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On an Exponential Functional Inequality
and its Distributional Version

Jaeyoung Chung

Abstract. Let G be a group and K = C or R. In this article, as a generalization of the result of Albert
and Baker, we investigate the behavior of bounded and unbounded functions f: G — K satisfying the
inequality

’f(éxk) —k]i[lf(xk)‘ < G, %), Vxis... xn € G,

where ¢: G"~1 — [0, 00). Also, as a distributional version of the above inequality we consider the
stability of the functional equation
n-times
uoS—u®---Qu=0,

where u is a Schwartz distribution or Gelfand hyperfunction, o and  are the pullback and tensor
product of distributions, respectively, and S(x1, ..., x;) = x1 + - - - + x;.

1 Introduction

Throughout this paper, we denote by G a group, R the set of real numbers, C the set
of complex numbers, K = Cor R, ¢: G*™! — [0,00),and € > 0. Wecallm: G — K
an exponential function provided that

m(x+ y) = m(x)m(y)
forallx, y € G. Let f: G — KK satisfy the exponential functional inequality
(1.1) [fxt+y) = f)f(y)| <e
forall x, y € G. Then f is either an unbounded exponential function or a bounded

function satisfying

(1.2) |fo)] < %(1+\/1+4e)

for all x € G (see Baker [3]). In [2], Albert and Baker refined the inequality (1.2)
when G is a vector space over the field Q of rational numbers and proved that if
f: G — Ris a bounded function satisfying (1.1) with 0 < € < 1, then f satisfies
either

(13) €< () < 501 - VT 49
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forallx € G, or

(1.4) %(1+\/1—4e)§f(x)§ %(1+\/1+4e)

for all x € G. The inequalities (1.3) and (1.4) imply that every bounded function
satisfying the inequality (1.1) tends to 0 or 1 (the roots of the algebraic equation
x> —x=0)ase — 0.

In this paper, we investigate behaviors of bounded functions and unbounded

functions f: G — K satisfying the exponential functional inequality with n-variables

(n>2)
(15) (0 w) = I fes] < 600,
k=1 k=1
for all x,...,x, € G. When we consider some exponential functional equations or

unbounded solutions of exponential functional inequalities involving n-variables, we
can follow the same approach as in the case of 2-variables. However, when we con-
sider bounded solution of exponential functional inequality with #n-variables, such as
the inequality (1.5), the methods are quite different from that of 2-variables, such as
those of Albert and Baker [2].

As a corollary of our main result we obtain that every bounded function f: G —
R satisfying the inequality (1.5) with ¢(x,,...,x,) = eforallx,,...,x, € G satisfies
the following:

Let « < 8 < ~ be the positive real roots of the equation |" — ¢| = ¢e. If n is

even, then f satisfies either —e < f(x) < aforallx € G,or 8 < f(x) < v

for all x € G, and if n is odd, then f satisfies 5 < f(x) < yforallx € G,

—a < f(x) <aforallx € G,or —y < f(x) < —fforallx € G.

As a direct consequence of this result, we also obtain that if # is even, then f satisfies

either
n
—e < <
e< fx) < p— 16
forallx € G, or
— Ve < flx) — 1< —
n—1
forall x € G, and if  is odd, then f satisfies
n
— < <
n—le_f(x)_ n—l6
forallx € G,
— e < f@) - 1< ——
n_

forallx € G, or

< f(x)+1< "/ne
LS r1s
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for all x € G. We also consider the unbounded functions f: G — K satisfying (1.5)
and prove that if there exist q1, g2, . . . , g, € G such that

|f(611)(|f(612)"'f(%)| - 1) | > Q2,5 qn),
then the function f satisfying (1.5) is unbounded and has the form f(x) = Cm(x),

where C € K with C"™! = 1 and m is an exponential function. In the last sec-
tion of the paper, as a distributional version of the inequality (1.5), we consider the
inequality
n-times
—_———
(1.6) luoS—u®- - @ul <e,

where u is a Schwartz distribution[6] or Gelfand hyperfunction [4,5], o and ® denote
the pullback and the tensor product of distributions, respectively, and || - || < e means
that |(-, ©)| < €||¢||p for all test functions ¢ (see Section 3). As a result, we prove
that if u satisfies (1.6), then either u is a bounded measurable function satisfying

[l <,

where v > 1 is the root of the algebraic equation z" — z = ¢, or

i2kn
u=er-le

C: X

for some k € {0,1,2,...,n — 2}, c € C". We refer the reader to [7-9, 11-14] for
related results of Hyers—Ulam stability of functional equations.

