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This work is dedicated to the memory of my friend and colleague Jonathan M. Borwein. The genesis
for our paper was a suggestion by Jon that seemed so clear to him at the time but took me a while to

digest. His contribution to the structural framework was—as always—both concise and astute.

Abstract

In modelling joint probability distributions it is often desirable to incorporate standard marginal
distributions and match a set of key observed mixed moments. At the same time it may also be prudent
to avoid additional unwarranted assumptions. The problem is to find the least ordered distribution that
respects the prescribed constraints. In this paper we will construct a suitable joint probability distribution
by finding the checkerboard copula of maximum entropy that allows us to incorporate the appropriate
marginal distributions and match the nominated set of observed moments.
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1. Introduction

A copula is a continuous, increasing, grounded probability distribution on the unit
hypercube with uniform marginals. The mixed moments are the expected values of
products of natural powers of two or more of the marginal random variables. A
checkerboard copula is one with the probability density defined by a step function on
a uniform subdivision of the hypercube. Each such step function is uniquely defined
by a multiply stochastic hypermatrix. A checkerboard copula constructed in this way
can be used to model a joint probability distribution with known marginals and a finite
set of prescribed mixed moments. We will solve the following problem.

Problem 1.1. Find a checkerboard copula of maximum entropy subject to a given finite
set of prescribed mixed moments.
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We formulate the primal problem as the maximum of a concave function on a
convex polytope and show that, subject to reasonable constraint qualifications, there is
a unique solution in the core of the feasible region. To calculate numerical solutions
we shall use the theory of Fenchel duality to formulate an equivalent unconstrained
minimization problem which we then solve using a Newton iteration. The formulation
and solution of the primal and dual problems leans heavily on the established theory
of convex analysis. The relevant theory can be found, for instance, in the books by
Borwein and Lewis [5] and by Borwein and Vanderwerff [6].

2. Motivation

It is standard practice to model rainfall accumulation at a given location over
a fixed time period—daily, monthly or yearly—as a random variable defined by a
gamma distribution [8, 13, 15, 16]. If one wishes to model simultaneous rainfall
accumulations at several sites within the same general locality or at the same site
over consecutive time periods then it is necessary to construct a joint distribution with
marginal gamma distributions and to incorporate various measures of dependence for
accumulation of the separate individual totals. The checkerboard copula of maximum
entropy [4, 7, 12, 13] and the checkerboard normal copula [7, 13] have both been used
for this purpose.

3. Background

This paper is dedicated to the memory of my friend Jonathan Borwein. Jon was a
generous and good man with a direct and forthright manner, a sharp wit and a real sense
of community. He was a brilliant mathematician. His deep knowledge of fundamental
mathematics was complemented by an acute sense of history, an insatiable appetite for
real applications and a genuine love of numbers.

At the ANZIAM 2011 Conference in Queenstown, New Zealand, Julia Piantadosi
and I presented our work on rainfall modelling using checkerboard copulas of
maximum entropy to model joint distributions for seasonal rainfall with known
marginal monthly distributions and prescribed covariances. Julia made the point
during her talk that numerical solution of the corresponding constrained optimization
problem was difficult because the Jacobian matrix was badly conditioned. Jon
attended the talk but—in his own inimitable way—was enthusiastically engaged for
the entire time with a set of unrelated calculations on a small portable electronic
device. Nevertheless at the end of the talk he came over to us and said that our problem
could be transformed into a much more tractable unconstrained optimization problem
using the theory of Fenchel duality. This sage advice resulted in a much improved
solution and ultimately led to a number of joint papers [7, 12, 13]. Some time later—
in 2015, I think—Jon said to me that it might be a ‘good idea’ to extend our work
to include models where higher-order moments were prescribed because ‘maximum
entropy methods were generally well suited to problems with moment constraints’.
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I’m not sure why—perhaps I was just too busy with other things—but it was not
until late July 2016 that I emailed Jon to say I was ready to tackle this extended
problem and to ask whether he was still interested. His reply was typically short and
sweet: ‘Let’s do it. JMB in Cyberspace.’ A few days later I received the terrible news
that he had died. This is my humble attempt to implement his good idea.

4. Notation
Let m ∈ N + 1 and let X = (X1, . . . , Xm) ∈ Rm be a vector-valued random variable

with joint probability density g : Rm 7→ R. The corresponding marginal probability
densities are

gr(xr) =

∫
Rm−1

g(x) dπc
r x

for all xr ∈ R and each r = 1, . . . ,m, where we write x = (x1, . . . , xm) ∈ Rm and
where the projection πr : Rm 7→ R onto the xr-axis and the complementary projection
πc

r : Rm 7→ Rm−1 are defined respectively for each r = 1, 2, . . . ,m by πr x = xr and

πc
r x =


(x2, . . . , xm) if r = 1,
(x1, . . . , xr−1, xr+1, . . . , xm) if r ∈ {2, . . . ,m − 1},
(x1, . . . , xm−1) if r = m.

