transform, which is then, by the foregoing remarks, combinatorially equivalent to the dual

polytope. On the other hand, if it is not convex, then its convexification, which is the outer normal

transform, cannot be combinatorially equivalent to the dual. Thus we have established the following:

Proposition 3.2. Let � ⊂ R3 be a convex polytope of dimension 3−1. Then the outer normal transform

of � is combinatorially equivalent to the dual polytope �∗ if and only if the flattened spherical dual of

� is convex.

Finally, for later purposes, we will introduce some useful open subsets of the normal spherical

complex (3.10). If � ⊂ � is a facet with outward unit normal n� ∈ S3−1, so that (� = {n� }, set

,� = (� ⊔
⊔

�(�

(◦� , (3.13)

where the union is over the proper subfaces � ( �. On the other hand, if � ⊂ � is a face with

1 ≤ dim � < 3 − 1, set

,� =

⊔

�⊆�

(◦� . (3.14)

Lemma 3.3. Under the foregoing definitions,,� is a relatively open subset of S3−1.

Proof. This follows from the fact that the corresponding union of normal cones

+� = {0} ⊔
⊔

�⊆�

#◦
�
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is an open cone and ,� = +� ∩ S3−1. Indeed, one can use a perturbed version of the supporting

hyperplane theorem that says that if � is a supporting hyperplane such that � ∩ � = �, where � is a

face, and �̃ is a supporting hyperplane that is a sufficiently small perturbation of �, then �̃ ∩ � = �

for some subface � ⊆ �. Keep in mind that the subface could be a vertex. �

The last result of this section is a technical construction, which is key to our proof of theorem 2.1.

The reader may wish to skip it for now and return once the proof is underway.

Proposition 3.4. Let � ⊂ � be a face of dimension 1 ≤ < ≤ 3 − 1. Let (� be its normal spherical

polytope and ,� ⊂ S3−1 be the open subset given by Lemma 3.3. Let �1, . . . , �: be its (< − 1)-

dimensional subfaces, so that m� =
⋃ :
8=1

�8 . Suppose # ⊂ ,� ⊂ S3−1 is a connected <-dimensional

submanifold such that either (a) if � is a facet, of dimension 3 − 1, with unit outward normal n0 = n� ,

then # is an open neighbourhood of n0; or (b) if 1 ≤ < = dim � < 3 − 1, then # intersects (◦�
transversally at a single point n0 ∈ # ∩ (◦� . Then if #̃ ⊂ # is a sufficiently small open contractible

submanifold with n0 ∈ #̃ , which implies n0 ∈ m (#̃ ∩ (◦
�8
) for all 8 = 1, . . . , : , we can decompose its

boundary m#̃ =
⋃ :
8=1

!8 into the union of (< − 1)-dimensional submanifolds that only overlap on their

boundaries, meaning !8 ∩ ! 9 = m!8 ∩ m! 9 whenever 8 ≠ 9 , with the property that each !8 ⊂ ,�8

intersects (◦�8
transversally at a single point n8 ∈ !8 ∩ (◦�8

= m#̃ ∩ (◦�8
.

Proof. Choose A > 0 sufficiently small that the relatively open submanifold#A = { n ∈ # | ‖n−n0‖ < A }

has boundary m#A = { n ∈ # | ‖n − n0‖ = A }. Moreover, reducing A if necessary, we claim that m#A
intersects each (◦

�8
transversally at a single point n8 ∈ m#A ∩ (◦

�8
. Indeed, in a small neighbourhood

n0 ∈ * we can choose local coordinates centred at n0 such that, locally, (◦� ∩ * is a (3 − < − 1)-

dimensional subspace, #A ⊂ * is a transverse <-dimensional subspace and (◦
�8

∩ * is a (3 − <)-

dimensional half space with local boundary m(�8
∩ * = (◦� ∩ *, from which the preceding claim is

evident.

We now set #̃ = #A . Since (� ⊂ m(�8
, this immediately implies n0 ∈ m (#̃ ∩ (◦�8

). The final task

is to decompose m#̃ =
⋃:
8=1 !8 as in the statement of the proposition. It is reasonably clear that there

are many ways to do this, but for definiteness, here is one possible construction. First we note that by

equations (3.13) and (3.14), either

,� \ {n� } =

:⋃

8=1

,8 or ,� \ (◦� =

:⋃

8=1

,8 ,

according to whether � is a facet or not. We thus, for each 8 = 1, . . . , : , need to choose !8 ⊂ #̃ ∩ ,8
with the requisite properties.

First, define the closed subset !8 ⊂ m#̃ to be the set of all n ∈ #̃ ∩ ,8 such that if n ∈ #̃ ∩ (◦� for

some adjacent subface � ( �8 , then dist(n, n8) ≤ dist(n, n 9 ) for all other adjacent (<−1)-dimensional

subfaces � 9 , meaning that � ( � 9 . Clearly # =
⋃
!8 , and moreover, !8 and ! 9 only overlap on their

common boundary, which could be either part of a boundary of an (� or a point n ∈ # ∩ (◦� that

is equidistant to n8 and n 9 . We then set !8 = !◦8 to be its interior2 relative to m#̃ . Since n8 ∈ !
◦
8 , the

transversality of m#̃ to (◦
�8

at n8 immediately implies the same for the relatively open submanifold !8 .

