ON INTEGRAL FUNCTIONS HAVING PRESCRIBED
ASYMPTOTIC GROWTH

J. CLUNIE

1. In this paper I shall prove the following theorem:

THEOREM. Let ¢(r) be increasing and convex in log r with
o(r) # O(logr) (r = =),

(This condition is imposed to exclude certain trivial cases.) Then there is an
integral function f(z) such that

(i) log M(r,f) ~o(r)  (r—),
(i) T(r,f) ~ o)  (r—=).

This paper is intended to be read as a sequel to the previous one by Edrei
and Fuchs and so I shall not enter into any discussion of the theorem.

I should like to express my indebtedness to Professor Edrei for stimulating
my interest in the subject of this paper.

2. We assume that
o) = [ ¥4,
1 ¢

where ¥ (¢) is continuous, strictly increasing, and unbounded with ¢ (1) = 0.
This involves no loss of generality since to any function which is increasing
and convex in log r and not O(log ) (r — =) there corresponds a ¢(r) of the
above kind, to which it is asymptotic as 7 — .

First I shall construct a function for which (i) is true and later one for which
both (i) and (ii) are true. Though they are similar, the first of these con-
structions is much simpler than the second.

Let 71 <7, < ... be the unbounded sequence defined by ¢ (r,) = n. We

define
F(z) =2 a, 3",
1
where
1
= n>1
Yi¥e...7, ( > )
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Then F(2) is an integral function, and for 7, < 7 < 7,41 it is clear that

;.L(f, F) =a,r",
where

u(r, F) = max a; "

k>1
is the maximum term of F(z) for |z = r. Since
¢(r) # O(log ) (r— o),

it is not difficult to show that
1) log u(r, F) ~ ¢(r) (r—=).

Now we define a sequence of integers \; < X2 < ... as follows: Take \; = 1
and assume that Aj, Mg, ..., N\, have been specified. If

U1 AL > 200, 1T,
take M1 = N\, + 1. Otherwise take \,4+1 to be the largest integer m for which

m A\
Am Tm < 200, Trn

Since the sequence {a, 7,"},n = 1, ..., ®, increases strictly to », the sequence
N, m=1,...,,is well defined.
Put
© an z)\n
fl@) =227
1 n

It will be proved that f(z) satisfies Condition (i) of the theorem.
Lemma 1.
logn = o(logam,nn)  (n— ).

Proof. From the construction of the A, it follows that

An +2 s
apsz Tanis > 20, (0> 1),

Using these inequalities, it is easy to prove that for any & > 0, the series
> @™
converges. As the terms of this series decrease monotonically, we find, using
a theorem of Abel, that
n(an, ) —0 (n— »).

Since & > 0 is arbitrary, this is equivalent to the lemma.
From (1) and the next lemma the result follows.

LEMMA 2.
log M(r, f) ~ log u(r, F) (r— ).
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Proof. Consider the interval 7, < 7 < 7,41. If for some # we have » = ),
then
arr™ = u(r, F) (r, <7 < 1)
Now, clearly,
o L ul(r, F)  (m > 17 > 0),
and so we obtain
2)

From Lemma 1 we see that

0D MG ) < ulr DS

n 1

3) log n = ollog u(r, F)} (r, <7< 1y, 7 > @),

Together, (2) and (3) give Lemma 2 as r — « through values under considera-
tion.

Suppose now that there is no % such that \; = », and let A, be the largest
\: satisfying Ay < ». Then, by construction,

+
a1 il < 2an, M

Hence it follows that

4) an, n,, < up(r, F) < 2ay, r)\,, (r, <7 < 1),
and so

F o0
(5) “(; ) < M(r,f) < ulr, F) 21: —5 (r, <7< 1)

From Lemma 1 and from (4) we again obtain (3). Consequently Lemma 2
follows from (5) as r — = through values under consideration. This com-
pletes the proof of Lemma 2.