2 Classical Solutions of (1.5)

In this section we investigate behaviors of bounded functions and unbounded func-
tions f: G — K satisfying the exponential functional inequality (1.5). We first inves-
tigate behaviors of bounded functions satisfying the inequality (1.5).

Lemma 2.1 Let f: G — K be a bounded function satisfying the inequality (1.5).
Then f satisfies

(2.1) | Fee) (1= 1f(x2) - fx)]) | < ploa .oy xn)

forallxy,...,x, € G.

Proof Let M = sup, . |f(x)|. Using the triangle inequality with (1.5) we have
(22) [fle)fCe) - fla)| < [flxrte - Fxn)|[+d(x2, ..o, %) < MA0(x2, ..., x)

forall x,...,x, € G. From (2.2) we have
(2.3)  M|f(x)--- flx)| = surélf(xl)\ |f() - fle)| S M+ d(xs, ..., x0)
x1€

forall x,,...,x, € G. Thus from (2.3), we get
(2.4) M(|f(x2)--~f(xn)\—l) < dlxgy ey Xn)
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for all x,,...,x, € G. Replacing x; by x; — x; — --- — x,, in (1.5) and using the

triangle inequality with the result we have

(2.5) |fOD] < [l —x2 =+ —x)| [f(x2) -+ fx)| + P32, %)
<Mf(x) - flxa)| + plxz, ..oy %)

forall x,...,x, € G. From (2.5) we have

M = sup [f(x1)| < M|f(x2) - flxn)] + 2, ..., %)

x1€G
for all x,, ..., x, € G, which implies
(2.6) M(1—1[f(x2) - f(xn)]) < d(xa, ..., %)

forall x,,...,x, € G. Thus, from (2.4) and (2.6) we have

M[1—[f(x) - fx)]| < dlxa, . %)
forall x,, . ..,x, € G, which implies (2.1). This completes the proof. [ |

From now on, for each integer n > 2, we denote by ¢, := (n — 1)n~ "1 and
D:={x € G: ¢(x,...,x) < ¢,}. Note that ¢, is the (local) maximum of the
polynomial p(¢) := t —¢t". One can see that i <, <y < lforalln=2,3,4,....
It is easy to see that for each x € G, the equation

(2.7) [t" —t] = o(x,...,x)

has only one real root y(x) > 1, and for each x € D, the equation (2.7) has the three

positive real roots a(x) < (x) < y(x). Note that 0 < a(x;) < nol < B(x) <
1 < 7y(x3) for all x;,x,,x3 € D. In particular, we denote by a < 8 < -~y the positive
real roots of the equation |t — f| = e when € < ¢,,.

As a main result of this section we have the following.

Theorem 2.2 Let f: G — K be a bounded function satisfying the inequality (1.5).

Then f satisfies

(2.8) |f(x)] < v(x)

for all x € G. Furthermore, f satisfies either

(2.9) |f(x)] < alx)

forallx € D, or

(2.10) Blx) < |f(x)] < ~(x)
forallx € D.

Proof Replacing x1,x,,...,x, by xin (2.1) we have
(2.11) [f@)] = 1f@)"] < olx,...,x)

forallx € G. From (2.11), for each x € G, | f(x)] satisfies

[f ()] < 7(x),
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which gives (2.8). For each x € D, f(x) satisfies either

(2.12) |f(x)] < alx)
or
(2.13) Blx) < |f(x)] < v(x).

