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1. Introduction. The theory of generalized Frattini subgroups of a finite 
group is continued in this paper. Several equivalent conditions are given for a 
proper normal subgroup H of a finite group G to be a generalized Frattini 
subgroup of G. One such condition on H is that K is nilpotent for each normal 
subgroup K of G such that K/H is nilpotent. From this result, it follows that 
the weakly hyper-central normal subgroups of a finite non-nilpotent group G 
are generalized Frattini subgroups of G. 

Let i f be a generalized Frattini subgroup of G and let K be a subnormal 
subgroup of G which properly contains H. Then H is a generalized Frattini 
subgroup of K. 

Let <f>(G) be the Frattini subgroup of G. Suppose that G/<j>{G) is non-
nilpotent, but every proper subgroup of G/<j>(G) is nilpotent. Then 0(G) is 
the unique maximal generalized Frattini subgroup of G. 

A proper normal subgroup K of a group G is said to satisfy property ^#(G) 
if <t>{G/K) = 1, G/K contains a unique minimal normal subgroup, and G/K 
is not of prime order. If a proper normal subgroup K of G satisfies property 
o^(G), then we denote this fact by K G ~#(G). Let G be a solvable group and 
let K Ç c^#(G). Then K is a generalized Frattini subgroup of G if and only if 
K is a proper subgroup of the Fitting subgroup F{G) of G. 

Let G be a solvable group and let K £ *Jt(G). For various types of G (i.e., G 
being an A-group, an E-group, etc.) we consider certain conditions under 
which K becomes a generalized Frattini subgroup of G. For example, if G is an 
A-group of nilpotent length two, then K is "generalized Frattini" in G if and 
only if K is abelian. 

2. Properties of generalized Frattini subgroups. The only groups 
considered in the present paper are finite. I t is assumed that the reader is 
familiar with the notation presented in (4). In the present section we give 
several equivalent conditions for a proper normal subgroup H of a group G 
to be a generalized Frattini subgroup of G. 

Definition 2.1. A proper normal subgroup if of a group G is said to have 
property (N) if and only if K is a nilpotent normal subgroup for each normal 
subgroup K of G such that K/H is nilpotent. 
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Let if be a proper normal subgroup of G having property (N). Further, let 
L be a normal subgroup of G and let P be a Sylow ^-subgroup of L, p is a 
prime, such that G = HNG(P). Then HP/H is a normal Sylow ^-subgroup 
of LH/H, and hence HP/H is a nilpotent normal subgroup of G/il . Therefore, 
HP is a nilpotent normal subgroup of G. Thus, P is a Sylow ^-subgroup of 
the nilpotent normal subgroup HP Pi L, hence NG(P) = G. Therefore, i? is 
a generalized Frattini subgroup of G. From these facts and (4, Theorem 3.2) 
we have the following theorem. 

THEOREM 2.1. Let H be a proper normal subgroup of a group G. Then H is a 
generalized Frattini subgroup of G if and only if H satisfies condition (N). 

Let G be a non-nilpotent group. Then L(G) is a generalized Frattini sub­
group of G (4, Theorem 3.5). Since Z*(G) is contained in L(G), Z*(G) is 
also a generalized Frattini subgroup of G (4, Theorem 3.1). From this we 
know that every hypercentral normal subgroup of G is a generalized Frattini 
subgroup of G. 

Baer (1) introduced the concept of weakly hypercentral normal subgroup 
of a finite group G. Let H be a weakly hypercentral normal subgroup of a 
non-nilpotent group G. By (1, p. 636, Proposition 1), H is nilpotent. Hence, 
i f is a proper subgroup of G. By Theorem 2.1 and (1, p. 637, Corollary 2), 
H is a generalized Frattini subgroup of G. We have proved the following 
corollary. 

COROLLARY 2.1.1. Let H be a weakly hypercentral normal subgroup of a 
non-nilpotent group G. Then H is a generalized Frattini subgroup of G. 

Definition 2.2. A proper normal subgroup if of a group G is said to satisfy 
condition (N') if and only if K is a nilpotent subnormal subgroup of G for 
each subnormal subgroup K of G such that K/H is nilpotent. 

