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Introduction. It is well known that the determination of
a (non-isotropic) curve in the euclidean 3-space with given
curvature k(s) and torsion 7(s), where s represents the
arc-length, depends upon the integration of a Riccati equation;
and that this can be performed only if a particular integral of
the equation is known.

The following paper is based on an observation made in
connection with this Riccati equation written in a somewhat
modified form (see the usual one e.g. in [1] p. 36).

The Riccati equation: let

be the tangent, principal normal and binormal unit vectors
respectively, each being, of course, functions of the arc-length
s. We have

2 2 2
+ + = = .
(1) g5 4o +Ls =1, (m=1, 2, 3)
If we put
(2)u=§m+1§m_1+nm._}__gm_lcm_1+nm )
1—nm §m-1§m v 1-~qm §m+1§m

differentiate with respect to s and take into account the Frenet
equations

(3) ni o=k HTL
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v ,
g).’lfl Tlm

we find that both u and v satisfy the same Riccati equation:
u2 1
(4) u‘=—-E— (K+iT)-E(K-i‘l’).

Observation: This form of the Riccati equation suggests
the choice: Kk = wcosfs, T = w sinBs with w and {3 positive
constants. In this case the above equation can be written

2 ifs -iBs
(5) u'=-‘§' (u eﬁ + e B ).

It is immediately obvious that there exist two particular
-ifs
iBs

integrals of (5) of the form Ae If we substitute

u = Ae-l‘Ss into (5) and cancel e
equation

we get the quadratic

wAZ-ZiBA+w=O,

/2 2
whose roots, in terms of o= +V @ +p , are

_: [JatP _ . [Ja-B
Ai—l a-B’AZ—-l CY+I3'

If we choose u = Aie_lﬁs, v = AzeflﬁS and substitute into
- utv
Tm ™ u-v
we get
A + A
T = 1 2 _B -
A1 - A.2 a

—
One of the components of the principal normal p can,
therefore, be chosen to be constant and we have the

THEOREM 1. A curve (C) in euclidean 3-space
defined by k = wcos s, T = wsinfs, where w and B are
positive constants, has the property that its principal normal
makes a constant angle with a (suitably chosen) fixed direction.
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Note: The curves (C) belong to the larger class of
curves defined by

2
K +T =w = constant,

which appear to have been considered first in 1878 by
A. Mannheim (see [2], also [3] and [4]). We shall call them
Mannheim-curves and denote them by (M).

The parametric equations of a curve (C): Since equation
(5) admits two known particular integrals, its general integral
can be obtained by one additional quadrature. Equations (2)

will then enable us to determine -Ezs) and a further quadrature
will yield r(s), the finite parametric equations of (C).

Theorem 4 suggests an equivalent (and simpler) way to
solve the problem of curves (C): Since one of the components
of ; can be chosen to be constant = E‘, consider the linear

-
differential equation satisfied by p. If we start from the
Frenet equations written in their vectorial form:

t' = KP»
(6) P = -Xt +7b,
b = -rp,

differentiate the second equation twice and write for t' and
-
b' their expressions given by the first and third, we obtain

as the linear differential equation for ;:

(7) p|n +C!2;' = 0.
The general integral of this differential equation subject
-2 - 2
to the conditions p =1, p' 2z , can be shown to be
- W oW . - B
== .1 += sinas.j + .k,
(8) P a cosg8.1 o a@S.] o

- - -
where i, j, k are the unit vectors of a positively oriented,
fixed, orthogonal cartesian coordinate system.

The first of equations (6) with Xk = @ cos Bs gives us
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by integration (taking into account that -t’?. =1 and ?;: 0):
2
(9) T =< [sin (e + B)s , Sin (o - ;3)5] e
Za atp a-P
2 os (a+B)s cos (@-B)s | = -
&_[C a + a ]_] +2 ginps.F.
2a atp a-p a

A further integration yields, finally, the position vector

—; of the curve (C):

2
- W | cos (@g+P)s cos {(a-P)s|
2
@ sin (@ + B)s sin (o - B)s - o« -
-Za[—i_@}_(a'l'ﬁ) + —_L_pz)—(a-ﬁ) ] ] TP cos Bs.k.

Formula (10) provides the '"canonical'" form for the
parametric equations of a curve (C) in the sense that an
orthogonal cartesian coordinate system in the euclidean 3-space
can be found and an origin and direction for measuring the
arc-length s on (C) chosen such that the parametric equations
of (C) are given by (10).

Properties of curves (C): Theorem 1 gives a first
property of these curves which can, of course, be read
directly from formula (8). Furthermore, the same formula
shows that as a point moves with constant velocity on (C) the

-
corresponding principal normal p rotates with constant

angular velocity about the fixed direction R’ Further
interesting properties can easily be obtained from (10). If we

- = =
denote the coefficients of i, j, k by x, y, z respectively,
we notice that these coordinates satisfy the equation:

2 2 2

(11) _’F_ilz_z _Z. > =1,
(Zﬁ/w ) (2/w)

We therefore have the

THEOREM 2. A curve (C) in euclidean 3-space
defined by kK =@ cos Bs, T =w sin s, where w and B are
positive constants, lies on the hyperboloid of revolution (11).
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- 2 2 2
If we calculate r'2 = x +y +2z , weobtain

2
r2= % +é‘2c052[35;

w

_1"2 satisfies, therefore, the double inequality

2 2
rsTe oty

-2
r

and we have the

THEOREM 3. A curve (C) in euclidean 3-space
defined by ¥ = wcos s, T = wsinfs, where w and B are
positive constants, is '"bounded'; more precisely, it is
wholly located in the space between the two concentric spheres
with radii

/ 2
d
f%_ an % + 5_371 , respectively.

It follows from equation (10) that a curve (C) will be

algebraic and closed if and only if the ratio 2 is a rational

P

number. We have, therefore, an infinite number of closed
curves (C), which are all algebraic. The simplest of these
will be those for which o is an integral multiple of B. In this
case the curve (C) can be considered as the intersection of
the hyperboloid of revolution (11) with the cylinder paraliel to
the y-axis obtained by eliminating cos s between x and z.
We list the first two cases:

1). a= 2B :
2 2 1 2 4
x +tvy -;z =§,
(C)
_ 8 Z3+1 .
*T 93 30

2). a=3B8:

16(x2 +y2) - Zz2 =1,

() _212t 1
T 32 4
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Boundedness considerations concerning general Mannheim-
curves: For a curve (M) we can write X = w¢cos ¢, T =w sin g,
with ¢ a function of s, which is assumed to be at least twice
differentiable, and w a positive constant. If ¢ is a constant,
(M) is a circular helix; if ¢ is a non-constant linear function
of s we have the case of the curve (C) just treated. The
question under what conditions a general curve (M) will be a
bounded curve seems to the author to be an attractive one. The
differential equation satisfied by the principal normal P reduces
in this case to

e

(,12) qo'[p"' +(w +§01 )pl]_¢ll[pll +w p]:o.

Certainly the stability of equation (12) is a necessary condition
for the boundedness of (M). That it is not sufficient can be
seen from the example of the circular helix.
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