We conclude that the resulting submanifolds satisfy the required conditions. �

2It may happen that the closure of !8 is strictly contained in !8 ; this can occur if there exist n; associated with nonadjacent

faces �; that lie closer to the points n ∈ #̃ ∩ (◦
�

than those in any adjacent face �8 . But this does not affect the construction,

since every point in !8 \ !8 is contained in the boundary of some ! 9 .
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4. Set-valued functions

We now introduce an important generalisation of the notion of a function (see [1, 2] for details). A set-

valued function, also known as a multi-valued function, from a space � to a space . means a mapping3

5̂ from � to the power set 2. – that is, the set of subsets of . . In other words, the image of G ∈ �

is a subset 5̂ (G) ⊂ . . More generally, a set-valued function maps subsets of its domain to subsets of

its range in the evident manner. We say that 5̂ has closed values if 5̂ (G) is a closed subset of . for all

G ∈ �. The range ' ⊂ . of 5̂ is the union of all the images of points in its domain �, so ' = 5̂ (�). In

particular, any ordinary function 5 : � → . can be viewed as a set-valued function, with closed values,

by identifying the image H = 5 (G) of a point G ∈ � with the singleton set {H} ⊂ . .

In convex analysis, the normal cone (3.8) is often viewed as a set-valued function 5̂ from � = m to

R3 that maps a point x ∈ � to its normal cone 5̂ (x) = #x ⊂ R3 . (One can, of course, extend it to all of

 , but the values on the interior  ◦ are trivial.) Similarly, we can view the normal spherical polytope

construction as a set-valued function Ŵ� from � to S3−1 mapping a point x ∈ � to its normal spherical

polytope: Ŵ� (x) = (x ⊂ S3−1.

We will be interested in the convergence of set-valued functions. Here is a simple example:

Example 4.1. Consider the ordinary functions

5Y (G) =
2

c
(1 − Y) arctan

G

Y
for G ∈ R, Y > 0. (4.1)

In the usual function-theoretic sense of convergence,

lim
Y→0+

5Y (G) = sign G =




1, G > 0,

0, G = 0,

−1, G < 0.

Thus, for almost every point G ∈ R, the value of 5Y (G) converges to either −1 or 1. However, if you look

at their graphs as subsets of R2, they converge, as sets, to the curve consisting of the union of the three

line segments

{ (G,−1) | G ≤ 0 } ∪ { (0, H) | −1 ≤ H ≤ 1 } ∪ { (G, 1) | G ≥ 0 } .

We can interpret this curve as the graph of the set-valued function

5̂ : R −→ 2R given by 5̂ (G) =




{1}, G > 0,

[−1, 1], G = 0,

{−1}, G < 0.

(4.2)

The domain of 5̂ is � = R and its range is the interval ' = [−1, 1] = 5̂ (R). Furthermore, the ranges

'Y = 5Y (R) = (−1 + Y, 1 − Y) of the functions (4.1) are open intervals that converge, as sets, to the

closed interval [−1, 1] forming the range of the limiting set-valued function.

In general, given spaces �, ', let � × ' denote their Cartesian product and c� : � × ' → �

and c' : � × ' → ' the standard projections. Any subset ( ⊂ � × ' which projects onto both

� = c� (() and ' = c' (() defines a set-valued mapping 5̂ with domain � and range ', given

by 5̂ (G) = c'
(
( ∩ c−1

� {G}
)
. Its inverse 5̂ −1 is also a set-valued mapping from ' to �, given by

3We will place hats over set-valued functions to distinguish them from ordinary functions.
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5̂ −1(H) = c�
(
( ∩ c−1

' {H}
)

[2]. For the above example (4.2), 5̂ −1 : [−1, 1] → 2R is given by

5̂ −1(H) =




(−∞, 0], H = −1,

{0}, −1 < H < 1,

[0,∞), H = 1.

(4.3)

Note that any ordinary function thus has a set-valued inverse.

Finally, we note that the concept of continuity does not extend straightforwardly to set-valued

functions. The most important analogue is contained in the following definition:

Definition 4.2. Let � and ' be topological spaces. A set-valued function 5̂ : � → ' is called upper

hemicontinuous at G0 ∈ � if and only if for any open neighbourhood + of the set 5̂ (G0), there exists a

neighbourhood* of G0 such that 5̂ (G) ⊂ + for all G ∈ *. We say that 5̂ is upper hemicontinuous if it is

upper hemicontinuous at every G0 ∈ �.

It is straightforward to verify that Example 4.1 satisfies the upper hemicontinuity condition.

Warning: A few authors, including [2], use the expression ‘upper semicontinuous’ instead of ‘upper

hemicontinuous’. However, the latter terminology seems to be more accepted by the broader community,

particularly as it is not in conflict with the notion of semicontinuity of ordinary functions.