THEOREM 2.2. Let H be a proper normal subgroup of G. The following state­
ments are equivalent: 

(a) H is a generalized Frattini subgroup of G; 
(b) H satisfies property (N); 
(c) If K is a normal subgroup of G which contains H, then F (K/H) = 

F(K)/H; 
(d) F(G/H) = F{G)/H; 
(e) H satisfies property (N')/ 
(f) If K is a subnormal subgroup of G which contains if, then F(K/H) = 

F(K)/H. 

Proof, (a) implies (b). This is a consequence of Theorem 2.1. 
(b) implies (c). Assume condition (b). Then H is nilpotent. Let K be a 

normal subgroup of G which contains H. Then F(K) contains H. There 
exists a subgroup M of K such that M/H = F (K/H). Since M/H is charac­
teristic in K/H, M is a normal subgroup of G. Hence, M is nilpotent since 
M/H is nilpotent. This shows that F (K/H) = F(K)/H. 
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(c) implies (d). This is immediate. 
(d) implies (e). We assume condition (d). Therefore, H is nilpotent. Let L 

be a subnormal subgroup of G which contains H and assume that L/H is 
nilpotent. Let G = Go D G\ D . • . Z) Gn-i = L D Gn = H be a series of 
subgroups from G to H such that Gt is normal in Gz_i for i = 1, 2, . . . , n — 1. 
For i = 0, 1, 2, . . . , n — 1, let AT* be a normal subgroup of Gt such that 
Mt/H = F{Gt/H). We note that Mi+1/H = F{Gi+1/H) C F(Gt/H) = M , / i ï 
for i = 0, 1, . . . , w — 1. Therefore, Af*+i C AT* for i = 0, 1, 2, . . . , n — 1. 
Since F{G/H) = F(G)/H, it follows that F(G) contains Afn_i = L. Hence, 
L is nilpotent. 

(e) implies (f). Assume condition (e). Then H is nilpotent. Let L be a 
subnormal subgroup of G which contains iï". Then F(L) contains H. Moreover, 
there exists a subgroup M of G which is normal in L and ikf/iï = F {L/H). 
Since Af is subnormal in G, Af is a nilpotent normal subgroup of L. Hence, 
F(L/H) = F(L)/i7. 

(f) implies (a). By Theorem 2.1, it is enough to show that (f) implies (b). 
Let K be a normal subgroup of G which contains H and assume that K/H 
is nilpotent. Then F{K/H) = X/f f and by condition (f), K/H = F{K)/H. 
Hence, K = F{K) and i£ is nilpotent. 

This completes the proof. 

THEOREM 2.3. Let H be a generalized Frattini subgroup of G and let K be a 
subnormal subgroup of G which properly contains H. Then H is a generalized 
Frattini subgroup of K. 

Proof. Let L be a normal subgroup of K which contains H and assume that 
L/H is nilpotent. Since L is a subnormal subgroup of G and L/H is nilpotent, 
L is nilpotent by Theorem 2.2 (e). By Theorem 2.1, H is a generalized 
Frattini subgroup of K. This completes the proof. 

Remark. The proof of the above theorem is due to D. C. Dykes of the 
University of Kentucky.* 

The converse of Theorem 2.3 is false in general. 

Example 2.1. Let S% be the symmetric group on three symbols and let A$ 
be the alternating group on three symbols. Let H be a cyclic group of order 
two and let G be the direct product of Sz and H. Then F{G) = Az X H and 
A 3 is a generalized Frattini subgroup of ^(G). However, Az is not a generalized 
Frattini subgroup of G. 

COROLLARY 2.3.1. Let H be a generalized Frattini subgroup of G and let K be 
a normal subgroup of G. If H C\ K is a proper subgroup of K, then H C\ K is a 
generalized Frattini subgroup of K. 

*Written communications. 
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Proof. Assume that H C\ K is a proper subgroup of K. Because of 
(4, Theorem 3.1) and Theorem 2.3, the corollary follows. 

From (4, Theorem 3.1) and Corollary 2.3.1 we obtain the following result. 

COROLLARY 2.3.2. Let H be a generalized Frattini subgroup of G and let K be 
a non-nilpotent normal subgroup of G. Then H Pi K is a generalized Frattini 
subgroup of K. 