In simulation of random events it may be convenient to construct a joint probability
distribution where the corresponding marginal distributions are already known. The
method of copulas is one possible way. If the joint distribution is known and the
marginal distributions are continuous then the copula is uniquely defined. We refer
to the book by Nelsen [11] for the fundamental theory. In our discussion we assume
the joint distribution is not completely known and so the question of uniqueness is not
relevant. Nevertheless it is convenient to assume that the given marginal distributions
are continuous. We will write [0, 1] = [0, 1]m to denote the unit m-dimensional
hypercube. Let c : [0, 1] 7→ [0,∞) be a joint probability density with uniform marginal
densities. That is, the marginal densities cr : [0, 1] 7→ [0,∞), satisfy the conditions

cr(ur) = 1 ⇔

∫
[0,1]m−1

c(u) dπc
ru = 1

for all ur ∈ [0, 1] and each r = 1, . . . ,m. The distribution C : [0, 1] 7→ [0, 1] defined by

C(u) =

∫
[0,u]

c(v) dv

for all u ∈ [0, 1] is an m-dimensional copula. The copula C defines a joint distribution
for a vector-valued random variable U = (U1, . . . ,Um) on the unit hypercube [0,1]. Let
fs : R 7→ R be a given probability density with corresponding cumulative distribution
function Fs : R 7→ [0, 1] for each s = 1, . . . ,m. Write f = ( f1, . . . , fm) : Rm 7→ [0,∞)m

and F = (F1, . . . , Fm) : Rm 7→ [0, 1]. The joint density g : Rm 7→ [0,∞) defined for the
vector-valued random variable X = (X1, . . . , Xm) by the formula

g(x) = c(F(x))
m∏

s=1

fs(xs)
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for x ∈ Rm has prescribed marginal densities for the real-valued random variables Xr
given by

gr(xr) = fr(xr)
∫
Rm−1

c(F(x))
∏
s,r

fs(xs) dπc
r x

= fr(xr)
∫

[0,1]m−1
c(u) dπc

ru

= fr(xr)

for all xr ∈ R and each r = 1, . . . ,m. We have written

u = F(x) ⇐⇒ (u1, . . . , um) = (F1(x1), . . . , Fm(xm))

for each x = (x1, . . . , xr) ∈ Rm. The corresponding m-dimensional distribution G :
Rm 7→ [0, 1] is defined in terms of the copula C and the marginal distributions F by
the formula

G(x) = C(F(x))

for all x ∈ Rm. We will write

U = F(X) ⇐⇒ (U1, . . . ,Um) = (F1(X1), . . . , Fm(Xm))

for the transformed random variables.

5. An elementary form for the joint density

Let m, n ∈ N + 1. A real m-dimensional hypermatrix h = [hi] of size ` = nm is
a mapping h : {1, . . . , n}m → R` defined by h(i) = hi ∈ R for each i = (i1, . . . , im) ∈
{1, . . . , n}m. Suppose hi ≥ 0 for all i ∈ {1, . . . , n}m. We write h ≥ 0 and say that
h is nonnegative. For each r ∈ {1, . . . ,m} define the marginal sum functions σh,r :
{1, . . . , n} → R by the formulae

σh,r(ir) =
∑

πc
r i∈{1,...,n}m−1

hi

for each ir ∈ {1, . . . , n}. If σh,r(ir) = 1 for all r = 1, . . . ,m, then we say that h is multiply
stochastic. Define the partition 0 < 1/n < · · · < (n − 1)/n < 1 of the interval [0, 1] and
define a step function ch : [0, 1] 7→ R by the formula

ch(u) = nm−1 · hi if u ∈ Ii = [(i − 1)/n, i/n]

for each i ∈ {1, 2, . . . , n}m. Now it follows that∫
[0, 1]

ch(u) · du =
∑

i ∈ {1,...,n}m

∫
Ii

ch(u) · du

=
∑

i ∈ {1,...,n}m
nm−1hi ·

1
nm

= 1
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and also that

(ch)r(ur) =

∫
[0,1]m−1

ch(u) · dπc
ru

=
∑

πc
r i ∈ {1,...,n}m−1

nm−1hi ·
1

nm−1

= 1

for all ur ∈ [0,1] and all r = 1,2, . . . ,m. Therefore the step function ch : [0,1] 7→ [0,∞)
is a joint probability density function for a corresponding copula Ch : [0, 1] 7→ [0, 1]
defined by