5. The Gauss map of a convex polytope

Let us now identify the preceding constructions with a set-valued version of the Gauss map of a

hypersurface. Recall [8] that the Gauss map of a smooth closed hypersurface – that is, a (3 − 1)-

dimensional oriented submanifold " ⊂ R3 – is defined as

W" : " −→ S3−1, W(y) = ny, y ∈ ", (5.1)

where ny denotes the unit outward normal to " at y. If " is strictly convex, then its Gauss map is

one-to-one and onto, with smooth inverse W−1
" : S3−1 → " .

We can identify the normal spherical polytope map Ŵ� associated with a closed convex polyhedral

hypersurface � ⊂ R3 (a convex polytope) as its set-valued Gauss map. If"Y for Y > 0 are a parametrised

family of smooth closed convex hypersurfaces converging uniformly to the polytope, "Y → � as

Y → 0+, then under suitable conditions, we would expect their Gauss maps W"Y
→ Ŵ� to converge,

in the sense of set-valued functions, to the set-valued normal spherical polytope map. Since this is not

central to our results, we will not pursue this idea further here.

As for our construction, Theorem 2.1 shows that the functions fY : S3−1 → R3 converge, in the

set-valued sense, to a limiting set-valued function f̂0 : S3−1 → � defined as follows:

f̂0(n) =




x8 , n ∈ (◦8 ,

�,
n ∈ (◦� , 0 < dim � < 3 − 1,

or n ∈ (� , dim � = 3 − 1.

(5.2)

Here � refers to the various faces of �. Proposition 3.1 gives an explicit characterisation of the normal

spherical complex sets (� , (
◦
� ⊂ S3−1 (compare equation (3.10)). The fact that the set-valued mapping

f̂0 is the set-valued limit of fY as Y → 0+ will follow from the proof of Theorem 2.1.

Moreover, we can identify the set-valued map (5.2) with the set-valued inverse of the Gauss map

associated with the boundary of the convex hull: f̂0 = Ŵ−1
� . On the other hand, the fY are certainly not

inverse Gauss maps themselves. Moreover, simple examples, such as in Figure 3, show that the image

fY
(
S3−1

)
is not in general a convex hypersurface. On the other hand, it might be worth investigating the

set-theoretic convergence of their possibly multivalued Gauss maps.
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6. Some computational lemmas

Before launching into the proof of Theorem 2.1, let us collect together some elementary computational

lemmas for the functions used to form the maps fY defined in equation (2.7).

Recalling equations (2.1) and (2.3), let us set

28 9 (n) = lim
Y→0+

28 9 (Y, n) = max{0,−〈n , n8 9 〉}, n ∈ S3−1
(6.1)

and

28 (n) = lim
Y→0+

28 (Y, n) =
∏

1≤ 9≤=
9≠8

28 9 (n), n ∈ S3−1.
(6.2)

We can thus write

28 (Y, n) = 28 (n) + Y 18 (Y, n), (6.3)

where 18 is a polynomial in Y of degree = − 2. In view of equations (3.6) and (3.7), 28 (n) > 0 if and

only if n ∈ (◦8 , whereas 28 (n) = 0 for all 8 = 1, . . . , = if and only if n ∈ ) , the complement of the union

of the (◦8 (compare equation (3.12)). We have thus established the following result:

Lemma 6.1. Given n ∈ S3−1, either all 28 (n) = 0 or precisely one 28 (n) > 0 and the rest are all zero.

Moreover, in the latter case, x8 is a vertex.

Indeed, if n ∈ (◦8 , then, referring to equations (2.3) and (6.3), 28 (n) > 0 and 18 (Y, n) > 0 for all

Y > 0, whereas

2 9 (Y, n) = Y
1+: 90 9 (Y, n) for 9 ≠ 8, (6.4)

with 0 9 (Y, n) > 0 for Y > 0. The nonnegative integer : 9 ≥ 0 denotes the number of points x: with

: ≠ 8, 9 that satisfy the distance inequality dist(x: , %8 (n)) ≤ dist(x 9 , %8 (n)), where %8 (n) = x8 + n⊥,

with n⊥ = { y ∈ R3 | 〈 y , n 〉 = 0 } denoting the affine hyperplane orthogonal to n passing through x8 .

Note that there is either one or no value of 9 for which : 9 = 0.

Let us finish this section by establishing a more detailed version of Lemma 6.1, valid for an arbitrary

face � ⊂ �.

Lemma 6.2. Let � ⊂ � be a face of dimension 1 ≤ < ≤ 3 − 1, with vertices x1, . . . , x: . Suppose �

contains ; additional nonvertex points x:+1, . . . , x:+; , where ; may be zero. Then, given n ∈ (◦� ,

28 (Y, n) = Y
:+;−138 (n) + Y

:+; ?8 (Y, n), 8 = 1, . . . , : + ;,

2 9 (Y, n) = Y
:+; ? 9 (Y, n), 9 = : + ; + 1, . . . , =,

(6.5)

where 38 (n) > 0, while ?1(Y, n), . . . , ?= (Y, n) are polynomials in Y.