3. A special type of generalized Frattini subgroup. We recall that a 
non-trivial normal subgroup if of G is called a minimal normal subgroup of G 
if it contains no proper non-trivial normal subgroups of G. 

Definition 3.1. A proper normal subgroup of a group G is said to satisfy 
p rope r ty^ (G) (i.e., K G ^ ( G ) ) if and only if 

(a) <t>(G/K) = 1; 
(b) G/K contains a unique minimal normal subgroup; 
(c) G/K is not of prime order. 

Let H be a subgroup of G. We recall that the core of H, denoted core (H), 
is the intersection of all conjugates of H in G. We note that core (if) is the 
largest normal subgroup of G contained in H\ cf. (8, p. 53). 

Let H be a self-normalizing maximal subgroup of a solvable group G. In 
Theorem 4.1 of the next section we shall show that core (if) £~#(G). 

We now give a lemma that will be useful throughout this paper. 

LEMMA 3.1. Let K be a proper normal subgroup of G such that K £^(G). 
Then K contains 4>(G) and G/K is non-nilpotent. In particular, G is non-nilpotent. 

Proof. Since <j>(G/K) = 1, it follows that K contains 0(G). Suppose that 
G/K is nilpotent and let A/K be the unique minimal normal subgroup of 
G/K. Since G/K is nilpotent, A/K is an abelian £>-group for some prime p. 
Because of (8, Theorem 7.4.15), if follows that G/K = F (G/K) = A/K, and 
therefore G/K is abelian. Hence, G/K is of prime order, which is impossible. 
Therefore, G/K is non-nilpotent. This completes the proof of the lemma. 

THEOREM 3.1. Let G be a solvable group and let K £^#(G). Then K is a 
generalized Frattini subgroup of G if and only if K is a proper subgroup of the 
Fitting subgroup F(G) of G. 

Proof. Let A/K denote the unique minimal normal subgroup of G/K. 
Since G is solvable, F(G/K) = A/K (8, Theorem 7.4.15). 

Suppose that K is a generalized Frattini subgroup of G. By (4, Corollary 
3.2.1), F(G)/K = A/K; hence, F(G) = A. Thus, K is a proper subgroup 
of F(G). 

Conversely, let K be a proper subgroup of F(G). Then F(G)/K = A/K = 
F (G/K). Let L be a normal subgroup of G such that L contains K and L/K 
is nilpotent. Then L/K C F(G/K) = F(G)/K, hence L C F(G). By 
Theorem 2.1, K is a generalized Frattini subgroup of G. 
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From the proof of Theorem 3.1 we obtain the following theorem. 

THEOREM 3.2. Let G be a solvable group and let K G <Jé(G). Let A/K be the 
unique minimal normal subgroup of G/K. Then K is a generalized Frattini 
subgroup of G if and only if A — F(G). 

Let G be a solvable group and let K Ç <J%(G). Assume that K is a generalized 
Frattini subgroup of G. Then K is a maximal generalized Frattini subgroup 
of G. For, let H be a generalized Frattini subgroup of G which contains K. 
By (4, Theorem 3.1), F{G) contains H. Now let A/K be the unique minimal 
normal subgroup of G/K. By Theorem 3.2, A = F(G). Therefore, H = K or 
H = F (G). Assume that H = F (G). By (4, Theorem 3.6), every solvable 
normal subgroup of G is nilpotent. However, G is solvable, hence nilpotent. 
This contradicts Lemma 3.1. Hence, we have the following result. 

COROLLARY 3.2.1. Let G be a solvable group and let K 6«^#(G). If K is a 
generalized Frattini subgroup of G, then K is a maximal generalized Frattini 
subgroup of G. 

THEOREM 3.3. Let G be a solvable group and let K Ç *Jt(G). Let H be a normal 
subgroup of G which properly contains K. If K is a generalized Frattini subgroup 
of H, then F(H) = F(G) and K is a generalized Frattini subgroup of G. 

