
ON INTEGRAL FUNCTIONS HAVING PRESCRIBED 
ASYMPTOTIC GROWTH 

J. CLUNIE 

1. In this paper I shall prove the following theorem: 

THEOREM. Let <t>(r) be increasing and convex in log r with 

<t>(r) ^ O(logr) ( r - > œ ) . 

(This condition is imposed to exclude certain trivial cases.) Then there is an 
integral function f(z) such that 

(i) l o g M ( r , j Q ~ 0 ( r ) ( r - •«>) , 

(ii) nr%f)~4>(r) ( r - •«>) . 

This paper is intended to be read as a sequel to the previous one by Edrei 
and Fuchs and so I shall not enter into any discussion of the theorem. 

I should like to express my indebtedness to Professor Edrei for stimulating 
my interest in the subject of this paper. 

2. We assume that 

where ^(t) is continuous, strictly increasing, and unbounded with ^(1) = 0. 
This involves no loss of generality since to any function which is increasing 
and convex in log r and not O(log r) (r —» <») there corresponds a </>(r) of the 
above kind, to which it is asymptotic as r —> °°. 

First I shall construct a function for which (i) is true and later one for which 
both (i) and (ii) are true. Though they are similar, the first of these con­
structions is much simpler than the second. 

Let r\ < r2 < . . . be the unbounded sequence defined by \l/(rn) = n. We 
define 

œ 

F(z) = £ an z\ 
1 

where 

an = {n > 1). 
r\ r2. . . rn ^ 
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INTEGRAL FUNCTIONS 397 

Then F(z) is an integral function, and for rn < r < rn+ï it is clear that 

MO, F) = anr
n, 

where 

is the maximum term of F(z) for |s| = r. Since 

<£(r) ^ O(logr) (r->«>), 

it is not difficult to show that 

(1) log/xO, F) ~<j)(r) ( r - * œ ) . 

Now we define a sequence of integers Xi < X2 < . . . as follows: Take Xi = 1 
and assume that Xi, X2, . . . , Xw have been specified. If 

aXn+i rll+\ > 2aXn T'A", 

take Xw+i = \n + 1. Otherwise take Xw+1 to be the largest integer m for which 

am C < 2aXn rt 
Since the sequence \an rn

n} ,n = 1, . . . , oo, increases strictly to °° , the sequence 
{\n}, n = 1, . . . , oo , is well defined. 

Put 

It will be proved that f(z) satisfies Condition (i) of the theorem. 

LEMMA 1. 

log n = o(log aXn rj;) (» -> » ). 

Proof. From the construction of the Xw it follows that 

flXn+2 ^Xn+2 > 2aXn ^ ( » > 1 ) . 

Using these inequalities, it is easy to prove that for any <5 > 0, the series 
oo 

1 

converges. As the terms of this series decrease monotonically, we find, using 
a theorem of Abel, that 

n(aXnrtr8^0 ( » - > » ) . 

Since 8 > 0 is arbitrary, this is equivalent to the lemma. 
From (1) and the next lemma the result follows. 

LEMMA 2. 

log M(r,f) ~ log n(r, F) (r - » co). 
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Proof. Consider the interval rv < r < r„+i. If for some n we have v = \n, 
then 

a\nr*n = /x(r, F) (r, < r < r,+i). 

Now, clearly, 

aXmrx- < fi(r, F) (m > 1; r > 0), 

and so we obtain 

(2) ^ ^ < M ( r , / ) < / i ( r , F ) Ê ^ . 

From Lemma 1 we see that 

(3) log n = o{log /i(r, F)} (rv < r < r„+i, r -> » ) . 

Together, (2) and (3) give Lemma 2 as r —» oo through values under considera­
tion. 

Suppose now that there is no k such that \k = v, and let X„ be the largest 
Xk satisfying \k < v. Then, by construction, 

a„+i r„+i ^ za\n r\n. 

Hence it follows that 

(4) aXn rt < /i(r, F) < 2aXn r£ (r, < r < r , + i ) , 

and so 

(5) ^ P < M(r , / ) < M(r, F) £ ^ (r, < r < r,+ 1). 

From Lemma 1 and from (4) we again obtain (3). Consequently Lemma 2 
follows from (5) as r —-> °° through values under consideration. This com­
pletes the proof of Lemma 2. 

3. Now I shall give the more complicated construction that leads to a 
function which satisfies both (i) and (ii). 

First we define a sequence of integers vi < v2 < . . . in the following man­
ner: Take v\ = 1 and assume that vi, v2, . . . , vn have been specified. If 

log aVn+i rZ+i > e*'n log a»n r?n, 

take vn+i = vn + 1. Otherwise take vn+i to be the largest integer k such that 

log ak rl < eln log aPn r
v
v
n
n. 

Since the sequence {ak rk
k} ,k = 1, . . . , oo, increases strictly to oo , the sequence 

{vn}> n = 1, . . . , oo, is well defined. 

LEMMA 3. 

n = o(\ogaVnr
vZ) (w-> oo). 
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Proof. By construction, 

log aVn+2 rvZll > eln log aVn rln
n (n > 1). 