Now, we prove that f satisfies (2.12) for all x € D or (2.13) for all x € D. Assume
that there exist y1, y, € D such that

(2.14) fl < aln),  Bly2) < [f(ya)l.
Puttingx; = y, and x; = x3 = --- = x, = y1 in (2.1) we have
(2.15) FODI (1= 1fI"™Y) < ooy ).

On the other hand, from (2.14) we have
FODI(1=[f)"™") = Bra) (1 —aly)")
> aly)(1—a(y)"™") = ok, ..., ),
which contradicts (2.15). Thus, we get (2.9) or (2.10). This completes the proof. M

Let ¢(xa,...,x,) = € < ¢, forall x,,...,x, € Gin Theorem 2.2. Then we have
the following.

Corollary 2.3 Let f: G — KK be a bounded function satisfying the inequality (1.5).

Then f satisfies either

(2.16) lf()] <«
forallx € G, or

(2.17) Blf <~y
forallx € G.

In particular, if G is 2-divisible, K = R and ¢(x;,...,x,) = € < ¢, for all
X2,...,%; € G, then we have the following.

Corollary 2.4  Assume that G is 2-divisible and f: G — R is a bounded function
satisfying the inequality

(2.18) () — 11| <
k=1 k=1

forallxy,...,x, € G. Ifnis even, then f satisfies either

(2.19) —e< flx) L a

forallx € G, or

(2.20) B<flx) <~

forallx € G. If nis odd, then f satisfies (2.20) for all x € G,

(2.21) —a< fx) La
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forallx € G, or

(2.22) -y < flx) < -5
forallx € G.
Proof Replacing x;,x; by 5 and putting x; = x4 = ... = x, = 0in (2.18) we have
x\ 2 n—2 x\ 2 n—2
- _e< < =
(223) () for2—e< s < £(3) for e
for all x € G. We first consider the case when # is even or f(0) > 0. From (2.23) we
have
X\ 2
(2.24) —e< f(i) F0)"™2 — e < f(x)
for all x € G. Note that
(2.25) e=a—a" < a.
From (2.16), (2.24), and (2.25) we have
(2.26) —e< f(x) <«
forall x € G, or from (2.17), (2.24), and (2.25) we have
(2.27) B< flx) <~

for all x € G. Thus, if n is even, from (2.26) and (2.27) we get (2.19) or (2.20). Now,
we consider the case when 7 is odd and f(0) < 0. From (2.24) we have

X\ 2
(2.28) flx) < f(i) FO) 2 4e<e
for all x € G. Thus, from (2.16), (2.25), and (2.28), we have
(2.29) —a< f(x) <e
forall x € G, or from (2.17), (2.25), and (2.28) we have
(2.30) < flx) <-p
for all x € G. Thus, if n is odd, from (2.26), (2.27), (2.29), and (2.30), we get (2.20),
(2.21), or (2.22). This completes the proof. |
Note that «, 3, v satisfy
(2.31) 0<0¢<Lle, 1— "Vie<pB<l1l, 1<y<Il+ 61.
n— n—

As a consequence of the Corollary 2.4 together with the inequality (2.31), we have
the following.

Corollary 2.5 Assume that G is 2-divisible and f: G — R is a bounded function
satisfying the inequality (2.18) for € < c¢,. If nis even, then f satisfies either
n

—e< f(x) < €

n—1
forallx € G, or

—"Vne < f(x) -1 < ——

€
n—1
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forallx € G. If nis odd, then f satisfies
n

n
< f(x) <
e T

€

forallx € G,
€

—"Vne < f(x) =1 <

n—1
forallx € G, or

< +1< n—1
n—lff(x) < ne

forallx € G.

Remark 2.6 From Corollary 2.5, if n is even, every bounded solution of (2.18)
tends to 0 or 1 as € — 0, and if # is odd, every bounded solution of (2.18) tends to
0,1,or —lase — 0.

Ifn=2and0 <e< i, then it is easy to see that

0= 10-VI—4), f=10+VI—40, 7=1(1+VI+0).

Thus, by Corollary 2.5 we obtain a improved version of the result of Albert and
Baker for vector space [2].