Proof. Assume that K is a generalized Frattini subgroup of H. Because of 
(4, Theorems 3.1 and 3.6), K is a proper subgroup of F(H). Since H is normal 
in G, F(H) is a normal subgroup of G\ hence, F{G) contains F(H). Therefore, 
K is a proper subgroup of F(G), and thus K is a generalized Frattini subgroup 
of G by Theorem 3.1. Let A/K be the unique minimal normal subgroup of 
G/K. Then A/K Ç H/K. Because of (8, Theorem 7.4.15) and Theorem 2.2, 
F(G/K) = F(G)/K = A/K = F(H)/K = F(H/K), hence F(H) = F(G). 

Because of Theorems 2.3 and 3.3 we have the result which follows. 

COROLLARY 3.3.1. Let G be a solvable group and let K £ *JK(G). Let H be a 
normal subgroup of G which properly contains K. If K is a generalized Frattini 
subgroup of Gj then F(H) = F(G). 

4. Gore of a self-normalizing maximal subgroup. Let G be a solvable 
group and let H be a self-normalizing maximal subgroup of G. I t is well known 
that the index [G:H] of H in G is a power of a prime p. Let K be the core of 
H in G. Hall (7, p. 511) showed that G/K contains a unique minimal normal 
subgroup A/K whose order is the index [G:H] of H in G. We also note that 
4>(G/K) = 1 and G/K is non-abelian. Hence, we have the following theorem. 

THEOREM 4.1. Let G be a solvable group and let H be a s elf-normalizing maximal 
subgroup of G. Then core (iîT) Ç«^(G). 

Because of Theorems 3.1 and 4.1 we obtain the following theorem. 

https://doi.org/10.4153/CJM-1969-046-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-046-3


FRATTINI SUBGROUPS. II 423 

THEOREM 4.2. Let H be a self-normalizing maximal subgroup of a solvable 
group G and let K denote the core of H in G. Then K is a generalized Frattini 
subgroup of G if and only if K is a proper subgroup of F(G). 

Let H be a self-normalizing maximal subgroup of a solvable group G. Let 
K be the core of H in G and assume that K and G' are nilpotent. Since G IK 
is non-abelian, K does not contain G''; hence, K is a proper subgroup of F(G). 
Because of Theorem 4.2 we obtain the next two corollaries. 

COROLLARY 4.2.1. Let G be a solvable group and let K be the core of a self-
normalizing maximal subgroup of G. If K and G' are nilpotent, then K is a 
generalized Frattini subgroup of G. 

COROLLARY 4.2.2. Let G be a solvable group and let H be a nilpotent self-
normalizing maximal subgroup of G whose core in G is K. If G is nilpotent, then 
K is a generalized Frattini subgroup of G. 

COROLLARY 4.2.3. Let G be a group and let H be a self-normalizing maximal 
subgroup which is nilpotent of class less than three. If G is nilpotent, then the 
core of H in G is a generalized Frattini subgroup of G. 

Proof. This is a direct consequence of (5, Theorem 1) and Corollary 4.2.2. 

Let G be a supersolvable group and let K Ç <Jé{G). Because of Lemma 3.1, 
K does not contain G. Assume that K is nilpotent. We note that G is nil-
potent (8, Theorem 7.2.13); hence, KG is nilpotent (8, Theorem 7.4.1). 
Therefore, K is a proper subgroup of F(G) and by Theorem 3.1 we obtain 
the following theorem. 

THEOREM 4.3. Let G be a supersolvable group and let K £ ^ ( G ) . If K is 
nilpotent, then K is a generalized Frattini subgroup of G. 

The assumption in Theorem 4.3 that G is supersolvable cannot be omitted. 

Example 4.1. Let SA be the symmetric group on four symbols and let H be the 
normal subgroup of SA which is isomorphic to the Klein four-group. We note that 
Si is not supersolvable, H £<J£(G), and H is abelian. However, H is not a 
generalized Frattini subgroup of G. 

COROLLARY 4.3.1. Let G be a supersolvable group and let K be the core of a 
nilpotent self-normalizing maximal subgroup of G. Then K is a generalized 
Frattini subgroup of G. 

Proof. This follows from Theorems 4.1 and 4.3. 