Ch(u) =

∫
[0,u]

ch(v) dv

for all u ∈ [0, 1]. The proposed joint density gh : Rm 7→ [0,∞) for the random variable
X = (X1, . . . , Xm) is defined by

gh(x) = ch(F(x))
m∏

s=1

fs(xs)

for x ∈ Rm and the corresponding distribution function Gh : Rm 7→ [0, 1] is defined in
terms of the copula Ch and the prescribed marginal distributions F by the formula

Gh(x) = Ch(F(x))

for all x ∈ Rm. For each q = (q(1), . . . , q(m)) ∈ (N − 1)m the moment µq
h of order q for

U = F(X) is given by the expected value

(µh)q = E[Uq](ch)

= E
[ m∏

r=1

Uq(r)
r

]
(ch)

=

∫
[0, 1]

[ m∏
r=1

uq(r)
r

]
ch(u) du

=
∑

i∈{1,...,n}m
nm−1hi

m∏
r=1

[ ∫
[(ir−1)/n,ir/n]

uq(r)
r dur

]
=

∑
i∈{1,...,n}m

n−|q|−1hi

m∏
r=1

[ (ir)q(r)+1 − (ir − 1)q(r)+1

(q(r) + 1)

]
,

where we have written |q| = q(1) + · · · + q(n). If there is some s ∈ {1, . . . ,m}with q(s) =

q ∈ N and q(r) = 0 for all r , s, then this is a pure moment for the random variable
Us = Fs(Xs). Because the marginal distributions are uniform the pure moments are all
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fixed. Indeed an elementary calculation shows that

(µh)q
s = E[Uq

s ](ch)

=

∫
[0, 1]

uq
s ch(u) du

=

∫
[0,1]

uq
s

[ ∫
[0,1]m−1

ch(u) dπc
su

]
dus

=

∫
[0,1]

uq
s dus

=
1

(q + 1)

for all s = 1, . . . ,m. If there is some set s = (s(1), . . . , s(p)) ∈ {1, . . . , n}p with s(1) <
· · · < s(p) such that q(s(k)) ∈ N for each k ∈ {1, . . . , p} and q(r) = 0 for r , s(k), then

(µh)q
s = E[Uq

s ](ch) = E[Uq(s(1))
s(1) · · ·Uq(s(p))

s(p) ](ch)

is a mixed moment. The previous general formula now becomes

(µh)q
s =

∑
i∈{1,...,n}m

n−|q|−1hi

p∏
k=1

[ (is(k))q(s(k))+1 − (is(k) − 1)q(s(k))+1

(q(s(k)) + 1)

]
.

All moments are invariant under permutations of the coordinate indices.

6. Formulation of the primal problem

Let h ∈ R` be a multiply stochastic hypermatrix and let ch : [0, 1]m → R be the
associated elementary joint probability density defined previously. The entropy of h is
defined by

J(h) = (−1)
∫

[0, 1]
ch(u) loge ch(u) · du

= (−1)
1
n

∑
i ∈ {1,...,n}m

hi loge hi − (m − 1) loge n.

We wish to maximize the entropy subject to a finite set of prescribed mixed moment
constraints in the general form E[Uq

s ] = mq
s for all (s, q) ∈ S where S is some specified

set of indices and corresponding powers. Although there are some technical details
that must be discussed in a moment we can now formulate the problem we wish to
solve.

Problem 6.1 (The primal problem). Let m, n ∈ N + 1 and define ` = nm. Find
the hypermatrix h ∈ R` to maximize the entropy J(h) subject to the nonnegativity
constraints

hi ≥ 0 (6.1)
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for all i ∈ {1, . . . , n}m, the multiply stochastic constraints

σh,r(ir) = 1 (6.2)

for all ir ∈ {1, . . . , n} and each r = 1, . . . , m, and the additional mixed moment
constraints

(µh)q
s = m(s, q) (6.3)

for some prescribed values m(s, q) ∈ R where (s, q) ∈ S and S is a finite set of index–
power pairs.

In general terms the problem is well posed. There are a finite number of linear
constraints on h, and so the feasible set F of hypermatrices satisfying (6.1), (6.2) and
(6.3) is a bounded (closed) convex set in R`. The function J : F 7→ [0,∞) is strictly
concave. If the interior or core of F is nonempty then there must be a unique solution
for h with strictly positive coordinates. The reader is referred to [1, 5, 6, 14] for a
general discussion of the requisite convex analysis and nonlinear optimization.

