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Abstract

An example is constructed of a locally finite variety of non-associative algebras which satisfies
the maximal condition on subvarieties but not the minimal condition. Based on this, counter-
examples to various conjectures concerning varieties generated by finite algebras are constructed.
The possibility of finding a locally finite variety of algebras which satisfies the minimal
condition on subvarieties but not the maximal is also investigated.

Subject classification (Amer. Math. Soc. (MOS) 1970): 08 A 15, 17 A 30.

1. Introduction

One method that has often been used in the proof that a finite algebra has a finite
basis for its laws is to embed that algebra in a Cross variety (see, for example,
Macdonald, 1973). Recall that a proper section of an algebra A is H/p, where H is
a subalgebra of A4, p a congruence on H and H/p is not the whole of 4, and that a
critical algebra is a finite algebra which is not contained in the variety generated
by its proper sections. Then a Cross variety has to satisfy three conditions; it must
be locally finite, contain, up to isomorphism, only finitely many critical algebras,
and have a finite basis for its laws. As is well known (Birkhoff, 1935), the variety
generated by a finite algebra is locally finite, but the relationship (if any) between
the second and third conditions has not been clear. All the well-known types of
finite algebras with finite bases for their laws turn out to generate Cross varieties
(even those such as lattices, in which the Cross variety method of proof was not
used) so it seemed possible that these two conditions were not independent.
However, in this paper we shall construct examples of varieties generated by
finite algebras:

(i) with a finite basis for its laws, but containing infinitely many critical algebras;

(ii) with an infinite basis for its laws, but containing only finitely many critical

algebras,
thus showing that the two conditions are in fact independent (R. E. Park, 1976,
also has an example of type two, a four-element upper bound algebra.)
368
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The algebras involved all have modular congruence lattices, and this enables us
to produce a counterexample to the following conjecture (given in Macdonald,
1973):

CONIJECTURE 1. If B is a variety of algebras whose congruence lattices are modular,
then every finite algebra in B has a finite basis for its laws (and, a fortiori, a counter-
example to the even more optimistic conjecture of S. Burris reported in the same
paper). Polin (1976) produced the first such example and it was news of this that
motivated our construction,

In Section 2 we prove a theorem which gives several equivalents to the existence
of only finitely many critical algebras in a locally finite variety, one of these being
that the variety satisfies both the maximal and minimal condition on subvarieties,
and again one might wonder if both chain conditions are necessary. The major
part of the paper is devoted to constructing an example of a variety generated by
a finite algebra which satisfies Max but not Min. It is on this example that the
other examples mentioned above have been based.

Unfortunately, we have not succeeded in constructing an example of a variety
generated by a finite algebra which satisfies Min but not Max. There is some
evidence to suggest that the variety generated by the three-element algebra proved
by Murskii (1965) to be infinitely based may have this property. This is discussed
in Section 4.

2. Equivalents to finitely many critical algebras

Clearly a critical algebra belongs neither to the variety generated by its proper
subalgebras, nor to that generated by its proper quotient algebras, in other words
it is both S-critical and Q-critical. Q-critical algebras are the easiest to work with
as they are subdirectly irreducible; unfortunately Q-criticality is not a sufficiently
strong condition, indeed (as can be deduced from Example 51.33 of Neumann,
1967) any finite group with non-abelian Sylow subgroups generates a variety
containing infinitely many Q-critical groups. As condition (a) of the following
theorem shows, it is S-criticality that is important.

2.1 THeOREM. If B is a locally finite variety then the following conditions are
equivalent.

(@) B has only finitely many S-critical algebras.

(b) B has only finitely many critical algebras.

(c) B has only finitely many subvarieties.

(d) B satisfies the maximal and minimal conditions on subvarieties.
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Before we prove the theorem we make some comments on condition (d). The
minimal condition on subvarieties of L is equivalent to the condition that every
subvariety of B has a finite basis for its laws as a subvariety. This means that
every subvariety of 8 is determined by the laws of B together with a finite additional
set of laws. It does not mean that B is itself finitely based, and indeed we shall see
that there exist locally finite varieties which are not finitely based, but which
satisfy the conditions of the theorem. If B is a locally finite variety then the
maximal condition on subvarieties of B is equivalent to the condition that every
subvariety of B (including B itself) is generated by a finite algebra. To see this
suppose that B is a variety which satisfies the maximal condition on subvarieties
and let W be a subvariety of B. For each n = 1,2, ... let W,, be the subvariety of
I generated by its n generator algebras. Then