Let G be a non-nilpotent group all of whose proper subgroups are nilpotent. 
By (8, Theorem 6.5.7), G is a solvable group. Let K be a maximal generalized 
Frattini subgroup of G. Because of (4, Theorem 3.1), K contains 0(G). Suppose 
that K properly contains 0(G). Then there exists a maximal subgroup M 
such that G = KM; hence, G/K is nilpotent. By (4, Theorem 3.2), G is a 
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nilpotent group; hence, K = 0(G). We have established the result which 
follows. 

THEOREM 4.4. Let G be a non-nilpotent group all of whose proper subgroups 
are nilpotent. Then G is solvable and 0(G) is the unique maximal generalized 
Frattini subgroup of G. 

Let G be a non-nilpotent group all of whose proper subgroups are nilpotent. 
Let K be the core of a self-normalizing maximal subgroup of G. By Theorem 4.4, 
G is solvable; hence, G' is nilpotent. Because of Corollary 4.2.2, K is a general­
ized Frattini subgroup of G. Since K contains L(G), by Theorem 4.4, 
K = L(G) = 0(G). Therefore, we have the next result. 

COROLLARY 4.4.1. Let G be a non-nilpotent group all of whose proper subgroups 
are nilpotent. If K is the core of a self-normalizing maximal subgroup, then 
K = L(G) = 0(G). 

THEOREM 4.5. Let G be a non-nilpotent group such that every proper subgroup 
of G/<j>(G) is nilpotent. Then 

(a) G/(j)(G) is non-nilpotent; 
(b) G is solvable; 
(c) 0(G) is the unique maximal generalized Frattini subgroup of G; 
(d) Every proper normal subgroup of G is nilpotent. 

Proof, (a) This follows from (8, Theorem 6.4.14). 
(b) Because of (8, Theorem 7.3.14), and Theorem 4.4, G is solvable. 
(c) Let K be a maximal generalized Frattini subgroup of G. By (4, 

Theorem 3.1), K contains 0(G); hence, K/<t>{G) is a generalized Frattini 
subgroup of G/4>{G) (4, Theorem 3.4). Because of Theorem 4.4, K = 0(G); 
hence, 0(G) is the unique maximal generalized Frattini subgroup of G. 

(d) By (8, Theorem 7.3.2), 0(G) is a small subgroup of G. Since 0(G) is a 
generalized Frattini subgroup of G, the result follows from (4, Theorem 4.4). 

From Corollary 4.4.1 and Theorem 4.5, we obtain the following result. 

COROLLARY 4.5.1. Let G be a non-nilpotent group such that every proper 
subgroup of G/(j>(G) is nilpotent. If K is the core of a self-normalizing maximal 
subgroup of G, then K = 0(G). 

5. Generalized Frattini subgroups of A-groups. Let G be a solvable 
group and let K £ ^K{G). Let if be a subgroup of G which contains K and let 
F{H) be abelian. Assume that K is a generalized Frattini subgroup of H. 
By (4, Theorems 3.1 and 3.6), K is a proper subgroup of F(H). We note that 
F(G) contains K. Suppose that F(G) = K. Then F(G) is contained in F(H). 
Since F(H) is abelian, F(H) = F{G) (8, Theorem 7.4.7) ; hence, K = F(H) 
which is a contradiction. Therefore, K is a proper subgroup of F(G), and 
therefore K is a generalized Frattini subgroup of G by Theorem 3.1. We have 
established the result which follows. 
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THEOREM 5.1. Let G be a solvable group and let K g ̂ {G). Let H be a subgroup 
of G which contains K and F(H) is abelian. If K is a generalized Frattini sub­
group of H, then K is a generalized Frattini subgroup of G. 

Because of Theorems 4.1 and 5.1, we obtain the next result. 

COROLLARY 5.1.1. Let G be a solvable group. The core of an abelian self-
normalizing maximal subgroup of G is a generalized Frattini subgroup of G. 

COROLLARY 5.1.2. Let G be a solvable group and let H be an abelian self-
normalizing maximal subgroup of G. Then H does not contain F(G). 

Proof. Suppose that H contains F(G). Since core(H) = K is the largest 
normal subgroup of G which is contained in H, it follows that K contains F(G). 
Because of Corollary 5.1.1 and (4, Theorem 3.1), F(G) is a generalized 
Frattini subgroup of G. This fact contradicts (4, Theorem 3.6). 