7. Some remarks about the feasible set
If we omit the final constraint (6.3) then the set E ⊆ R` of all h satisfying (6.1) and

(6.2) is simply the set of all multiply stochastic hypermatrices of size ` = nm. If we
define δ = [δi] with δi = 1 when i = (i, . . . , i) for all i ∈ {1, . . . ,m} and δi = 0 otherwise,
then δ ∈ E. Thus the set E ⊆ R` is a nonempty convex polytope. Nevertheless, in
general, the set E is far from simple to describe. For instance, it is a decidedly
nontrivial task even to list the vertices.

Example 7.1. Consider the triply stochastic matrices h ∈ R3×3×3. We will write h =

[h1, h2, h3] where the matrices h j ∈ R
3×3 for j = 1, 2, 3 represent the top, middle and

bottom layers of the hypermatrix. The polytope of triply stochastic hypermatrices has
9 × 4 × 1 = 36 primary vertices defined by the hypermatrices, with only one nonzero
element in each of the nine planar sections. A typical representative is v = [v1, v2, v3]
where

v1 =

1 0 0
0 0 0
0 0 0

 , v2 =

0 0 0
0 0 1
0 0 0

 , v3 =

0 0 0
0 0 0
0 1 0

 .
To show that v is indeed a vertex suppose that v = αa + (1 − α)b for some α ∈ (0, 1)
and two triply stochastic hypermatrices a and b. From the (1, 1, 1) element we have
1 = αa111 + (1 − α)b111 for some α ∈ (0,1). Clearly the only solution is a111 = b111 = 1.
Similarly, we argue that a223 = b223 = 1 and a332 = b332 = 1. Since a, b are triply
stochastic all remaining elements must be zero. Thus a = b = v. Hence v is a vertex.

There are also less obvious vertices. Consider the hypermatrix defined by w =

[w1,w2,w3] where

w1 =


1
3 0 0

0 1
6

1
6

0 1
6

1
6

 , w2 =


0 1

6
1
6

1
6 0 1

6
1
6

1
6 0

 , w3 =


0 1

6
1
6

1
6

1
6 0

1
6 0 1

6

 .
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Suppose that w = αa + (1 − α)b for some α ∈ (0, 1) and two triply stochastic
hypermatrices a and b. If wi jk = 0 then αai jk + (1 − α)bi jk = 0. The only possible
solution is ai jk = bi jk = 0. Thus wi jk = 0⇒ ai jk = bi jk = 0. We have established that w =

αa + (1 − α)b for some α ∈ (0, 1) only if the support sets supp a = {(i, j, k) | ai jk > 0}
and supp b = {(i, j, k) | bi jk > 0} are subsets of supp w = {(i, j, k) | wi jk > 0}. A simple
extension of our argument will show that if w =

∑p
j=1 α ja( j) for any finite collection

of triply stochastic hypermatrices a(1), . . . , a(p) with α1 + · · · + αp = 1 and α j > 0 for
all j ∈ {1, . . . , p} then supp a( j) ⊆ supp w for all j ∈ {1, . . . , p}. Now consider the 36
vertices that we have already identified. If we define δ(i) ∈ R3×3×3 as the hypermatrix
with δ(i) j = 1 when j = i and δ(i) j = 0 when j , i then, in alphanumeric order, we have

v(1) = δ(1, 1, 1) + δ(2, 2, 2) + δ(3, 3, 3),
v(2) = δ(1, 1, 1) + δ(2, 2, 3) + δ(3, 3, 2),

...

v(36) = δ(1, 3, 3) + δ(2, 2, 2) + δ(3, 1, 1).

The only hypermatrices on this list with supp δ(i) ⊆ supp w are

v(18) = δ(1, 2, 2) + δ(2, 1, 3) + δ(3, 3, 1),
v(19) = δ(1, 2, 2) + δ(2, 3, 1) + δ(3, 1, 3),
v(22) = δ(1, 2, 3) + δ(2, 1, 2) + δ(3, 3, 1),
v(23) = δ(1, 2, 3) + δ(2, 3, 1) + δ(3, 1, 2),
v(30) = δ(1, 3, 2) + δ(2, 1, 3) + δ(3, 2, 1),
v(31) = δ(1, 3, 2) + δ(2, 2, 1) + δ(3, 1, 3),
v(34) = δ(1, 3, 3) + δ(2, 1, 2) + δ(3, 2, 1),
v(35) = δ(1, 3, 3) + δ(2, 2, 1) + δ(3, 1, 2).

It is an elementary exercise to see that for all eight hypermatrices on this list
we have v( j)222 = v( j)223 = v( j)232 = v( j)233 = v( j)322 = v( j)323 = v( j)332 = v( j)333 = 0.
However w223 > 0, w232 > 0, w322 > 0 and w333 > 0 so it is not possible to write
w =

∑8
k=1 αkv( jk) with

∑8
k=1 αk = 1 and αk > 0 for each k ∈ {1, . . . , 8} where j1 =

18, j2 = 19, j3 = 22, . . . , j8 = 35. Thus we conclude that either w is a vertex or else
there exists at least one other vertex not yet identified.