Corollary 2.7 Let0 < € < ;. Assume that G is a 2-divisible group and f: G — R is
a bounded function satisfying the inequality

[fx+y) = fO)f()] <e
forallx,y € G. Then f satisfies either
—e< fx) < %(hﬂ)
forallx € Gor
VT30 < () < (14 VT70
forallx € G.

Finally, we investigate the unbounded solutions of the inequality (1.5).

Theorem 2.8 Let f: G — K satisfy the inequality (1.5). Assume that there exist
q1:925 - - - > qn € G such that

(2.32) [ fa)(1f(q) - fa)| —1)| > éq, ... qn).

Then f is unbounded and there exists an exponential function m: G — K and C € K
with C"~! = 1 such that

(2.33) f(x) = Cm(x)
forallx € G.
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Proof By Lemma 2.1, we can see that if f satisfies (2.32), then f is unbounded and
f(0) # 0. Letz € G, k = 1,2,3,... be a sequence such that |f(z)] — oo as
k — oo. Replacing x; by z, k = 1,2,3,..., x; by x, puttingx; = --- = x, = 0in
(1.5) and dividing the result by | f(z)| we have

(2.34) feofor - LEE0| < Hnnns)
k k
Letting k — oo in (2.34) we have
wea . flat+x)
(2.35) f(x)f(o) P = klggo W
for all x € G. Thus, using (1.5) and (2.35) we have
B 1 . fla+x+y)
(2.36) fx+y) = Floy2 klggo [eN)
1 . fla+x)f(y)f(0)"?
= Foy— f(@)
_ . flz+x)
= f(y) lim @)

= fOff(0)"?
forall x, y € G. Putting y = 0in (2.36) we have
(2.37) fot=1.
Dividing (2.36) by f(0)" and using (2.37) we have

faty) _f&)f)
f(0) f(0)  f(0)
forall x, y € G. From (2.38) we get (2.33). This completes the proof. ]

(2.38)

3 Distributions and Hyperfunctions

We briefly introduce the space D'(R") of distributions and the space (81/ 2)’ (R™) of

12
Gelfand hyperfunctions. Here we use the notations, || = a; + -+ + a,, a! =
apl - apl, x = xftxd x] = /32 + -+ x2and 9% = 9 - - 99, for x =
(x1,...,%2) € R, a = (ay,...,a,) € Nj, where N is the set of non-negative inte-

gers and 0; = 8% We also denote by C>°(R") the set of all infinitely differentiable
7
functions on R” with compact supports.

Definition 3.1 A distribution u is a linear form on C2°(R") such that for every
compact set K C R” there exist constants C > 0 and k € N such that

[(u,0)] <C 32 sup |9
jal<k

for all ¢ € C°(R") with supports contained in K. The set of all distributions is
denoted by D’ (R").
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Definition 3.2 We denote by Sig (R™) the space of all infinitely differentiable func-
tions (x) on R" satisfying the following; there exist positive constants A and B such
that

x20P p(x)
(3.1) llollap:=  sup | ()|

xER",0,5EN] AlalBlSlg11/2311/2

The topology on the space Sig(]R{”) is defined by the seminorms || - ||4 5 in the left-
hand side of (3.1) and we denote by (Siﬁ)’(]R{") the dual space of Sig(R”) and the
elements of (Siﬁ)’ (R") are called Gelfand hyperfunctions.

It is known that the space Siﬁ (R") consists of all infinitely differentiable functions
©(x) on R" that can be continued to an entire function satisfying
(3.2) lp(x +iy)| < Cexp(—alx|* + bly|?)
for some a, b > 0.
Definition 3.3 Letu; € D'(R") [resp. (8,)3)(R")] for j = 1,2. Then the tensor
product u; ® u, of u; and uy, defined by

(1 @y, p(x1,%2)) = (b, (ths,, (31, %2)))

for (x1,x,) € C(R™ x R™), belongs to D'(R™ x R"™) [resp. (siﬁ)’(w x R™)].