From these inequalities it is not difficult to show that 

tiloga^rlir1 

2 

converges. As the terms of this series decrease monotonically, we find, applying 
again the theorem of Abel previously used, that 

n(\og aVn rln
ny

l -> 0 (n - • co ). 

Hence the lemma is proved. 

We now construct a sub-sequence {kn},n = 1, . . . , oo y of {vn}, n = 1, . . . , oo f 

as follows. Let {KW}, n = 1, . . . , oo, be an auxiliary increasing, unbounded 
sequence with KI > 1 and Kn+i ~ Kn (n —>°o), such that 

n log Kn = o(\og aVn rv
v
n
n) (n-* oo ). 

It is not difficult to see that there is such a sequence {/cw}, n = 1, . . . , oo. 
Take ki = v\ and assume that ki, k2, . . . , kn have been defined. Let vm be 
the smallest vs satisfying vs > kni if 

n 

(6) 2 ^ au rVm < Kn+2 aVm rVmJ 
i=i 

take kn+i = *>m- Otherwise take kn+i to be the largest vs such that 

(7) X) 0*i ̂  > C i " 2 aVp r% (kn < vp < v8). 
i=i 

One can see that the sequence {kn}, n = 1, ...,*>, is well defined by noting 
that the maximum term of an integral function grows more quickly than 
any power of r. 

I shall now prove that 

co „ „kn 

satisfies (i) and (ii) of the theorem. 

LEMMA 4. 

n 

2 3 au rll
n+2 < K~+22 akn+2 rllH (n > 1). 

i=i 

Proof. Suppose at first that kn+i is defined by (6). The left-hand side of (6) 
is of degree kn and the right-hand side is of degree kn+i > kn and so, since 
fkn+2 ^ f/Cn + li 
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/Q\ \ ^ ki ^ — n— 2 kn+i 
{o) /-J akl rkn+2 ^ Kn+2 ttkn+l rkn+2> 

1=1 

By definition, 

(9) am rZ+2 < akn+2 r
l
k
n
n
+

+
2
2 (m > 1). 

From (8) and (9) the lemma follows in this case. 
Suppose now that kn+\ is defined by (7), and let kn+i = vm. Then 

E ki ^ —re—2 vm+l - r e - 2 
-lki rvm+\ ^ K? 

1=1 

The degree of the left-hand side of this inequality is less than that of the 
right. As kn+2 > Vm+u it follows that rkn+2 > rVm+1 and so 

aki rkn+2 ^ Kn+2 (lvm+i "kn+2-

1=1 

Hence, using (9), the lemma follows in this case also. 
LEMMA 5. For rkv < r < rkv+1 {v > 2), 

r/ \ Ukv-l Z i Llkv Z ilk +l Z \ ( / £\) f \ 

f(z) = -r=i— + — — + -v+i h o{fx(rJ)} ( r_>oo). 

Proof. Since 

we find that for r < rk,+1, 

(10) 

oo fcn oo „ &n 

^ = ^ 4 - 2 K-n 
< w,=^j'+2 Kre 

~Jtv + 1 fcj»+i 
û t , + i r #fc„+l rkv+l 

v+l v + l 
K*+l Kv+l 

< 
CO 

v+1 \"** —re 

Kv+1 2 ^ *» 
n=v+2 

„_|_1 _„_2 /-, - 1 v _ l 
< Kv+i Kv+2 U — Kv+2) 

< (KV+2- I)'1 = o(l) ( * - > « ) . 

From Lemma 4, we have 
v—2 

Z akl r\l
v < K7" afc, r

k
kv. 

Given e > 0, we choose m = m(e) such that KT1 < e (I > m). Next we choose 
J>O = ^o(e) such that when *> > VQ, 

Z) a*< ̂ 't < €*„v a*, r*;. 
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Hence, when v > vo, we obtain 

v-2 kl m v-2 

Z=l «I 1=1 m + 1 

<2eK7vakvrt. 

Therefore, for r > rkp, 

(11) Z ^ = o( l )K7 'a* , / ' ( * - « ) , 

since the degree of the sum on the left is less than kv and its terms are positive. 
From (10) and (11) the lemma follows. 

LEMMA 6. If 

CO 

1 

then 
log »(r, g) ~ log n(r, F) (r -> <»). 

Proof. Consider rn < r < rn+1. If for some m we have vm = n, then 

M(r, g) = M 0 , ^) (r» < r < rn+1), 

and so the lemma is true as r —» °o through such values. 
Suppose that there is no 5 such that vs = n, and let vm be the largest vs 

satisfying vs < n. By construction, 

(12) log an+1 rltl < e3Mlog aVm r £ 

We also have 

(13) log < log ii(r, g) (rn< r < rn+1). 

From (12) and (13) it follows that 

e~z/m log /*(r, F) < log /x(r, g) (r„ < r < rn+1), 

and since, clearly, 

log /z(r, g) < log /x(r, 70 (r > 0), 

the lemma follows as r —> oo through values under consideration. 