Because the vertices of E are not easy to identify, the feasible set F is also difficult
to describe. Despite this pessimistic outlook it is nevertheless true that the set F will
be nonempty if we impose realistic mixed moment constraints. What do we mean
by this statement? It was shown in [12] that for a checkerboard copula with ` = nm

subdivisions we have
1
6

+
1

12n2 ≤ (µh)(1,1)
(r,s) ≤

1
3
−

1
12n2

for 1 ≤ r < s ≤ m. If we allow all possible copulas—not just checkerboard copulas
with ` = nm subdivisions—then the above inequality is replaced by a slightly more
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relaxed inequality,
1
6 ≤ (µh)(1,1)

(r,s) ≤
1
3 ,

for 1 ≤ r < s ≤ m. Similar constraints apply to other mixed moments. A complete
theoretical understanding of the moment constraints demands a comprehensive
knowledge of the vertices of E and F . In practice this is not usually an issue since
the moments are calculated from observed data and hence are inherently feasible. The
moments are linear functions and so they take extreme values at the vertices of E.
We can estimate the extreme values for a particular moment and find corresponding
vertices by solving a linear programming problem. The complexity of E means that
these problems may not be easy to solve in practice.

Problem 7.1 (Extreme moment problem). Let m, n ∈ N + 1 and define ` = nm. Find a
multiply stochastic hypermatrix h ∈ R` to maximize (or minimize) the mixed moment
(µh)q

s for some given s = (s(1), . . . , s(p)) ∈ {1, . . . , n}p with s(1) < · · · < s(p) and
q ∈ (N − 1)m such that q(s(k)) ∈ N for each k ∈ {1, . . . , p}with q(r) = 0 for all r , s(k).

The mixed moments are linear functions on the closed convex set E and so the
setM = µ(E) of all possible mixed moments is the set of all convex combinations of
mixed moments at the vertices V(E). We have an elementary consequence.

Proposition 7.1. If µ =
∑

h∈V(E) αhµh ∈ M where
∑

h∈V(E) αh = 1 and αh ≥ 0 then
µ = µk where k =

∑
h∈V(E) αhh ∈ E.

Any convex combination of feasible points is also feasible. Suppose there exists
k ∈ F with k j > 0 for all j ∈ Kn

m = {1, 2, . . . ,m}n. Since the feasible set is nonempty
there must be a solution point h ∈ F for Problem 6.1. If h j > 0 for all j then h is the
desired unique solution. If not then define

h(α) = (1 − α)h + αk

for 0 ≤ α ≤ 1. The feasible set is convex and so h(α) ∈ F for all 0 ≤ α ≤ 1 and we
have

J(α) = (−1)
1
n

∑
i ∈ {1,...,n}m

[(1 − α)h j + αk j] loge[(1 − α)h j + αk j] + c

for some constant c ∈ R, from which it follows that

J ′(α) =
1
n

∑
i ∈ {1,...,n}m

[h j − k j]{loge[(1 − α)h j + αk j] − 1}.

If we let α ↓ 0 then those terms where h j > 0 approach a finite limit [h j − k j] loge h j.
All other terms have the form (−1)k j loge[αk j] and approach +∞ as α ↓ 0. Hence the
right-hand derivative J ′+(0) at α = 0 takes the value J ′+(0) = +∞. Hence J(0) < J(α)
for all sufficiently small α > 0. Thus h is not a solution. This is a contradiction. Hence
h j > 0 for all j ∈ Kn

m. We have therefore established another useful proposition.
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Proposition 7.2. If there exists k ∈ F with k j > 0 for all j ∈ Kn
m then Problem 6.1 has

a unique solution h with h j > 0 for all j ∈ Kn
m.

In theory it is perfectly reasonable to attempt a direct numerical solution of the
primal problem. However, as shown for the less general problem in [12], there are
significant numerical difficulties that may occur—even for small values of ` = nm. The
same issues arise here. We will not discuss these matters but rather move on to discuss
a much more tractable solution procedure. Readers are referred to [12] for an extended
discussion of the direct method in problems where the mixed moment constraints are
restricted to those defined by a prescribed covariance matrix.