4 Distributional Solution of (1.6)

In this section, as a distributional version of the functional inequality (1.5) we con-
sider the inequality

n-times
(4.1) ||MOS*M®"~®MH§6,
where ® is tensor product of distributions, S(xy, . . ., x,) = x; +- - - +x;,, the pullback
u o S is defined by
(uoS,(x1,...,x,))
= <u,/<p(x1,...,xn—1,x—xl — = Xy1) dxg ~--dxn_1>, pE CSO(JR{”Z),
and || - || < e means that |-, ¢)| < €||¢||: for all test functions ¢ € C°(R") [resp.
(815 (RM)].

We denote by §(x) the function on R”,

“
x| > 1,

)

. -1
q — </ eim dx) .
|x|<1

where
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It is easy to see that d(x) an infinitely differentiable function with support
{x:]x| <1}. Now we employ the function 6;(x) := ¢ "d(x/t), t > 0. Let
u € D'(R"). Then for each t > 0, (u * 6;)(x) = (u,, 6;(x — y)) is a smooth function
in R" and (u * §;)(x) — uast — 0 in the sense of distributions, that is, for every
¢ € C(R"),

(1.0 = lim / (15 6,) () p ) dx.

We also employ the heat kernel

(2
E(x) = (4nt)"fe ., xeR", t>0.

In view of (3.2) it is easy to see that the heat kernel E;(x) belongs to S%(]R{”) for each
t > 0. It is well known that the heat kernel satisfies the semigroup property
E; % E; = Epys

for all t,s > 0, which will be useful. We first consider the inequality (4.1) in the space
of Schwartz distributions.

Theorem 4.1 Letu € D'(R") satisfy the inequality (4.1). Then either u is a bounded
measurable function satisfying
(4.2) [l <,
where v > 1 is the root of the algebraic equation z" — z = €, or
i2km

(4.3) u=en1¢~
forsomek € {0,1,2,...,n—2},c€ C.

Proof Convolving (6, ® --- ® &;,)](x1,...,%,) := &, (x1)---dy,(x,) in each side
of (4.1) we have

[(uo8) * (6, ® - @6, )] (x1,...,%)

= (g [ 80t 6= €082 = €0) B = ) e )

= (e [y 60000ttt r - )
X 8y (s = &)+ By, (50 — 1) ds -+ )

= (it [0 w8+ 60— €03, (50— €0) )

= (ug,, (0, % -+ % 0, )1 + -+ x50 — &1))

= (U gy -k 0 ) (o + -+ ).
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We also have

(@ @u)* (6 @+ @,)] (e, x) = (k&) (1) -+ (uk 6, ) (x).
Thus, the inequality (4.1) is converted to the following inequality
(4.4) [(s 8y, %ok 8 )%y + o+ %) — (U 6 ) (1) -+ (U6, ) ()| < €
forall xi,...,x, € R" t1,...,t, > 0. It follows from (4.4) that the limit

f(x) ;== limsup(u * 6;)(x)

t—0*
exists for all x € R”. In (4.4), fixing x, . . ., X, and letting t>,t3, ..., ¢, — 0" so that
(u*0;,)(x;) = f(xj)ast; — 0" forall j =2,3,...,n, wehave
(4.5) |( % 0 ) (1 + -+ -+ x0) — (1% 61,) (01) f02) - -+ fxa)| < e
Replacing x, by x, letting x; = x, = -+ = x,_; = 0and f; — 07, so that

(u*6,)(0) = f(0)asn — oo in (4. 5) we have
(4.6) [u— FO)" ' f) <e

If f is bounded, then from (4.6) u is defined by a bounded measurable function, i.e.,

() = / hp() dx, € C2(RY)

for some bounded measurable function /. Now, using the heat kernel E; instead of J,
and convolving (E, ® --- ® E;, )(x1, . .., x,) in each side of (4.1), we have

(47) ‘U(X] + .- +Xn,t1 + - +tn) — U(Xl,tl) s U(Xn,tn)| S €

forall x1,x;,...,x, € R, ty,12,...,8, > 0, where U(x,t) = (u * E;)(x). Using the
same method as in the proof of Lemma 2.1 with (4.7), we can prove that