A solvable group G is called an A-group if all of the Sylow subgroups of G 
are abelian; cf. (9). 

COROLLARY 5.1.3. Let G be a solvable group and let K £ ^£(G). Let H be an 
A-subgroup of G containing K. If K is a generalized Frattini subgroup of H, 
then K is a generalized Frattini subgroup of G. 

Proof. This follows from (9, Theorem 3.3) and Theorem 5.1. 

Let G be a solvable group. The lower nilpotent series for G is the series 

G = Lo D LY D L2 D . . O Ln = 1, 

where Li+1 is the smallest normal subgroup of Lt such that L{/Li+i is nilpotent, 
i = 0, 1, 2, . . . , n — 1. I t is well known that each Lt exists and is unique 
(i = 1, 2, . . . , n — 1). The positive integer n is called the nilpotent length 
of G. For an A-group, the lower nilpotent series and the derived series of G 
are the same. This fact is a consequence of (9, Theorem 3.4). Hence, the 
nilpotent length of an A-group is just the derived length of G. 

THEOREM 5.2. Let G be an A-group of nilpotent length two and let K £ ^{G). 
Then K is a generalized Frattini subgroup of G if and only if K is abelian. 

Proof. Assume that K is a generalized Frattini subgroup of G. By (4, 
Theorem 3.1), K is nilpotent; hence, K is abelian (9, Theorem 3.3). 

Conversely, assume that K is abelian. Further, suppose that K is not a 
generalized Frattini subgroup of G. Because of Theorem 3.1 and (9, 
Theorem 5.4), K = Z(G) X G'. Hence, G/K is abelian which contradicts 
Lemma 3.1. Therefore, K is a generalized Frattini subgroup of G. 

A group G is called a complemented group if to every subgroup H of G 
there exists at least one subgroup K such that G = HK and H C\ K = 1 ; 
cf. (6). Hall (6) showed that a complemented group is an A-group all of 
whose Sylow subgroups are elementary abelian. He also showed that the 
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nilpotent length of a complemented group is two. Because of Theorem 5.2, 
we obtain the following result. 

COROLLARY 5.2.1. Let G be a complemented group and let K G ^{G). Then 
K is a generalized Frattini subgroup of G if and only if K is abelian. 

We now turn our attention to more general A-groups. 

THEOREM 5.3. Let G be an A-group such that Z(G) is a non-trivial subgroup 
and let K G <JK(G). Then K is a generalized Frattini subgroup of G if and only 
if every proper subgroup of K which is normal in G is a generalized Frattini 
subgroup of G. 

Proof. Assume that K is a generalized Frattini subgroup of G. From (4, 
Theorem 3.1), it follows that every proper subgroup of K which is normal 
in G is a generalized Frattini subgroup of G. 

Now assume that every proper subgroup of K which is normal in G is a 
generalized Frattini subgroup of G. Further, suppose that K is not a generalized 
Frattini subgroup of G. Since K is solvable, K' is a proper subgroup of K 
which is normal in G, hence K is nilpotent (4, Theorem 3.2). Therefore, K is 
abelian (9, Theorem 3.3) and because of Theorem 3.1, K = F{G). 

Let s + 1 be the derived length of G. Because of (9, Theorem 5.4), 

K = Z(G) X Z(G') X . . . X Z(G^). 

Since Z{G) ^ 1, Z(Gis)) = G(5) is a proper subgroup of K which is normal in 
G; hence, G(s) is a generalized Frattini subgroup of G. Because of 
(4, Theorem 3.2; 9, Theorem 3.3), G(s_1) is abelian; hence, G(s) = 1 and 
Z(G(S~1}) = G(5-1}. Proceeding in this way we show that K = Z{G) X G\ 
Hence, G/K is abelian which contradicts Lemma 3.1. This completes the 
proof of the theorem. 

THEOREM 5.4. Let H be a generalized Frattini subgroup of G such that G/H 
is an A-group and Z(G/H) is non-trivial. Let K G ^ ( G ) and let K properly 
contain H. Then K is a generalized Frattini subgroup of G if and only if every 
proper subgroup of K which is normal in G is a generalized Frattini subgroup of G. 

Proof. We first note that G is solvable (4, Theorem 3.1). Since G/K is 
isomorphic to (G/H)/(K/H), K/H £JV{G/H). 