8. Formulation and solution of the Fenchel dual problem

The explanations in this section parallel those given for the similar but less general
problem in [12]. However, for the convenience of readers who may not be familiar
with the line of argument and in deference to the beauty of the relevant convex
analysis [5, 6], we have chosen to present the more general argument in full. Define
g : R` 7→ [0,∞) ∪ {+∞} by setting

g(h) =

{
(−1)J(h) if h j ≥ 0 for all j ∈ {1, 2, . . . ,m}n,
+∞ otherwise,

where we have used the convention that h loge h = 0 when h = 0 and where we will
allow functions to take values in an extended set of real numbers. Unless otherwise
stated, we follow the notation and conventions in the book by Borwein and Lewis [5].
With appropriate definitions we can write the constraints (6.2) and (6.3) in the form
Ah = b where A ∈ Rk×` and b ∈ Rk and where k is the collective rank of the coefficient
matrix defining the two sets of linear constraints. In particular, we note that the
definition of g allows us to omit the restriction (6.1) from our statement of Problem
6.1. We can now write a mathematical statement for the primal problem in standard
form.

Problem 8.1 (Mathematical statement of the primal problem). Find

inf
h ∈R`
{g(h) | Ah = b}. (8.1)

If we assume that (8.1) has a unique solution h ∈ F with h j > 0 for all j ∈
{1, 2, . . . ,m}n then the Fenchel dual problem is an unconstrained maximization and
the solution to the primal problem can be recovered from the solution to the dual
problem. The necessary justification for this statement follows from [5, Corollary
3.3.11, page 53] and [5, Exercise 7, page 56]. We observe that the Fenchel conjugate
of the function g is the function g∗ : R` 7→ R ∪ {−∞} defined by

g∗(k) = sup
h ∈R`
{〈k, h〉 − g(h)}.
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We refer to Borwein and Lewis [5] for further details. For each fixed k ∈ R`, define

G(h) =
∑

i ∈ {1,...,n}m
kihi −

1
n

∑
i ∈ {1,...,n}m

(hi loge hi − hi) − (m − 1) loge n,

where we note that
∑

i∈{1,2,...,m}n hi = n. Elementary calculus shows that G(h) is
maximized when hi = exp[nki] and hence we find that

g∗(k) =
1
n

∑
i ∈ {1,...,n}m

exp[nki] − (m − 1) loge n.

Using [5, Corollary 3.3.11, page 53], we can now write a mathematical statement of
the dual problem in standard form.

Problem 8.2 (Mathematical statement of the dual problem). Find

sup
ϕ ∈Rk
{〈b,ϕ〉 − g∗(A∗ϕ)}.

Let

H(ϕ) =

k∑
j=1

b jϕ j −
1
n

∑̀
i=1

exp
[
n ·

k∑
j=1

a∗i jϕ j

]
+ (m − 1) loge n

for all ϕ ∈ Rk. We have used the notation A∗ = [a∗i j] ∈ R
`×k. We can use elementary

calculus once again to show that if the maximum of H(ϕ) occurs when ϕ = ϕ then

∑̀
i=1

a∗ir exp
[
n ·

k∑
j=1

a∗i jϕ j

]
= br (8.2)

for all r = 1, 2, . . . , k.

8.1. Recovering the primal solution. In general there is a closed form for the
primal solution h. Let k = A∗ϕ and suppose that k j > 0 for all j ∈ {1, 2, . . . ,m}n. Then
the unique solution to the primal problem (Problem 8.1) is given by

h = ∇g∗(A∗ϕ).

The underlying analysis is described in [5, Theorem 3.3.5, page 52] and [5, Exercise
17, page 82]. The necessary and sufficient conditions (8.2) produce an everywhere
defined smooth set of equations which can be solved by a variety of methods.

8.2. A solution scheme for the dual problem. We can use a pure Newton iteration
to solve the key equations (8.2) very well. The key equations are written in the form

q(ϕ) = 0
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where

qr(ϕ) =
∑̀
i=1

a∗ir exp
[
n ·

k∑
j=1

a∗i jϕ j

]
− br =

∑̀
i=1

a∗ir exp[n〈ai,ϕ〉] − br

for each r = 1, 2, . . . , k. In the above expression we have used the notation A =

[a1, . . . , a`] ∈ Rk×`. Hence we have

∂qr

∂ϕs
(ϕ) = n

∑̀
i=1

a∗ira
∗
is exp[n〈ai,ϕ〉] = n

∑̀
i=1

ari exp[n〈ai,ϕ〉]a∗is.

If we define the diagonal matrix D(ϕ) = diag
(
exp[n〈ai,ϕ〉]

)
∈ R`×` then the Jacobian

matrix can be written as

J(ϕ) =

[
∂qr

∂ϕs
(ϕ)

]
= n AD(ϕ)A∗ ∈ Rk×k.

Now the Newton iteration is given by

ϕ(p) = ϕ(p−1) − J−1[ϕ(p−1)] q[ϕ(p−1)]

for each p ∈ N where we use the Matlab inverse of the Jacobian matrix J ∈ Rk×k.