(4.8) U e, t)[(|U (k25 82) -+ U, 1) — 1) <€

for all x1,x5,..., %, € R", t1,85,...,8, > 0. Lettingx; = x, = -+ = x, = %,
ty =t =---=1t, =tin (4.8) we have

(4.9) |U(x,t)] <7

forallx € R”, ¢t > 0. Letting t — 0" in (4.9), we get (4.2). Now, we consider the case
when f is unbounded. Let ¢y, k = 1,2, 3, . .., be a sequence such that | f(c;)| — oo as
k — oo. Replacing x, = - -+ = x, = ¢ in (4.5) and dividing the result by | f(c;)|" !
and letting k — oo we have

(u = (Stl)(xl +(n— l)ck)
fla)mt

(4.10) (% 0y)(x1) = lim.
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Multiplying both sides of (4.10) by f(xz) - - f(x,), and using (4.5) and (4.10), we
have

(ux8,) (31 + (n— Dex) f(x2) -+« fxn)

(4.11) (ux0¢)(x1) f(x2) -« flxa) = klggo

fle)n!
o (ux (5:1)(X1 +tx,+(n— l)ck)
= lim
k—o0 f(Ck)"*1
o (ux 5t1)(x1 +tx,+ (n— l)ck)
= lim
k—o0 ]‘-(Ck)"_1
= (u*x0)(x1 + -+ +xp)
for all x1,%p,...,x, € R", t1,65,...,¢, > 0. Puttingx; = x3 = --- = x,_; =0
in (4.11) we have
(4.12) (1% 6,)(0) £(0)" 2 f(x) = (u 6y,)(x)
for all x € R". Choosingt; > 0 such that (u*d;, )(0) # 0 and putting (4.12) to (4.11)
we have
(4.13) f)fle) - f(xa) = flx1 + -+ %)
for all x1,x;,...,x, € R". Choosing a sequence s, k = 1,2,3,... so that
(u*05)(0) — f(0) as k — oo, replacing t; by s; in (4.12) and letting k — oo
we have
(4.14) (u, p) = klim /(u * 5, ) () p(x) dx
—00

= klim /(u * 65k)(0)f(0)”*2f(x)g0(x) dx

— £y / F(x)p(x) dx = / Fp(x) dx

for all ¢ € C°(R"). Now, it is easy to see that the solution f of (4.13), being a
measurable function, is given by

(4.15) F(x) = f(0)e°™ = enTef™
for somek € {0,1,2,...,n—2},c € C". Thus, from (4.14) and (4.15), we get (4.3).
This completes the proof. ]

Note that every locally integrable function f defines a distribution via the corre-
spondence

o — / flo)p(x) dx.

As a direct consequence of the above result we obtain the following.

Corollary 4.2 Let f: R" — C be a locally integrable function satisfying
([ Ger 4+ x0) = fx2) - f(xn)[|Loo ey < €

Then either f is a bounded measurable function satisfying

[fG [z <,
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where v > 1 is the root of the algebraic equation z" — z = €, or

i2km

fx) =en-1e"”

for almost every x € R", wherek € {0,1,2,...,n—2}, c € C".

As a consequence of the method of proof of Theorem 4.1 we obtain the stability

of the inequality (4.1) in the space (Siﬁ)’ (R") of Gelfand hyperfunctions.

Theorem 4.3 Letu € (Siﬁ)’(]R{”) satisfy the inequality (4.1). Then either u is a

bounded measurable function satisfying
[ull e <,

where v > 1 is the root of the algebraic equation z" — z = €, or

i2km

u=en1¢~

forsomek € {0,1,2,...,n—2},c € C".