Suppose that K is a generalized Frattini subgroup of G. Then every proper 
subgroup of K which is normal in G is a generalized Frattini subgroup of G 
(4, Theorem 3.1). 

Conversely, let M/H be a normal subgroup of G/H such that M/H is 
properly contained in K/H. Then M is a generalized Frattini subgroup of G; 
hence, M/H is a generalized Frattini subgroup of G/H (4, Theorem 3.4). By 
Theorem 5.3, K/H is a generalized Frattini subgroup of G/H; hence, K is a 
generalized Frattini subgroup of G (4, Theorem 3.4). 
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COROLLARY 5.4.1. Let G be a non-nilpotent group such that L(G) properly 
contains $(G). Let G/<f>(G) be an K-group and let K (i<J{{G). Then K is a 
generalized Frattini subgroup of G if and only if every proper subgroup of K 
which is normal in G is a generalized Frattini subgroup of G. 

Proof. By (3, Theorem 2.2), Z(G/4>(G)) = L{G)/4>(G) ^ 1. Hence, the 
corollary follows from (4, Corollary 3.1.1) and Theorem 5.4. 

6. Generalized Frattini subgroups of E-groups. A group G is called 
an elementary group if </>(H) = 1 for each subgroup H of G. A group G is 
elementary if and only if all the Sylow ^-subgroups of G, p a prime, are 
elementary ^-abelian (2, Corollary 2.3). Hence, a solvable elementary 
group is an A-group. For further properties of elementary groups, the reader 
is referred to Bechtell's results (2). 

A group G is called an E-group if 0(G) contains <j>{H) for each subgroup 
H of G. A group G is an E-group if and only if G/<j>(G) is elementary. This is 
the content of (2, Theorem 3.1). For several other interesting properties of 
E-groups, see (2). 

Let H and K be subgroups of a group G. Then [H, K] will denote the sub­
group of G generated by the set of all commutators [h, k] = h~~lkrlhk with 
h G # and & 6 K (8, p. 58). 

Let G be a group. Denote by K(G) the normal subgroup of least order 
generated by [<j>(P), G] for each Sylow ^-subgroup P of G and all primes p 
dividing the order of G. Further, denote by E(G) the normal subgroup of 
least order of G which contains <j>(P) fc>r all Sylow ^-subgroups P of G and 
each prime p dividing the order of G; see (2). By (2, Theorem 4.1), E(G) is 
the smallest normal subgroup of G such that G/E(G) is an elementary group. 

We note that E(G) contains K{G) and also E(G)/K(G) is contained in the 
centre of G/K(G). Our aim in this section is to consider conditions under 
which K(G) and/or E(G) becomes generalized Frattini subgroups of G. 
We begin with the following theorem. 

THEOREM 6.1. Let G be a group such that E(G) is a proper subgroup of G. Then 
(a) / / G is an E-group, then E{G) is a generalized Frattini subgroup of G; 
(b) E{G) is a generalized Frattini subgroup of G if and only if K{G) is a 

generalized Frattini subgroup of G. 

Proof, (a) Assume that G is an E-group. Because of (2, Theorem 4.1), 
£(G) = 0(G), and therefore E(G) is a generalized Frattini subgroup of G 
(4, Corollary 3.1.1). 

(b) Assume that E{G) is a generalized Frattini subgroup of G. Then 
K(G) is a generalized Frattini subgroup of G (4, Theorem 3.1). 

Conversely, let K(G) be a generalized Frattini subgroup of G. We note that 
Z(G/K(G)) contains E(G)/K(G), and E(G)/K(G) is a proper subgroup of 
G/K(G). If G/K(G) is abelian, then E(G)/K(G) is a generalized Frattini 
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subgroup of G/K{G)\ hence, E(G) is a generalized Frattini subgroup of G 
(4, Theorem 3.4). Hence, assume that G/K(G) is non-abelian. By (4, Corollary 
3.1.1), Z(G/K(G)) is a generalized Frattini subgroup of G/K(G); hence, 
E(G) is a generalized Frattini subgroup of G (4, Theorems 3.1 and 3.4). This 
completes the proof. 