8.3. An elementary numerical example for the dual problem. We consider an
elementary example to illustrate the basic principles of the calculation. Readers are
referred to previous papers on rainfall modelling [4, 7, 12, 13] for more complex
examples where checkerboard copulas of maximum entropy have been used to model
joint rainfall distributions with known marginals and prescribed covariance matrices
at various Australian locations.

Example 8.1. Suppose m = 2 and n = 4 and that we are given the mixed moment
constraints

(µh)(1,1) = 0.262, (µh)(2,1) = 0.169, (µh)(1,2) = 0.164.

The objective function is

g∗(k) =
1
4

∑
(r,s)∈{1,...,4}

exp[4k(r,s)] − loge 4.

If we write h � [hi] ∈ R16, where the elements appear in alphanumeric order h1 �

h(1,1) ≺ h2 � h(1,2) ≺ · · · ≺ h15 � h(4,3) ≺ h16 � h(4,4), then we can write the relevant
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constraints in the form Ah = b where the constraint matrix A ∈ R10×16 is given by

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
1
L

3
L

5
L

7
L

3
L

9
L

15
L

21
L

5
L

15
L

25
L

35
L

7
L

21
L

35
L

49
L

1
M

3
M

5
M

7
M

21
M

35
M

49
M

19
M

57
M

95
M

133
M

37
M

111
M

21
M

185
M

259
M

1
M

7
M

19
M

37
M

3
M

21
M

37
M

111
M

5
M

35
M

95
M

185
M

7
M

49
M

133
M

259
M


and where L = 256 and M = 1536. We have omitted the final column sum constraint
because the sum of the column sums is equal to the sum of the row sums and so we
know that one of the row and column sum constraints is redundant. The constraint
vector b ∈ R10 is given by

b =


1

0.262
0.169
0.164

 ,
where we have written 1 = [1] ∈ R7. After 10 iterations starting with ϕ(0) = 0 we
obtained the approximate solution

ϕ =



−1.8157
−3.2843
−4.4209
−5.3320

1.2101
−1.2906
−1.5258

173.1362
−48.3632
−130.6556



and h =


0.8324 0.0009 0.0010 0.1658
0.1245 0.0237 0.0851 0.7667
0.0330 0.2580 0.6415 0.0674
0.0101 0.7174 0.2724 0.0001



with ‖Ah − b‖∞ < 10−14 and J(h) ≈ −0.6879.

In this problem the vertices of E are known from the Birkhoff theorem [3] as the
set V(E) = P ⊆ R4×4 of all 4! = 24 permutation matrices. If {ei}

4
i=1 ∈ R

4 are the usual
unit vectors then the vertices V(E) = P are the matrices hpqrs = [ep, eq, er, es]. It is
convenient to write these vertices as vectors in R16 and list them in alphanumeric order
as v(1) � h1234 ≺ v(2) � h1243 ≺ · · · ≺ v(23) � h4312 ≺ v(24) � h4321. If we write

Aµ =

 u8
u9
u10

 ∈ R3×16,
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where ui ∈ R
1×16 for each i = 1, . . . , 10 are the rows of A, then the mixed moments at

the vertices are given by µ( j) = Aµv( j) for each j = 1, . . . , 24. The relevant values are
displayed in Table 1. Now we can show that

h ≈
10∑

k=1

αkv( jk) =


0.8324 0.0009 0.0010 0.1658
0.1245 0.0237 0.0851 0.7667
0.0330 0.2580 0.6415 0.0674
0.0101 0.7174 0.2724 0.0001

 ,
where j1 = 1, j2 = 4, j3 = 5, j4 = 6, j5 = 10, j6 = 16, j7 = 19, j8 = 21, j9 = 23 and
j10 = 24 and

α =



0.0001
0.0656
0.1252
0.6414
0.0009
0.0010
0.1245
0.0227
0.0103
0.0083



≥ 0.

Note that
∑10

k=1 αk = 1.0000 and also that

µh =

10∑
k=1

αkµ( jk) =

0.2620
0.1690
0.1640


as required.

We describe briefly the elementary method used to determine the representation
h =

∑10
k=1 αkv( jk). It is convenient for the following reduction to write all vectors as

row vectors. We have h(0) = h given by

h(0) = [0.8324, 0.0009, 0.0010, 0.1658, 0.1245, 0.0237, 0.0851, 0.7667,
0.0330, 0.2580, 0.6415, 0.0674, 0.0101, 0.7174, 0.2724, 0.0001].