LEMMA 7. 

log /x(r,/) ~ log fi(rt F) (r -» » ) . 

Proof. Consider r^ < r < r^+1. Suppose that &s = pm and ks+i = vn. If 
n = m + 1, then 

log /*(r,jQ > log ii(r, g) - (s + 1) log /cs+i (rks < r < rA,+1), 
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since in the range of r either 

MO, g) = aks rk° or /*(r, g) = a*s+1 r*«+i. 

Also for r*. < r < r*,+1, 

( 5 + 1 ) log KS+I (s + 1) log *s+i _ „ m /0_^ v 
log/i(r,g) logafcarjfc. 

by Lemma 3 and the choice of the KTO, In any case, 

(14) logfx(r,f) < log/x(r,g), 

so that we obtain Lemma 7 as r —» 00 through values under consideration. 
Suppose now that n > m + 1. Then, by construction, 

s 

]T a* r% > K~1+1 aVp r\\ (p = m, m + 1, . . . , n), 
1=1 

and so, as a little consideration shows, 

É f l « ' * > S ¥ (r*.<r<ritl+l). 

Hence 

y> akl r
kl M ^ J ) , , 

Z = l * Z Ks+2 «s 

which gives, using Lemma 5, 

(2 + o(l))M(r, /) > * f e 4 (r*. < r < rks+l, s -> «> ). 
KS+2 KS 

Making use of Lemma 3 and the conditions on the Kn> we obtain 

log »(r,f) > (1 + o(l)) log /i(r, g) (rfc, < r < r*,+1, 5 —> 00). 

Together with (14), the lemma follows as r —> 00 through values under con­
sideration. 

This completes the proof of Lemma 7. 

From (1) and Lemmas 5, 6, and 7, it follows that/(2) satisfies Condition (i) 
of the theorem. 

LEMMA 8. If h(z) = X K zn is an integral function such that 

h{z) = bni zn* + bn2 z
n> + bnz z

n* + o{M(r, ft)} (r -> « ) , 

zoftere Wi < n2 < ^3 depend on r, then 

T(r, h) ~ log ju(r, A) (r—•«>). 

Proof. By Cauchy's inequalities for the terms of a Taylor series, it follows 
that for all large r each term of h(z) concealed in o{/x(f, ft)} is less than /z(r, h) 
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in modulus. In what follows we assume that we are dealing with r for which 
this is true, so that the central index of h(z) is nu n2, or w3. 

Let n(r, h) = \bnk\ r
n\ where * = 1, 2, or 3. If 

I M ^ < î M ( r , A ) (j^k'J = 1,2,3), 

then on \z\ = r, when r is sufficiently large, 

2/*(r,A) > |A(s)| >iM(r,A). 

Hence the result follows in this case. 
Suppose now that for j 9e k we have 

\bnj\r
ni>ïn(r9h). 

Then one of j and k is 1 or 3. Assume, in fact, that one of them is 1. The 
other case is similar. If 

4>(z) = bmz^ + bn2z^ + bnzz
n\ 

we get 

,2?r -i(r,h) 
?}- (riog\4>(rei9)\d0>log^4 

+ 2. 
1 f*^ 

(15) > log 

Jog I i 2^i fre
iB\n2~ni + - ^ (re

i6)n*-ni 

uni Uni 
de 

since the integral on the right is non-negative as can be seen by applying 
Jensen's theorem to 

1 I n2 Ji2—ni I um nz—ni 
1 + VZ +VZ 

uni uni 

with \z\ = r. Let rj (0 < rj < 1) be given, and let the set 

E = {0: |0(re") | <i7/*(r,A)} 

be of measure 27rô. Then 
* 2 T T 

2K JO 

Together with (15) this gives 

log/x(',A) - l o g 4 < ( 1 - ô)jlog/i(f,A) + l o g 3 } + 5{log/x(r ,A)-log(l / i7)} l 

and so 

J o g J 2 _ 
* log(lA) * 

5s- log |*(re")|d0 < (1 - 5) log 3/i(r, A) + 5 log w ( r , A). 
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Put h(z) = 0(s) +R(z) and let 

7] = max 2 max *4——•, exp[ — {log/i(r, A)}*] . 
L |z|=r M (/>",) J 

Outside the set £ we have 

\h(£)\ > \4>(z)\ - \R(z)\ > i\4>(z)\, 

and so, if F is the complement of £ in (0, 2ir), then 

(16) T(r,h)>~ {log \h(rete)\dd 

> ^ " f l o g | * ( r e " ) | d 0 - l o g 2 

> (1 - Ô ) l o g M r , A ) } - l o g 2 

= (l + o(l))logM(r,A) ( r - > « ) . 

On the other hand, |A(z)| < (3 + 0(l))/*(r, h) ( r - > » ) , so that 

(17) r ( r , A ) < (l + o(l))logM(r ,A) ( ' - * » ) • 

From (16) and (17), the lemma follows. 

From Lemmas 5, 6, 7, and 8 it follows that f(z) satisfies Condition (ii) of 
the theorem. 

Imperial College, London 
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