We now give two examples that will help illustrate the theory of this section. 

Example 6.1. Let S4 and H be as in Example 4.1. Then E(SÀ) — K(SÀ) = 
H £ ^#(54) and E(SA) is not a generalized Frattini subgroup of 54. We note 
t h a t i ( 5 4 ) = *(54) = 1. 

Example 6.2. Let G = (a, b\ a9 = b2 = 1, ba = a~lb). Then L{G) = 0(G) = 
K(G) = £(G) = (a3) and E(G) is a maximal generalized Frattini subgroup 
of G. We note that E(G) € ^#(G) and G is an E-group which is not elementary. 

Let G be a non-nilpotent group and let E(G) be a maximal generalized 
Frattini subgroup of G. Because of (4, Theorem 3.10), E(G) contains L(G). 
By (2, Theorem 4.1), 0(G) Q E(G) QR(G); hence, 0(G) = L(G). Now 
assume that G possesses an E(G) -series; cf. (4). Then £ (G) = 0(G) = L(G) = 
Z*(G) (4, Theorem 5.2); hence, G is an E-group (2, Theorem 4.1). We have 
established the theorem which follows. 

THEOREM 6.2. Let G be a non-nilpotent group and let E{G) be a maximal 
generalized Frattini subgroup of G. Then 

(a) 4>(G) = L{G); 
(b) / / G has an E(G)-series, then G is an E-group and E(G) = 0(G) = 

L(G) = Z*(G). 

Let G be the non-nilpotent group in Example 6.2. Then E(G) is a maximal 
generalized Frattini subgroup of G, and G is an E-group; however, Z*(G) = 1 
and G does not possess an E(G) -series. 

Let K(G) be a maximal generalized Frattini subgroup of the non-nilpotent 
group G. By (4, Theorem 3.2), Z(G/K(G)) is a proper subgroup of G/K(G); 
hence, E(G) is a proper subgroup of G since E(G)/K(G) is a subgroup of 
Z(G/K(G)). Because of Theorems 6.1 and 6.2, we obtain the next theorem. 

THEOREM 6.3. Let G be a non-nilpotent group and let K(G) be a maximal 
generalized Frattini subgroup of G. Then 

(a) K(G) = E(G) and L(G) = 0(G); 
(b) / / G has a K(G)-series, then G is an E-group and E(G) = K(G) = 

0(G) = L(G) = Z*(G). 

THEOREM 6.4. Let G be a solvable group and let K(G) G ^//(G). Then 
(a) K(G) = E(G); 
(b) If K(G) is a generalized Frattini subgroup of G, then K(G) = E(G) and 

L(G) = 4>(G); 
(c) If G is an E-group, then K(G) = E(G) = 0(G) = L(G). 

https://doi.org/10.4153/CJM-1969-046-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-046-3


FRATTINI SUBGROUPS. II 429 

Proof, (a) Since G is solvable, G contains a normal maximal subgroup; 
hence, E(G) is a proper subgroup of G (2, Theorem 4.1). Suppose that K(G) 
is a proper subgroup of E(G). Then Z(G/K{G)) is non-trivial; hence, 
Z{G/K(G)) contains the unique minimal normal subgroup A/K{G) of 
G/K(G). Because of (8, Theorem 7.4.15), F(G/K(G)) = A/K(G) = 
Z(G/K(G))\ hence, G/K(G) is abelian (8, Theorem 7.4.7). This contradicts 
Lemma 3.1, and therefore K(G) = E(G). 

(b) Assume that K(G) is a generalized Frattini subgroup of G. By 
Corollary 3.2.1, K{G) is a maximal generalized Frattini subgroup of G. By 
Lemma 3.1, G is non-nilpotent; hence, by Theorem 6.3, K(G) = E{G) and 
L(G) = 0(G). 

(c) Assume that G is an E-group. By (2, Theorem 4.1), £(G) = 0(G), 
and therefore -E(G) is a generalized Frattini subgroup (4, Corollary 3.1.1). 
By the first two parts of this theorem, K(G) = E(G) = 0(G) = L(G). 

This completes the proof. 

We note that it is possible for K(G) to be E{G) without K(G) being a 
generalized Frattini subgroup of G; see Example 6.1. 
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