Proof. Let n ∈ (◦� . Note that 28 9 (Y, n) = Y whenever x8 , x 9 ∈ �, so that 〈n , n8 9 〉 = 0. On the other

hand, 〈n , n8 9 〉 < 0 whenever x8 ∈ � and x 9 ∉ �, which, vice versa, implies 2 98 (Y, n) = Y. The proof is

completed by recalling the definition (2.3) of 28 (Y, n). �

7. Proof of the Main Theorem

Now we turn to the proof of theorem 2.1, on the convergence, as Y → 0+, of the hypersurfaces

fY
(
S3−1

)
⊂  ◦ ⊂ R3 to the boundary of the convex hull � = m of the point configuration - .

If we formally set Y = 0 in the preceding definition (2.7) of the map fY , Lemma 6.1 implies

lim
Y→0+

fY (n) =

{
x8 , n ∈ (◦8 ,

undefined, n ∈ ) = S3−1 \
⊔^
8=1 (

◦
8 .

(7.1)
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Thus, for almost every point n ∈ S3−1, the images fY (n) converge to one of the vertices of the convex

hull. However, as in Example 4.1, this does not imply that, as a set, fY
(
S3−1

)
converges to the set of

vertices + = {x1, . . . , x^ }. Our goal is to prove that the images fY
(
S3−1

)
converge, as sets, to the entire

boundary � as Y → 0+. Specifically, we will show the following:

◦ Given any neighbourhood, ⊃ �, no matter how small, we can find Y0 > 0 such that fY
(
S3−1

)
⊂ ,

for any 0 < Y < Y0.

◦ Given any x ∈ �, there exist points yY ∈ fY
(
S3−1

)
for Y > 0 such that yY → x as Y → 0+.

In the language of set-theoretic limits [2], the first statement shows that the outer limit of the sets

fY
(
S3−1

)
is a subset of �. The second statement proves that � is a subset of their inner limit. Since the

inner limit is always a subset of the outer limit, this then implies that the inner and outer limits coincide

and are equal to �.

First, recall that for A > 0, the A-neighbourhood *A of a subset � ⊂ R3 is the set of points that are

a distance less than A (in the Euclidean norm) from � – that is, *A = { x ∈ R3 | dist(G, �) < A }. In

what follows, when we refer to an O(Y) neighbourhood of a set, we mean an Y-dependent system of

A-neighbourhoods in which, for Y sufficiently small, A = 2Y for some unspecified constant 2.

In order to understand the set-theoretic limit, we will investigate the behaviour of the images fY (�)

of certain subsets � ⊂ S3−1, gradually building up to the entire sphere. Let us begin with the simplest

case: the images of a curve � ⊂ S3−1. If � ⊂ (◦8 is entirely contained in the interior of the normal

spherical polytope associated with a vertex x8 for some 1 ≤ 8 ≤ ^, then by equation (7.1), fY (�) → {x8}

as Y → 0+.

The next simplest case is when the curve � is contained in the union of two adjacent vertex spherical

polytopes. Thus, by relabelling, let x1, x2 be adjacent vertices of �. Let

� = { _1 x1 + _2 x2 | _1, _2 ≥ 0, _1 + _2 = 1 } ⊂ �

denote the edge connecting x1 to x2. Suppose that its interior contains ; ≥ 0 additional points in the

configuration, which we number as x3, . . . , x;+2 ∈ �◦, while the remaining points x;+3, . . . , x= ∈  \ � .

We note that we can also write, redundantly,

� =

{
;+2∑

8 = 1

_8x8

����� _8 ≥ 0,

;+2∑

8 = 1

_8 = 1

}
. (7.2)

Let (1, (2 ⊂ S3−1 be the normal spherical polytopes associated with x1, x2, respectively, while

(� = m(1 ∩ m(2 is the normal spherical polytope associated with the edge � . Thus (◦
1
, (◦

2
are open subsets

of S3−1, while (◦� is a (3−2)-dimensional submanifold. Consider a curve� ⊂ (◦
1
∪ (◦

2
∪ (◦� ⊂ S3−1 such

that one endpoint of � lies in (◦
1

and the other lies in (◦
2
, which, by connectivity, implies � ∩ (◦� ≠ ∅.

Our goal is to prove that the image curves fY (�) converge, as sets, to the edge � .

Now, if n ∈ � ∩ (◦
1
, Lemma 6.1 combined with equations (2.4) and (6.4) implies

_1(Y, n) = 1 + Y@1 (Y, n), _ 9 (Y, n) = Y@ 9 (Y, n), 9 = 2, 3, . . . , =, (7.3)

where @1, . . . , @= are rational functions of Y depending continuously on n ∈ �. Thus, formula (7.3)

reestablishes the fact that all of the points in fY
(
� ∩ (◦

1

)
converge to the vertex x1 as Y → 0+. A similar

statement holds for n ∈ � ∩ (◦
2
:

_2(Y, n) = 1 + Y@2 (Y, n), _ 9 (Y, n) = Y@ 9 (Y, n), 9 = 1, 3, . . . , =. (7.4)
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Finally, if n ∈ � ∩ (◦� , in view of equations (2.4), (2.5) and (6.5), we have

_8 (Y, n) =




38 (n) + Y?8 (Y, n)

� (n) + Y%(Y, n)
, 8 = 1, . . . , ; + 2,

Y ?8 (Y, n)

� (n) + Y %(Y, n)
, 8 = ; + 3, . . . , =,

(7.5)

where

� (n) =

;+2∑

8 = 1

38 (n) > 0, %(Y, n) =

=∑

8 = 1

?8 (Y, n).