Proof Letu € (Sig)’ (R™). Then using the heat kernel E; instead of §; and convolv-

ing (B, ® --- ® E;,)(x1,...,x,) in each side of (4.1) we have
‘U(X] +eoetx, it ty,) — U(x17t1)"'U(xn7tn)| <e

forall x1,%;,...,x, € R, ty,85,...,8, > 0, where U(x,t) = (u * E;)(x). Using the
same method as in the proof of Theorem 4.1, we get the result. ]

References

[1] J. Aczél and J. Dhombres, Functional equations in several variables. Cambridge University Press, New
York-Sydney, 1989.
[2] M. Albert and J. A. Baker, Bounded solutions of a functional inequality. Canad. Math. Bull. 25(1982),
491-495.  http://dx.doi.org/10.4153/CMB-1982-071-9
[3] J. A. Baker, The stability of cosine functional equation. Proc. Amer. Math. Soc. 80(1980), 411-416.
http://dx.doi.org/10.1090/50002-9939-1980-0580995-3
[4] 1. M. Gelfand and G. E. Shilov, Generalized functions II. Academic Press, New York, 1968.
[5] I. M. Gelfand and G. E. Shilov, Generalized functions IV. Academic, Press, New York, 1968.
[6] L.Hoérmander, The analysis of linear partial differential operators I. Springer-Verlag, Berlin—-New
York, 1983.
[7] D. H. Hyers, On the stability of the linear functional equations. Proc. Nat. Acad. Sci. USA 27(1941),
222-224. http://dx.doi.org/10.1073/pnas.27.4.222
[8] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of functional equations in several variables.
Birkhauser, Boston, 1998.
[9] S. M. Jung, Hyers—Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis. Springer,
New York, 2011.
[10] T. Matsuzawa, A calculus approach to hyperfunctions II. Trans. Amer. Math. Soc. 313(1989),
619-654.  http://dx.doi.org/10.1090/50002-9947-1989-0997676-7
[11] J. M. Rassias, On Approximation of Approximately Linear Mappings by Linear Mappings. Bull. Sci.
Math. 108(1984), 445-446.
(12] —, Solution of a problem of Ulam. ]. Approx. Theory 57(1989), 268-273.
http://dx.doi.org/10.1016/0021-9045(89)90041-5
[13] Th. M. Rassias, On the stability of functional equations in Banach spaces. J. Math. Anal. Appl.
251(2000), 264-284.  http:/dx.doi.org/10.1006/jmaa.2000.7046

https://doi.org/10.4153/CMB-2014-012-x Published online by Cambridge University Press


http://dx.doi.org/10.4153/CMB-1982-071-9
http://dx.doi.org/10.4153/CMB-1982-071-9
http://dx.doi.org/10.1090/S0002-9939-1980-0580995-3
http://dx.doi.org/10.1090/S0002-9939-1980-0580995-3
http://dx.doi.org/10.1073/pnas.27.4.222
http://dx.doi.org/10.1073/pnas.27.4.222
http://dx.doi.org/10.1090/S0002-9947-1989-0997676-7
http://dx.doi.org/10.1090/S0002-9947-1989-0997676-7
http://dx.doi.org/10.1016/0021-9045(89)90041-5
http://dx.doi.org/10.1016/0021-9045(89)90041-5
http://dx.doi.org/10.1006/jmaa.2000.7046
http://dx.doi.org/10.1006/jmaa.2000.7046
https://doi.org/10.4153/CMB-2014-012-x

On an Exponential Functional Inequality and its Distributional Version 43

[14] , On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 7(1978),
297-300. http://dx.doi.org/10.1090/50002-9939-1978-0507327-1

[15] L. Schwartz, Théorie des distributions. Hermann, Paris, 1966.

[16] D.V.Widder, The heat equation. Academic Press, New York, 1975.

Department of Mathematics, Kunsan National University, Kunsan, 573-701 Korea
e-mail: jychung@kunsan.ac.kr

https://doi.org/10.4153/CMB-2014-012-x Published online by Cambridge University Press


http://dx.doi.org/10.1090/S0002-9939-1978-0507327-1
http://dx.doi.org/10.1090/S0002-9939-1978-0507327-1
mailto:jychung@kunsan.ac.kr
https://doi.org/10.4153/CMB-2014-012-x