We see that min{h(1), h(8), h(11), h(14)} = 0.6415. These elements correspond to the
nonzero elements for the vertex v(6) = [e1, e4, e3, e2]. Thus we reduce h by subtracting
an appropriate multiple of v(6) to give

h(1) = h(0)
− 0.6415v(6)

= [0.1909, 0.0009, 0.0010, 0.1658, 0.1245, 0.0237, 0.0851, 0.1252,
0.0330, 0.2580, 0.0000, 0.0674, 0.0101, 0.0757, 0.2724, 0.0001].

The process is repeated a second time by subtracting an appropriate multiple of another
vertex. Indeed, we see that min{h(1), h(8), h(10), h(15)} = 0.1252. These elements
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Table 1. Table of mixed moments at the vertices for Example 8.1.

h (µh)(1,1) (µh)(2,1) (µh)(1,2)

v(1) = h1234 0.3281 0.2448 0.2448
v(2) = h1243 0.3125 0.2214 0.2214
v(3) = h1324 0.3125 0.2292 0.2292
v(4) = h1342 0.2812 0.1823 0.1901
v(5) = h1423 0.2812 0.1901 0.1823
v(6) = h1432 0.2656 0.1667 0.1667

v(7) = h2134 0.3125 0.2370 0.2370
v(8) = h2143 0.2969 0.2135 0.2135
v(9) = h2314 0.2812 0.2057 0.2135

v(10) = h2341 0.2344 0.1354 0.1667
v(11) = h2413 0.2500 0.1667 0.1667
v(12) = h2431 0.2188 0.1198 0.1432

v(13) = h3124 0.2812 0.2135 0.2057
v(14) = h3142 0.2500 0.1667 0.1667
v(15) = h3214 0.2656 0.1979 0.1979
v(16) = h3241 0.2188 0.1276 0.1510
v(17) = h3412 0.2031 0.1198 0.1198
v(18) = h3421 0.1875 0.0964 0.1120

v(19) = h4123 0.2344 0.1667 0.1354
v(20) = h4132 0.2188 0.1432 0.1138
v(21) = h4213 0.2188 0.1510 0.1276
v(22) = h4231 0.1875 0.1042 0.1042
v(23) = h4312 0.1875 0.1120 0.0964
v(24) = h4321 0.1719 0.0883 0.0883

correspond to the nonzero elements of the vertex v(5) = [e1, e4, e2, e3]. Thus we apply
a further reduction,

h(2) = h(1)
− 0.1252v(5)

= [0.0657, 0.0009, 0.0010, 0.1658, 0.1245, 0.0237, 0.0851, 0.0000,
0.0330, 0.1328, 0.0000, 0.0674, 0.0101, 0.0757, 0.1472, 0.0001].

The process continues until we reach h(9)
≈ 0. To check the reduction, we define

B = [v(4), v(5), v(6), v(10), v(16), v(19), v(21), v(23), v(24)] ∈ R16×9,

where the columns of B are simply the vertices used in the reduction. Then we solve
Bα = h to find α = B†h ∈ R9, where B† ∈ R9×16 denotes the Matlab Moore–Penrose
inverse [2]. Although the representation hcalc = Bα obtained by this method was very
close to the correct value, we noted that ‖hcalc − h‖∞ = 0.0001. In particular, we

https://doi.org/10.1017/S1446788718000228 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000228


[16] Checkerboard copulas of maximum entropy 317

obtained (hcalc)16 = 0 rather than the correct value h16 = 0.0001. We then realized that
the nine vertices v(4), . . . , v(24) used in the reduction all had v( jk)16 = 0. Consequently,
a linear combination of these vertices cannot possibly represent an interior point with
h16 = 0.0001. Thus we decided (arbitrarily) to add the vertex v(1) = h1234 to the list
and replace our original definition of B with the revised definition,

B = [v(1), v(4), v(5), v(6), v(10), v(16), v(19), v(21), v(23), v(24)] ∈ R16×10.

Now we solved the revised equation Bα = h to find α = B†h ∈ R10 where B† ∈ R10×16.
The revised answer hcalc = Bα agreed precisely with the answer obtained by the
Newton iteration.

9. Conclusions

This article extends previous work on checkerboard copulas of maximum entropy to
allow additional constraints that require matching of observed values for a finite set of
mixed moments. This extension may have useful application to topics such as rainfall
modelling. In strict mathematical terms the theoretical justification is a straightforward
extension of the methods used by Piantadosi et al. in [12]. More generally, the problem
is interesting because the set E of multiply stochastic hypermatrices with dimension
higher than 2 is a complex polytope for which no complete theoretical description is
known [9, 10]. One may speculate that imposition of a single mixed moment constraint
and judicious variation of that constraint may allow us to estimate the extreme values
and at the same time to find approximate locations for the vertices where those extreme
values occur.
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