Comparing with equations (7.3), (7.4) and (7.5), we find that for any n ∈ �,

;+2∑

8 = 1

_8 (Y, n) = 1 + Y&(Y, n), fY (n) =

;+2∑

8 = 1

_8 (Y, n)x8 + Y'(Y, n), (7.6)

where both & and ' are continuous functions of n ∈ �, including when n ∈ (◦� , and rational functions

of Y with nonvanishing denominator. Since� ⊂ S3−1 is compact, they can thus be bounded by an overall

constant independent of Y ∈ (0, Y0]. This holds even at the singular point n ∈ � ∩ (◦� when there is

cancellation of powers of Y in numerator and denominator, whence equation (7.5). Thus, comparing

with equation (7.2), we deduce that for 0 < Y ≤ Y0, there exists an O(Y) neighbourhood*Y of the edge

� such that the images fY (�) ⊂ *Y . This immediately implies that the limiting set is contained within

the edge: limY→0+ fY (�) ⊂ � . The remaining task is to prove that every point in � is contained in the

limit, and therefore limY→0+ fY (�) = � .

We already know that both endpoints x1, x2 are contained in the limiting set. Thus, given a point

x ∈ �◦, we need to find points yY ∈ fY (�) that converge to x = limY→0+ yY . Although it is possible to

do this by a careful analysis of the underlying formulae, we prefer, for later purposes, to use a simple

topological proof.

To this end, let /x be the affine hyperplane passing through x that is orthogonal to � , and define

/x, Y = /x∩*Y . We claim that there exists yY ∈ fY (�) ∩ /x, Y . If true, then we have produced the desired

points. To prove the claim, observe that*Y \ /x, Y consists of two disjoint open subsets, say*1
x, Y ,*

2
x, Y ,

with x8 ∈ *
8
x, Y for 8 = 1, 2. Moreover, since we know that all the points in fY

(
� ∩ (◦8

)
converge to x8 , if

we choose Y sufficiently small, then fY (�) ∩ *
8
x, Y ≠ ∅. Therefore, fY (�) ∩ /x, Y = ∅ would contradict

the connectedness of fY (�). This contradiction establishes our claim. We thus conclude that, as sets,

fY (�) −→ � as Y −→ 0. (7.7)

For later purposes, we need slightly more than mere set-theoretic convergence (7.7). Namely, we

require the existence of a continuous set-valued homotopy that connects the images of fY : � →  

for Y > 0 to a set-valued map f̂0 : � → 2 with range equal to the edge � = f̂0(�), a model being

Example 4.1. Rather than write down an explicit formula for this homotopy, we will instead construct

its graph.

Consider the graph

Γ =
{ (
Y, n, fY (n)

) �� 0 < Y ≤ Y0, n ∈ �
}
⊂ (0, Y0 ] × � ×  

of the map � (Y, n) = fY (n) for 0 < Y ≤ Y0 and n ∈ �. Let Γ = Clos Γ be its closure in [0, Y0] ×� ×  .
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According to the preceding proof, Γ is the graph of the set-valued map � : [0, Y0] × � → 2 given by

� (Y, n) =




fY (n), Y > 0,

x1, Y = 0, n ∈ � ∩ (◦1 ,

x2, Y = 0, n ∈ � ∩ (◦2 ,

�, Y = 0, n ∈ � ∩ (◦� ,

(7.8)

its final value being the entire edge � ⊂  . Moreover, since Γ is closed and  is compact and Hausdorff,

the closed graph theorem for set-valued functions [2, Prop. 1.4.8] implies that the set-valued function

� is upper hemicontinuous, as per Definition 4.2. Thus for all 0 < Y ≤ Y0, equation (7.8) defines

an upper hemicontinuous homotopy from each fY : � →  to the set-valued map f̂0 : � → 2 with

f̂0(n) = � (0, n), whose range f̂0(�) is the edge � .

Remark. An alternative approach, that avoids set-valued homotopies and, later, set-valued homology, is

to ‘tilt’ the subset Γ so that it becomes a graph by introducing new coordinates on the Cartesian product

space [0, Y0] ×� × . However, this is more technically tricky to accomplish in the higher-dimensional

cases to be handled later, and the set-theoretic approach provides a cleaner path to the proof.