W, <MW, <...<W, <.

and so for some n, I3,, = W,, for all m>n. This implies that W,, = W, and so W
is generated by F,(IB), the free algebra of IB of rank n. If B is locally finite then
F, () is finite, and so W is generated by a finite algebra. On the other hand,
suppose that every subvariety of B is generated by a finite algebra, and let

W, <W, <...<W,. <.

be an ascending chain of subvarieties of B. Suppose that I3, is generated by the
finite algebra 4, for n = 1,2, ..., and let the variety generated by {4,: n=1,2,...}
be generated by the finite algebra A. Then A€ QSC{4,:n=1,2,...} (here C
denotes the cartesian product). Let 4 QSB where Be C{4,: n=1,2,...}. Since
A is finite, 4 is a homomorphic image of a finitely generated subalgebra of B. Since
B is locally finite this subalgebra is finite, and so is isomorphic to a subalgebra of
a finite Cartesian product of copies of algebras in {4,,: n=1,2,...}. So A4 is in the
variety generated by a finite subset of {4,,: n = 1,2, ...}, which implies that 4%,
for some n. This implies that I, = W3,, for m=n.

Proor oF THEOREM 2.1. Any critical algebra is certainly S-critical and so (a)
implies (b). Any subvariety of B is generated by its critical algebras, that is, by
some subset of the critical algebras of B. Hence (b) implies (c). Trivially (c)
implies (d). The non-trivial part of the proof is that (d) implies (a). Let B be a
locally finite variety which satisfies the maximal and minimal conditions on
subvarieties. Suppose that B has infinitely many S-critical algebras, and let I8
be a subvariety of B which is minimal with respect to containing infinitely many
S-critical algebras. B satisfies the maximal condition on subvarieties and so, for
some n, I is generated by its free algebra of rank », F,(I). If U is any proper
subvariety of I then F, () must be a proper homomorphic image of F,(IB),
and so U satisfies some » variable law which is not satisfied by 3. This implies
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that the maximal proper subvarieties of I8 are determined by » variable laws
(together with the laws of ). Since B is locally finite it follows that B has only
finitely many maximal proper subvarieties. By assumption each of these contains
only finitely many S-critical algebras, and so M contains infinitely many S-critical
algebras which do not lie in any of its proper subvarieties.

Let 4 be one of these S-critical algebras. Then the proper subalgebras of 4 must
lie in some maximal proper subvariety U of IB. As shown above, U is determined
by the laws of IB together with some » variable law. Since A€W and A¢U,

~ A must fail to satisfy this n variable law. However, every proper subalgebra of 4
lies in U, and so A4 can be generated by » elements. But B is locally finite, and so
has only finitely many »n generator algebras. This leads to a contradiction, and so
our assumption that B contains infinitely many S-critical algebras is false, and
the theorem is proved.

3. Max but not Min

We now give an example of a locally finite variety B of non-associative algebras
which satisfies the maximal condition on subvarieties, but not the minimal
condition. So every subvariety of B (including B itself) is generated by a finite
algebra, but B has subvarieties which are not finitely based. By Zorn’s Lemma B
has a “just non-finitely based” subvariety 2B. That is, B has a subvariety I8
which is not finitely based, but all of whose proper subvarieties are finitely based.
Since 9B is a subvariety of B, I satisfies the maximal condition on subvarieties, and
I satisfies the minimal condition on subvarieties since all the proper subvarieties
of B are finitely based. So, by the theorem, IB is generated by a finite algebra,
B has only finitely many critical algebras and only finitely many subvarieties, and
all the proper subvarieties of M are Cross.

Let F be a finite field with ¢ elements. 4 is a non-associative algebra over F if A
is a vector space over F with a bilinear product. Since F is finite the variety of
non-associative algebras over F is finitely based. If A is any non-associative
algebra we use a left normed convention for products of elements of A. Thus
abe denotes (ab)c. For i=0,1,2,... we define ab® inductively by ab®:=a,
ab**1 ;.= (ab%)b. Thus ab® = (ab) b = abb.

3.1. THEOREM. Let B be the variety of non-associative algebras over F determined
by the laws
xy(xy%3) =0,

Xy Xg X3 Xg X5 = Xy Xp X4 X3 X5,
xl x2 xgx4 = xl xz X3 x4.

Then B is a locally finite variety satisfying the maximal condition on subvarieties but
not the minimal condition.
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Theorem 3.1 is an immediate consequence of Theorems 3.2, 3.4 and 3.10. We
give the proofs of these in the case when g = 2, that is, when F = Z,. The proofs
in the general case are essentially the same but the details are more complicated.

3.2. THEOREM. B is locally finite.

PROOF. Let A4 be an algebra in B and suppose that A4 is generated by a,, a,, ..., a,,.
Then using the law x;(x; x;) = 0 we see that A is spanned by elements of the form
;1) i(2) - - Fitm)
with m>1 and i(1),i(2), ..., i(m) {1, 2, ...,n}. Using the law

X1 X Xg Xq X5 = Xi Xy X4 X3 X
we see that if m>5 then we may assume that
iR Li@<...<i(m-1).

Using the law x,; x, x4 x; = x, X, X3 X, in the case ¢ = 2 we see that we may assume
that

iB)<i@)<...<i(m—1).
Now there are only finitely many sequences (i(1),i(2),...,i(m)) such that
i(1),i(2),...,i(m)e{1,2,...,n} and i(3)<i(4)<...<i(m—1), and so A is finite
dimensional as a vector space over F. Since F is finite this implies that A is finite.

3.3. THEOREM. B is generated by a finite algebra.

ProoF. Let 4 be the non-associative algebra over F defined as follows.

A is generated by elements a,b, ¢, d.

A has basis a, b, c,d,ab, abc, abd, abcb, abed, abdb, abde, abedb as a vector space
over F.

If x and y are members of this basis then xy = 0 unless

x €{a, ab, abc, abd, abcb, abcd, abdb, abdc, abcdb}
and ye{b, c,d}. These products are given by the following table.

b c d
a ab 0 0
ab ab abc abd
abc abch abc abed

abd abdb abde abd
abeb abcbh abe abed
abed abedb abdc abed
abdb abdb abdc abd
abdc abcedb abdc abed
abedb abedb abdc abed
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It is routine to check that A4 satisfies the laws of B. Now let F(B) be the free
algebra of B generated by x;, x,, .... As in the proof that B is locally finite we see
that F(*B) is spanned (as a vector space) by monomials of the form

Xe1) X§2) -+ Xi(m)

with m>1, i(3)<i(4)<...<i(m—1). Let S be the set of finite sequences of positive
integers of the form (i(1),i(2),...,i(m)) with m=1, i) <i@)<...<i(m—1). If
s=(i(1),i(2),...,i(m))eS let w(s) = Xyq) Xs2) --- Xg(my- Then F(B) is spanned by
{w(s): s€S}. We show that if s,s,,...,5, are distinct elements of S and if
0y, Oy, ..., 0y € F then

oy W(sp) + o W(sp) + ... + o w(sg) = 0

is a law of 4 only if a; = oy = ... = o, = 0. This proves that 4 generates B.
It also proves that if s and ¢ are distinct elements of S then w(s)s w(), and that
{w(s): s€ S} is a basis of F(B) as a vector space over F. First we need to establish
some notation. If s = (i}, 4y, ...,7,) €S and i is a positive integer then we say that
s has degree r in i if i occurs r times in the sequence (i}, i, ...,i,). Note that r
can be at most 4. We say that s involves i if it has degree at least 1 in i. The degree
of 5 is defined to be m. For each positive integer i we let 8; be the endomorphism
of F(B) which maps x; to 0 and maps x; to x; for j#i. If s€ S and s involves i then
w(s) 8; = 0. If s does not involve i then w(s) §; = w(s). Now suppose that A4 satisfies
a law
o W(s) +oaaw(so)+ ... +ogw(s,) =0

for some non-zero elements oy, o04,...,0,€F and some distinct elements

S1s 825 -, S ES. Since F=2Z,, ay = oy = ... = o, = 1. So we can write this law in
the form

> w(s)=0,

8e P

where P is a non-empty finite subset of S. We show that this implies that 4 satisfies
a law of the form above where, for some m >0, P consists of elements which are
of degree 1 in each of 1,2,...,m, and which involve no other integers. Then we
obtain a contradiction by showing that 4 cannot satisfy a law of this form.