The remainder of the proof works by induction on the dimension of the face �. Thus the next case

is that of a two-dimensional face � ⊂ � ⊂ R3 . The main steps of the proof in this situation will then

be straightforwardly adapted to any higher-dimensional face. Let x1, . . . , x: be the vertices of � and let

�1, . . . , �: be its edges. We label the vertices and edges so that � 9 connects x 9 to x 9+1, with indices

taken modulo : throughout, whence x:+1 = x1. Thus � =
⋃:
9=1 � 9 = m� is the polygonal boundary

of �. We assume that there are ; ≥ 0 additional points x:+1, . . . , x:+; ∈ � \ {x1, . . . , x: }, with the

remaining points in the configuration x:+;+1, . . . , x= ∈  \ �. Keep in mind that � is convex.

Let (8 , (̃9 , (� be the normal spherical polytopes of x8 , � 9 , �, respectively, so that (̃9 ⊂ m(9 ∩ m(9+1

and (� ⊂ m(̃9 for all 9 = 1, . . . , : . Let,� ⊂ S3−1 be the open set given by equation (3.13) or (3.14), and

let #̃ ⊂ # ⊂ ,� be the two-dimensional submanifolds satisfying the hypotheses of Proposition 3.4. As

in equation (7.6), applying Lemma 6.2 we find

:+;∑

8 = 1

_8 (Y, n) = 1 + Y&(Y, n), fY (n) =

:+;∑

8 = 1

_8 (Y, n)x8 + Y'(Y, n), (7.9)

where both & and ' are continuous functions of n ∈ # , and rational functions of Y with nonvanishing

denominator. These formulae again imply that the images fY (#) lie in an O(Y) neighbourhood*Y of the

face �, and hence limY→0+ fY (#) ⊂ �. The remaining task is to prove that every point in � is contained

in the limit, a result that requires a more sophisticated topological argument than in the curve case.

For this purpose, we replace # by #̃ . Clearly, if we can prove limY→0+ fY

(
#̃
)
= �, by the preceding

result the same is true of # ⊃ #̃ . According to Proposition 3.4, #̃ ∩ (◦9 ≠ ∅ and #̃ ∩ (̃◦9 ≠ ∅ for all

9 = 1, . . . , : , and either n� ∈ #̃ when 3 = 3, where n� is the unit outward normal to the polyhedral

facet �, or #̃ ∩ (◦� ≠ ∅ when 3 > 3. Moreover, the boundary ! = m#̃ can be decomposed into curves

!1, . . . , !: , any two of which overlap only on their common boundaries, that satisfy ! 9 ⊂ (◦9 ∪ (̃
◦
9 ∪ (

◦
9+1

,

again modulo : . Let {n 9 } = ! 9−1 ∩ ! 9 ⊂ (◦9 denote the common endpoints of adjacent curves in

! = m#̃ .

Let us set � = [ 0, Y0 ] for Y0 > 0 sufficiently small. According to the preceding curve proof,

fY
(
! 9

)
→ � 9 as sets, and moreover, there exists an upper hemicontinuous homotopy (of set-valued

mappings) from each fY : ! 9 →  for all 0 < Y ≤ Y0 to the set-valued limit f̂0 : ! 9 → 2 with range
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equal to the edge � 9 = f̂0

(
! 9

)
. The graph of this homotopy,

Γ 9 ⊂ � × ! 9 ×  ⊂ � × S2 ×  ,

is a closed subset of the indicated Cartesian product space.

We now piece together these homotopy graphs to define a homotopy from fY (!) to � = m� whose

graph is

Γ =

:⋃

9=1

Γ 9 ⊂ � × ! ×  ⊂ � × S2 ×  . (7.10)

Note that Γ is a closed subset that defines the graph of an upper hemicontinuous function, because each

Γ 9 is closed, and moreover,

Γ 9−1 ∩
(
� × {n 9 } ×  

)
= Γ 9 ∩

(
� × {n 9 } ×  

)
,

including when Y = 0, since fY
(
n 9

)
→ x 9 , and so

Γ 9−1 ∩
(
{0 } × {n 9 } ×  

)
= {

(
0, n 9 , x 9

)
} = Γ 9 ∩

(
{0 } × {n 9 } ×  

)
.

Given x ∈ �◦, we seek yY ∈ fY (#̃) that converge to x as Y → 0+. Let /x be the affine subspace of

dimension 3−2 passing through x that is orthogonal to �. Define /x, Y = /x∩*Y . Again, if we can prove

that there exists yY ∈ /x, Y ∩ fY (#̃), we are done. Suppose not – that is, suppose that fY (#̃) ⊂ *Y \/x, Y .

The idea is to demonstrate that this is topologically impossible due to the contractibility of #̃ , and

hence of fY (#̃), whereas fY (!) = fY (m#̃), for Y sufficiently small, defines a nontrivial homology class

in*Y \ /x, Y .

If we were dealing with ordinary mappings, this topological argument would be straightforward.

But because f̂0 is a set-valued mapping, we will need some more sophisticated tools from set-valued

algebraic topology to establish the contradiction. We summarise the basic theory, based on a paper of Li

[11], in Appendix A. In accordance with the notation introduced there, we use italic �= (-) to denote

the standard =th-order singular homology groups of a topological space - and calligraphic H= (-,U)

to denote the corresponding =th-order set-valued homology groups relative to a chosen open cover U.