So suppose that A satisfies the law X, pw(s) = 0, where P is some non-empty
finite subset of S. Then for each positive integer i

w(s)— Zw(s)6;=0
seP seP

is a law of 4. Now w(s) 3, = 0 if s involves i, and otherwise w(s) 8; = w(s). So 4
satisfies the law X, o w(s) = 0, where Q is the subset of P consisting of elements
which involve i. By repeated use of this argument we see that if 7 is any finite
subset of the positive integers then X, pw(s) =0 is a law of 4, where R is the
subset of P consisting of elements which involve the integers in 7 and no other
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integers. So we may assume that A satisfies a law of the form X, p w(s) = O where
P is a non-empty finite subset of S whose elements all involve precisely the same
set of integers. There is no loss in generality in taking this set of integers to be
1,2,...,n. Let m be the maximum of the degrees of the elements of P, and let e P
have degree m. If m> n then ¢ cannot be of degree 1 in all of 1,2, ..., n. We suppose
that ¢ has degree r in i with r> 1. Let 8 be the endomorphism of F(B) which maps
x; to x;+x,, and which maps x; to x; for j#i. Then

w(t) 0= 3 w(s)
8eQ

where Q is a 27 element subset of S consisting of elements of degree m, and where
2r—2 of the elements in Q involve 1,2,...,n+1. If ue P and u#¢ then

w(u) 0= 3 w(s),
seR

where R is a finite subset of S whose elements have the same degree as u and
where, importantly, Qn R = @. So (X, pw(s)) 0 = X, 7 w(s), where T is a finite
subset of S which contains Q and which consists of elements of degree at most m.
This implies that ¥, _,w(s) =0 is a law of 4, and hence that 3, ;w(s) =0 is
a law of A4, where U is the subset of T consisting of elements involving 1,2, ...,n+1.
By repeated use of this argument we see that A satisfies a law of the form
Yse pW(s) =0 where P is a non-empty finite subset of S consisting of elements of
degree m which involve 1,2, ...,m. Such a law is of the form

2 X1gXgg -+ Xpmo = 0,
geEnw

where = is a nor-empty set of permutations of {1,2,...,m} with the property that
if oen then 30<40<...<(m—1)s. We obtain a contradiction by showing that
A cannot satisfy a law of this form.
If m>4 and T€x let ¢ be the homomorphism from F(B) to A which maps
X1, tO @, X, to b, x,,, to ¢, and x; to d for j# 17,27, mr. Then
(X1, Xgy oo Xp,) @ = abde,
and if o€, o# T then

(X1g X2y - Xme)p =0 or abcd.
So

( X Xip Xgg -ee x,,w) ¢ =abdc or abdc+abcd.

oEewm

Since abdc and abdc + abcd are both non-zero this shows that X, ., X1 X5, -+« Xppe = 0
is not a law in A.

If m =3 and 7w we let p be a homomorphism from F(B) to A which maps
Xy, tO @, Xy, to b, X5, to c. Then

(%17 X3p x81') P = abc,

https://doi.org/10.1017/51446788700011897 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700011897

[8] Varieties that make one Cross 375

and if s €, o# 7, then

(xla Xog x3a) = 0.
So

( Z X10 X320 xaa) = abc#0,

gemw

which implies that 3, ., x,, X5, X3, = 0 is not a law in A4.
If m=2 and ren we let ¢ be a homomorphism from F(B) to A which maps
X, to @ and x,, to b. Then
X1r Xor P = ab

and if o#7 then x,, x5, = 0. So (T, X1, X3,) ¢ = ab#0, which implies that
YeenX1oX2s = 0 is not a law of 4.

Finally, if m = 1 then X, _, X;, X5, ... X, must be x,, and clearly x; =0 isnot a
law of A.

This completes the proof that A generates B.

3.4. THeoreM. If W is any subvariety of B then M is generated by a finite algebra,
and hence B satisfies the maximal condition on subvarieties.

Proor. First we show how the result will follow from the existence of a well
order < and a quasi order < on .S with appropriate properties. The definitions
of these are given later.

Every non-zero element of F(B) can be written uniquely in the form

w(sD)+w(sp)+ .. +w(sy)

with s, 55, ..., 5, €S and s> 5, > ... > 5. We define the weight of this element to be
s5;. The quasi order <{ has the property that if v € F(B) has weight b and if a < b
then there is an element of weight a in the fully invariant ideal generated by v.
We let F(IB) be the free algebra of B generated by yy, y,, ..., and we let o be the
homomorphism from F(B) to F(IB) which maps x; to y; for i =1,2,.... Then if
we F(IW) and w#0 we define the weight of w to be the minimum with respect to
< of the weights of elements v F(B) such that v = w. We let T be the set of
weights of non-zero elements of F(IB). We show that the quasi order is a well
quasi order, and this implies that there is a finite subset Tj of T with the property
that if beT then there is an element g€ T, with @ <X b. The well order < has the
property that there are only finitely many elements of F(B) of any given weight,
and so there are only finitely many elements in F(B) whose weight lies in T,
This means that there is an integer N with the property that if the weight of v lies
in T, then v € Fy(B). (Fy(DB) is the subalgebra of F(B) generated by x;, X, ..., Xx.)

Now suppose that v = 0 is not a law in M. Then v+ 0. Let v have weight b,
and let « be an element of weight b in F(B) such that um = vn. Let a be an element

https://doi.org/10.1017/51446788700011897 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700011897

376 Sheila Oates Macdonald and M. R. Vaughan-Lee 9]

of T, such that a =< b. Then there is an element we F(IB) of weight @, and an
element pe F(B) of weight a such that pr = w. Also there is an element u* of
weight a in the fully invariant ideal generated by . So *he elements p and u*
of F(B) both have weight a and it follows that p—u* has weight less than a. Hence
w —u* 7 = (p—u*) 7 has weight less than g which is the weight of w. This implies
that u*7#0. Now the weight of u* lies in T and so u* € Fy(), which implies
that u* 7 is a non-zero element of Fy(I3). But »* is in the fully invariant ideal of
F(B) generated by u and so it follows that ¥ = 0 is not a law in Fy(IB). Finally,
the fact that umr = vwr implies that # = v is a law of I8, and so the fact that u =0
is not a law of Fy(UB) implies that v = 0 is not a law of Fy(MW). To summarize: if
v =0 is not a law of I then it is not a law of Fy(IW). This implies that W is
generated by the finite algebra Fn(IB).

3.5. DerNiTiON. The well order < is defined as follows. Let 5,75 and let
5= (igy0gy o oesiy)y = (J1sJas ---»Jn)- Let I be the set of integers involved in s, that is
the set {i}, iy, ..., i}, and let J be the set of integers involved in z. Let s<tif Iisa
proper subset of J, or if I¢J and J£ I and max (I\J) <max(J\I), or if I/ =J and

m<2and m<n, or

m=n<2 and i, <j,, or

m=n=2and i; = j,,iy<j, O

m,n>2 and i, <jj, or

m,n>2and i = j), i <j,, Or

m,n>2 and i = jy, iy = jo, iy <Jjns OF

m,n>2 and i = jy, Iy = j,, i, =Jj, and s has smaller degree in / than ¢, or

m,n>2 and iy =j,, i = ja, iy =J, and s has the same degree as ¢ in i;, but
smaller degree than ¢ in i,, or

m,n>2 and i) = jy, iy = j,, iy =Jp @and s has the same degree as ¢ in #; and i,
but smaller degree than 7 in i,,.

3.6. LEMMA. < is a well order.

PROOF. If s = (i, iy, ..., i) €S then s is determined by the set {iy, iy, ..., iy}, the
integers i, iy, i,,, and the degrees of s in i, iy, iy, and so < defines an order on S.
Also the first two conditions in the definition of < imply that if s€.S then there
are only finitely many elements ¢ €S with ¢ <s. This shows that < is a well order,
and also shows that there are only finitely many elements in F(B) of any given
weight.

3.7. DeErINITION. The quasi order <{ is defined as follows. If (i, 75, ..., in),

UrsJas ---sJn) €S et (g, iy, «ovy i) <X (JisJas ---»Jn) if one of the following conditions
is satisfied.
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1. Both m and n are greater than 2, and there is a map ¢ from {j,jo, .. sJn}
onto {iy, iy, ..., i,,} such that

ro = i if and only if r = f;,
ro =i, if and only if r = j,,
ro =iy, if and only if r = j,,

{asdas - sdn-1 @ = {las Ias -+ im—1bs
ro<se if r<s.

(Note that we do not insist that ¢ is one—one.)

2. Both m and n equal 2 and there is a one—one order preserving map ¢ from
{J1, 72} to {iy, iz}

3. Both m and n equal 1. In this case to keep the notation consistent we let ¢
be the map from {j;} to {i;}.

3.8. LEMMA. If a = (i, iz, s ip) X (s Jzs -5 Jn) = b and ve F(B) has weight b
then the fully invariant ideal generated by v contains an element of weight a.