(As noted in Appendix A, if this cover is not chosen carefully, the set-valued homology groups are all

trivial, and would hence be useless for the present purposes.)

In this situation, we select the particular open coveringV of*Y \ /x;Y consisting of all open sets of

the form

+ = � ∩
(
*Y \ /x;Y

)
such that x ∈ m+, (7.11)

where � is an open half space in R3 . We claim thatV satisfies Li’s contractible finite intersection prop-

erty, because the intersection of any finite collection of such open sets, if nonempty, is homeomorphic

to the Cartesian product of an open (3 − 2)-dimensional ball with an open circular sector, meaning

the intersection of an acute-angled open planar cone with the unit disk (a pizza slice), which is clearly

contractible.

The limiting set-valued function f̂0 : ! → 2� , whose range is the polygonal boundary of the face

f̂0(!) = � = m�, is compatible with the open covering V, because f̂0(n) is either a vertex or an edge

� 9 . Moreover, when Y > 0, the map fY is continuous and single-valued, which implies trivially that its

restriction to ! is compatible with any open covering of*Y \ /x;Y .

The family of maps
{
fY , f̂0

}
thus defines, by varying Y, an upper hemicontinuous homotopy of

multivalued functions with closed values. It follows from [11, Prop. 6] that the upper triangle in

Figure 5 commutes. The square is divided into two triangles. It follows from the definitions that the top

right triangle in the square commutes. As noted in Appendix A, the map 8♯ on the bottom right is an
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H1(∂Ñ)

H1(Uε \ Zx;ε, V)

H1(Uε \ Zx;ε, V)

H1(Uε \ Zx;ε)H1(Ñ) = 0

(̂f0)∗

(fε)∗

fε,∗

Id

i♯ι∗

fε,∗

Figure 5. Commutative diagram

isomorphism. Finally, the map ] : ! = m#̃ → #̃ denotes the inclusion map, and so it is a standard fact

from ordinary singular homology theory that the bottom left triangle commutes.

Let 0 ≠ 2 = [m#̃] ∈ �1(m#̃) be the homology class representing m#̃ , which is in fact a generator.

We claim4 that (̂f0)∗(2) is a nonzero element of �1(*Y \ /x;Y ,V). Indeed, (̂f0)∗(2) = 8♯
(
[�]

)
≠ 0,

since the homology class [�] = [m�] ∈ �1 (*Y \ /x;Y) is nonzero and 8♯ is an isomorphism. This thus

proves the claim that

(fY)∗(2) = (̂f0)∗(2) ≠ 0, and hence fY,∗(2) = 8
−1
♯

[
(fY)∗(2)

]
≠ 0.

On the other hand, the bottom left triangle in the square in Figure 5 shows that fY,∗ vanishes identically

on �1(m#̃), so that fY,∗(2) = 0, thus leading to the desired contradiction and establishing the existence

of yY ∈ fY (#̃). This finishes the proof that every point of � belongs to the inner limit of fY (#̃) as

Y → 0. We conclude that both fY (#̃) and fY (#) → � as sets as Y → 0+.

Finally, to establish the existence of a set-valued homotopy connecting the maps fY : # →  to the

set-valued map f̂0 : # → 2 with range � = f̂0(#), we proceed as follows. As in the curve case, we

construct its graph Γ ⊂ � × # ×  as the closure of the graph

Γ = { (Y, n, fY (n) | n ∈ #, 0 < Y ≤ Y0 } ⊂ (0, Y0 ] × # ×  

of the continuous map � (Y, n) = fY (n). Again, by the closed graph theorem for set-valued functions, Γ

is the graph of an upper hemicontinuous set-valued function � : � × # → 2 which, for 0 < Y ≤ Y0,

defines the required upper hemicontinuous homotopy.

Finally, let us outline the proof in the general case. To this end, we establish the following result by

induction on the dimension < of the face, using the preceding two-dimensional case as a model:

Proposition 7.1. Let � ⊂ � be an <-dimensional face, and let # ⊂ S3−1 be an <-dimensional

submanifold satisfying the conditions of Proposition 3.4. Then the set-theoretic limY→0+ fY (#) = �.

Moreover, for Y > 0 sufficiently small, there is a continuous set-valued homotopy from fY : # →  to

the set-valued map f̂0 : # → 2 whose range is the entire face: f0(#) = �.

4As in Appendix A, the parentheses indicate the induced maps on set-theoretic homology.
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Referring back to the preceding argument for two-dimensional polygonal faces, the key formulae (7.9)

work exactly as before, with x1, . . . , x: the vertices of � and x:+1, . . . , x:+; additional points in the

configuration, if any, in � \ {x1, . . . , x: }. These in turn imply that, for Y sufficiently small, the images

fY (#) lie in an O(Y) neighbourhood of �, thus proving that limY→0+ fY (#) ⊂ �.