PROOF. Let @ be the map from {jy, js, ---5Jn} tO {iy, i35 ..., i,,,} satisfying the condi-
tions of Definition 3.7 and let 6 be a endomorphism of F(B) which maps x; to
X¢p fOT i = ji,f5 ..., Ju- Then, using the law x; xp X3 X3 X4 = Xy X X3 X4, We see that
w(b) 0 = w(a).

If v = 3, pw(s) for some finite subset of P containing b, then, as in the proof
of Theorem 3.3, we see that the fully invariant ideal of F(B) generated by v
contains the element X, o w(s), where Q is the subset of P consisting of elements
involving the integers jy, jq, ...,j, and no others. This implies that X, o w(s) 0 is
in the fully invariant ideal generated by v, and we show that 33, o w(s) has weight a.
Note that beQ and that w(b) 6 = w(a). We show that if s€Q and s#b then
w(s) 8 = w(¢) for some t€ S, t<aq. This is trivial in the case when m =n =1, or in
the case when m = n = 2, for then ¢ is a one—one order preserving map. So suppose
that m,n>2, and let s = (ky, ks, ..., k). Note that {k;,ky, ...k} = {Ji,Jas - -sJn}
since s€Q. Then w(s)0 =w(t) where t=(ky@,kop,r,r2....70pk,9) With
ri<re<..<ryand {r,ry...,r} = {kyp,ks@,..., k(1) ¢}. First, since s involves
the integers jj, ji, ..., J, and no other integers, and since ¢ maps {jj, ja, .-, jn} ONtO
{iy, Iy, ..., Iy} it follows that ¢z involves the integers iy, i, ..., ,,. This means that ¢
involves the same integers as a. Next, since r = i, if and only if r = j,, and since
re<sp if r<s, it follows that if k, <j, then k, ¢ <j, ¢. Similarly if k,<j, then
kyp<j. @, and if k, <j, then k, 9 <j, . This implies that ¢ <a except in the case
when k; = jj, k, = j; and k,, = j,,.

So suppose that k; = j, ky = j,, k,, = j,. Since s and b involve the same integers
the condition that s <b must imply that b has higher degree than s in one of the
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integers j,, js, j,- However, the condition that rp = i, if and only if r = j, implies
that the degree of b in j, is the same as the degree of a in ;. Similarly the degree
of s in j; is the same as the degree of ¢ in ,. So if b has higher degree than s in j;
then g has higher degree than ¢ in i,. Similarly if b has higher degree than s in j,
or j, then a has higher degree than ¢ in i, or i, (respectively). So t<a in this case
also. This completes the proof that 3}, o w(s) has weight a.

3.9. LeMmMA. < is a well quasi order.

Proor. From Higman (1952), it is sufficient to show that every sequence of
elements of .S has a subsequence which is ascending with respect to <. Clearly this
is so if infinitely many terms of the sequence are of the form (i;) or of the form
(i1, i»). So, replacing the original sequence by a subsequence if necessary, we may
suppose that all the terms in the sequence have degree at least 3. Let the sequence
be 51,8y, ... and let 5, = (g, Mg, ..., Mpy(my) for n=1,2,.... Now one or more of the
following conditions is satisfied by the sequence.

ny, > n, for infinitely many terms in the sequence.

n, = n, for infinitely many terms in the sequence.

ny < n, for infinitely many terms of the sequence.
So, replacing the sequence by a subsequence if necessary, we may suppose that
n, > n, for all n, or n, = n, for all n, or n, <n, for all n. Similarly we may assume
that 7, >n,,,, for all n, or n, = n,,,, for all n, or ny<n,, for all n and that
Ny > Ry fOr all 1 OF 1y = nyyy,y for all n, OF 1y <y, for all n. Let us suppose for
example that n; >n,>n,,(,, for all n.

Then let 4, be the set of integers involved in s, which are greater than n,.
Let B, be the set of integers which are involved in s, and which lie between r,
and n,. Let C,, be the set of integers which are involved in s, and lie between n,
and n,,,). Let D, be the set of integers which are involved in s,, and are less than
n,m- Then replacing the sequence by a subsequence if necessary, we may suppose
that A,, is empty for all », or that A,, is non-empty for all # and that | 4,,|< |4,44|
for all n. Similarly we may suppose that | B, | = 0 for all , or that 0< | B, |<| Bp1|
for all n, and that |C,| = 0 for all n, or that 0<|C,|<|C,4,| for all n, and that
| D,,| = O for all n, or that 0<| D, |<|D,,| for all n. But then we can find order
preserving maps from A4,,, onto A4,, and from B,,, onto B,, and from C,,,
onto C,, and from D, ,, onto D,. Combining these maps we can find an order
preserving map ¢,, from the set of integers involved in s,,, to the set of integers
involved in s, which maps (n+1), to ny, (n+1); to ny, (n+1)(n41) 1O Nppemy and
maps A4,, onto 4,, B, ,, onto B,, C,,, onto C, and D, , onto D,. The map ¢,
satisfies the conditions in the definition of < and so s; < 5, < .... This shows that
the original sequence has an ascending subsequence. We obtain ascending sub-
sequences by the same method whatever the relative magnitudes of ny, 71, Pypn)-
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This completes the proof that <X is a well quasi order, and also completes the
proof that B satisfies the maximal condition on subvariates.

3.10. THEOREM. B does not satisfy.the minimal condition on subvarieties.

PRroOOF. We prove this by exhibiting an example of a subvariety of B which does
not have a finite basis for its laws. Let I be the subvariety of B determined by
the laws w, =0 forn=6,7, ..., where

Wy 1= (Xy Xg Xg— X3 X3 Xp) Xg Xq .. Xpp Xg X5 — (Xq X Xg— Xy Xg Xg) Xg X7 ... Xy X5 Xy

Consider the fully invariant ideal generated by w,. If 4 is any element in F(B)
then uw,, = 0 by the law x;(x; x3) = 0. Also w,, u = 0 by the law

x1 X2 X3 x4 x5 = x1 x2 xl x3 X5.
So the fully invariant ideal generated by w,, is spanned by elements of the form
U = (g Vg Ug— Uy Vg V) Vg Uy ... U, Vg U5 — (Vg Vg Vg — Uy Vg V) Ug Vg ... Uy, U5 Uy,

where vy, 0,, ...,0, € F(B). Since w, is linear in x,, X, ..., X,, We may assume that
Uy, Usy .-, U, are monomials. But if any of v,,v;, ...,v, is a monomial which is a
product of two or more of the generators of F(B) then » = 0 by the law x,(x, x5) = 0.
If v, is a monomial which is a product of two or more of the generators of F(B)
then » =0 by the law x; x; x3x, x5 = Xx; X, X4 X3 x;. Hence we may assume that
5, Uy, ..., U, are generators of F(B), which implies that v is a linear combination of
monomials each of which is a product of at most n generators of F(B). So any
element of the fully invariant ideal generated by w, is a linear combination of
monomials each of which is a product of at most n generators of F(B). Now
suppose that B is finitely based. Then, for some n, w, is in the fully invariant
closure of w;, w,, ..., w,_,. Hence w,, can be expressed in the form

aymytogmet... oMy

for some oy, &y, ..., €F and for some monomials my,m,, ...,m,, each of which
is a product of at most n—1 generators of F(B). For i=1,2,...,n let §; be the
endomorphism of F(B) which maps x; to 0 and maps x; to x; for j#i. Then
w, 8;=0for i=1,2,...,n Also if 1<j<k then m, is a product of at most n—1
generators of F(B) and so m;8; = m; for some i (1<i<n). Let u be the map
(1-8)(1-8y)...(1-38,) from F(B) to F(B). (Note that although u is not an
endomorphism of F(B)as an algebra, it is a linear transformation of F(B) as a
vector space.) Then w, u = w,, and m;p = 0 for 1 <j<k. Hence

Wn =Wt = 1<Z_<k°‘j(mj ©) =0.
SYAS
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However, if A is the algebra defined above which generates B and if 8 is the
homomorphism from F(B) to 4 which maps x, to a, x, to b, x5 to d and x; to ¢
for j#1,2,5 then

Wy, 0 = abed—abdc+#0.

This implies that w, # 0, and so 2B cannot be finitely based.

As we have proved above, B contains finite algebras which do not have finite
bases for their laws, but which generate varieties with only finitely many sub-
varieties. Here is an example of such an algebra. Let B be the non-associative
algebra over F defined as follows.

B is generated by elements a, b, c.

As a vector space over F, B has basis a, b, ¢, ab, ac, abc, ach, abch.

If x,y are members of this basis then xy = 0 unless x €{a, ab, ac, abc, ach, abcb}
and y = b or c¢. These products are given by the following table.

b c
a ab ac
ab ab abe
ac ach ac

abc abch abe

ach ach abc+ach
—abch
abcebh abcb abe

The following laws are a basis for the laws of the variety generated by B (as a
subvariety of B).