To prove that every point in x ∈ � is contained in the limit, we replace # by the open submanifold #̃ ⊂

# given in Proposition 3.4. Again assume the contrary, that fY (#̃) ⊂ *Y \ /x, Y , where /x, Y = /x ∩ *Y
with /x the affine subspace of dimension 3 − < passing through x orthogonal to �. According to the

inductive hypothesis, its (<−1)-dimensional boundary component !8 ⊂ m#̃ satisfies limY→0+ fY (!8) =

�8 , the corresponding (< − 1)-dimensional subface of �, through an upper hemicontinuous homotopy

from fY : !8 →  to the set-valued map f̂0 : !8 → 2 with range �8 = f̂0 (!8). We then, as in

equation (7.10), piece together these subface homotopies so as to construct an upper hemicontinuous

homotopy from fY : m#̃ →  to the set-valued map f̂0 : m#̃ → 2 whose range is all of m� = f̂0(m#̃).

The topological argument then proceeds in an identical manner, the only difference being that the

open cover V is constructed as in equation (7.11), but now the intersections are homeomorphic to the

contractible Cartesian product of a spherical sector of dimension < with a ball of dimension 3 − <.

Further, we use the same commutative diagram as in Figure 5 but with the first homology group H1

replaced byH<−1 throughout. The resulting topological contradiction proves that

lim
Y→0+

fY (#̃) = lim
Y→0+

fY (#) = �.

Finally, the construction of the corresponding upper hemicontinuous set-valued homotopy from

fY : # →  to f̂0 : # → 2 with range f̂0(#) = � proceeds exactly as before.

The final step in the proof of Theorem 2.1 is to prove that limY→0+ fY
(
S3−1

)
= �. For this, we split up

� into its facets � = �1 ∪ · · · ∪ �: . For each �8 , by combining Lemma 6.2 with the argument following

equation (7.9), we deduce that limY→0+ fY
(
(�8

)
⊂ �8 , and hence limY→0+ fY

(
S3−1

)
⊂ �. On the other

hand, by the case< = 3−1 of Proposition 7.1, there exists a (3−1)-dimensional submanifold #8 ⊂ S
3−1

such that limY→0+ fY (#8) = �8 . We conclude that limY→0+ fY
(
S3−1

)
= �, as desired. Moreover, we can

similarly piece together the set-valued homotopies for each facet to find a set-valued homotopy from

fY : S3−1 →  to the set-valued inverse Gauss map (5.2) mapping the sphere to the boundary polytope

� = m . This, at last, completes the proof.

Appendix A. Set-valued homology

In this appendix, we review the basics of set-valued singular homology following Li [11]. For simplicity,

we will use Q as the ring of coefficients throughout.

Let - ,. be connected normal Hausdorff topological spaces. Given a set-valued mapping � : - → 2.

and an open covering U of . , we say that � is compatible withU if and only if for any G ∈ - there is

some* ∈ U such that � (G) ⊂ *. Define

C(-,.,U) =

{
� : - → 2.

����
� is an upper hemicontinuous mapping

with closed values compatible with U

}
. (A.1)

Let

Δ= =
{
G = (G0, . . . , G=) ∈ R

=+1
�� G8 ≥ 0, G0 + G1 + · · · + G= = 1

}

denote the standard =-dimensional simplex. For 8 = 0, . . . , =, let

i8 (G0, . . . , G=) = (G0, . . . , G8−1, 0, G8 , . . . , G=)

map the (= − 1)-dimensional simplex Δ=−1 to the 8th face Δ
(8)
= = Δ= ∩ {G8 = 0} of the =-dimensional

simplex.
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Given an open coverU of. , we define the =th set-valued chain group C= (.,U) to be the free abelian

group generated by C(Δ=, . ,U). We then define the boundary operator m= : C= (.,U) → C=−1 (.,U)

by

m=2= =

=∑

8=0

(−1)8 2= ◦i8 . (A.2)

Thus, m= ◦ m=+1 = 0, which is usually abbreviated by m2 = 0.

The =th set-valued homology group of (.,U) is then given by

H= (.,U) = Ker m=/Im m=+1. (A.3)

As noted by Li [11], if one is not careful when choosing the coverU, all set-valued homology groups are

trivial, and would thus be of no help establishing the desired topological result. To avoid this difficulty,

Li imposes the contractible finite intersection property on the cover U. This property requires that the

intersection of any finite collection of elements of the cover be either empty or contractible.

Since ordinary functions can be viewed as set-valued functions, there is a natural inclusion map 8

from the =th chain group �= (. ), as defined in the usual singular homology theory, to C= (.,U). The

inclusion is a chain map, and thus induces a group homomorphism

8♯ : �= (. ) −→ H= (.,U), (A.4)

which according to [11, Theorem 11] is actually an isomorphism.

Moreover, an upper hemicontinuous set-valued mapping � : - → 2. with closed values induces a

chain map from �= (-) to C= (.,U), and thus induces a group homomorphism

(�)∗ : �= (-) −→ H= (.,U). (A.5)

In general, we will place parentheses around (�)∗ in order to distinguish the set-valued homology group

homomorphism from the usual group homomorphism 5∗ : �= (-) → �= (. ) on the corresponding

singular homology groups induced by a continuous (ordinary) function 5 : - → . . Further results of

Li [11] are quoted in the text as needed.
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