(%1 Xg Xg— Xy X3 Xg) Xg Xq ... Xy Xg Xg— (X1 Xg Xg — X7 X3 Xg) Xg X7 ... Xp X5 Xg =0
forn=6,7,...,

(%1 Xg Xg— Xy Xg Xg) X4 X5 — (%1 X3 Xg— X X3 Xp) X5 X4 = 0,

x1 x2x3X4+x1 X3X4X2+x1x4x2x3_x1 x2x4X3_x1x4x3x2—xl.X3x2x4 = O,

Xy X§ x§ — X1 X§ X3 — X3 Xo X§+ X, Xa X3 = 0,

X3 X8 X3 Xg — Xy X§ X4 X3 — X1 X5 X3 Xg+ Xy Xg X4 X3 = 0,

Xy Xg Xg X — Xy Xg X X§— X1 X3 Xg Xg+ X1 X3 X3 X4 = O,

Every subvariety of the variety generated by B is determined by four variable
laws as a subvariety, and this implies that the variety generated by B has only
finitely many subvarieties.

To summarize, our collection of examples is as follows:

B is a locally finite variety that satisfies Max but not Min.

B is a variety generated by a finite algebra which has a finite basis for its laws,
but contains infinitely many critical algebras.
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Var (B), the variety generated by the finite algebra B, has an infinite basis for
its laws, but contains only finitely many critical algebras.

Since all the algebras in B, being linear algebras, have modular (indeed,
permutable) congruence lattices, B also provides a counter-example to conjecture 1.
(As mentioned in the introduction this was inspired by an example of Polin (1976).)

4. Min but not Max?

Murskii (1965) proved that the three element groupoid M defined by the multi-
plication table shown below has an infinite basis for its laws. (Murskii treated it

01 2
0j]0 0 O
110 0 1
2(0 2 2

as a groupoid with a single binary operation, but his results go through when it is
regarded as a groupoid with zero; we shall regard it thus as this simplifies many of
the calculations.)

4.1 THEOREM. Var (M) contains an infinite ascending chain of critical algebras

G;<Gy<...<Gp< ...

Proor. The G, are of the form G, ={0,gy,...,8,}: 0g; =2,0=0, g;8;, =0,
8:8; = 8; (i#J). These are constructed as follows:

For n =1 the subgroupoid {0, 1} of M satisfies these conditions.

For n>1, let H,, be the direct product of # copies of M. Consider the equivalence
relation p on H,, defined by (a, ...,a,) p(by, ..., by) if

either there exists 7,/ such that g; = b; =0
or a=>b(i=1,..n).

p is clearly a congruence relation. Let G, be the subgroupoid of H,/p whose
elements are 0,gy, ...,g,, Where

0=[0,...,0],, &=1I2- 1, s 2)],e
Then

0g;=g,0=0, g‘g‘=[(2,...,()i,...,2)]p=0, 88 =102,..,1,..,.2)], =g
1

so G, has the required properties.
It remains to show that G, is critical. First note that there are no proper non-
trivial congruences on G,,; for, if (0,g;) €0, then (0,g;) €0, and if (g;,g) € o (i#))
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then (0, g;) € 0. Thus it is sufficient to show that G,, does not belong to the variety
generated by its proper subalgebras. Since these are precisely 0 and G, for m<n,
it is sufficient to construct a law w(x,, ..., x,,) = 0 which holds in G,, for m<n, but
not in G,. We define w inductively as follows:

W(xy, Xg) = X3 X3,
WXy oees X5) = X (X1 (X (X p—g - - (X (W(gs ooy X)) .00).

Now in G,, any right-normed product will reduce to 0 if one of the entries is O
or if two adjacent entries are equal. Since in any substitution of elements of G,
into w(xy, ..., x,) for m<n either some x; is 0 or x; = x; for some i#j, we have
that w(x,,...,x,) =0 is a law in G, for m<n. However, in G, the substitution
x; = g; gives w(xy, ...,x,) = g,7#0. Hence G,, is critical, as required. (Park (1976)
shows that this variety contains infinitely many subdirectly irreducible algebras,
these are precisely the H,/p of the above proof.)

4.2 COROLLARY. Var (M) does not satisfy Max.

Proor. If U, = var(G,) then Theorem 4.1 shows that
ulcuzc ee Cuncu”+1c con

is an infinite ascending chain of subvarieties of var (M).
It remains, of course, to prove that var (M) does satisfy Min: at present the
best we can do is leave that as a conjecture.
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