3. Now I shall give the more complicated construction that leads to a
function which satisfies both (i) and (ii).
First we define a sequence of integers »; < »s < ... in the following man-
ner: Take »; = 1 and assume that vy, »o, ..., », have been specified. If
10g @1 i1 > €'/ log @y, 777,

take v,41 = v, + 1. Otherwise take v,y to be the largest integer & such that

k 3
log a; 7k < €™ log a,, 72

Since the sequence {a; 7*}, 2 = 1, ..., », increases strictly to «, the sequence
fval, m = 1,..., o, is well defined.
LemwMma 3.
= o(log a.,, r.7) (n— o).
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Proof. By construction,

3
log @y, ., 722%2 > €™ log a,, 0 (m>1).

From these inequalities it is not difficult to show that

Z (log a”n 1,::)‘1
2

converges. As the terms of this series decrease monotonically, we find, applying
again the theorem of Abel previously used, that

nlog a,, 1) ' —0 (n— «).
Hence the lemma is proved.

We now construct a sub-sequence {k,}, 7 = 1,...,®,0f {5}, n =1,..., 0,
as follows. Let {«,}, » = 1,..., o, be an auxiliary increasing, unbounded
sequence with x; > 1 and k41 ~ «, (# — ), such that

nlog k, = o(log a,, 7.7) (n— =),
It is not difficult to see that there is such a sequence {«k,}, # =1,...,®.
Take k; = v; and assume that k,, ks, ..., k, have been defined. Let », be

the smallest v, satisfying vy > k,, if

(6) z akl rvm Kn+2 avm 7vmy

1=1

take k,.1 = v, Otherwise take k,.; to be the largest v, such that

n

@) 21 W 75, > Knge a1l (B < vp < 9y).
=

One can see that the sequence {k,}, n = 1,..., =, is well defined by noting
that the maximum term of an integral function grows more quickly than
any power of 7.

I shall now prove that

< g, 2
flz) =2 =
n=1 Ky

satisfies (i) and (ii) of the theorem.

LeMMA 4.

n
ki kn +2
Z Ary Thnso S Kn+2 akm—z Vin +2 (” > 1).
=1

Proof. Suppose at first that £,y is defined by (6). The left-hand side of (6)
is of degree k, and the right-hand side is of degree k,+1 > k, and so, since
Pinse > Vhnsts
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kL kn +1
®) Z Akt Tin o S Kn+2 Ak 41 Vhn 40
=1

By definition,
kn +2

) U Vin sy < Qn s Thnss (m > 1).

From (8) and (9) the lemma follows in this case.
Suppose now that k.41 is defined by (7), and let k.41 = »,. Then

ki Ym +1
Z Ay Ty S "n+2 avﬂ.n Vvm 41+
=1

The degree of the left-hand side of this inequality is less than that of the
right. As k,i2 > vmy1, it follows that 74,,, > 7,,,, and so

Ym +1

ki —n—2
Z:lakl rkn+2 < Kn4-2 a”m +1 rkn +2°
=
Hence, using (9), the lemma follows in this case also.

LEMMA 5. For ry, < v < 13y (v > 2),

Ky—1 ky kv +1
Qpy_y 8 a, 2 Qiy oy 2
f(z) = | + £ T + ofu(r, f)} (r— ).
Ky—1 Ky Kyt1
Proof. Since
Ary 7'17::+:> aknrlli:lﬂ (1’L>V+ ]),

we find that for » < 7.,

kn ) kn
Axn T Qien Tky 1
Kn Kn
n=v+2 n n=v+2 n
(10) <
ky +1 kv +1
Agy 1 T Ary 11 Ty 1
v+1 v+1
Kyy1 Ky+1
v4-1
< Kyy1 Z Kn
n=r+2
—p—2 —
< v+1 Kyi2 (]- v+2)

< (kpp2 — )71 = 0(1) (v— =).

From Lemma 4, we have

ki i ky
Z iy Ty < Ky Qg Tk
=1

Given € > 0, we choose m = m(e) such that ;7' < € (I > m). Next we choose
vo = vo(€) such that when v > v,

m

kit —v ky
Z Qg gy < €Ky Ay Tiye
=1
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Hence, when v > »,, we obtain

v—2 a 1”“ m v—2

ki "ky ki ki
E - ] < Z akl Tk, + GZ (TR
=1 K1 =1 m+1

- %
< 2k, ag, 73

Therefore, for r > 7y,

v—2a‘ Tk‘
(1) 3B = o) a P o @),
=1 14

since the degree of the sum on the left is less than %, and its terms are positive.
From (10) and (11) the lemma follows.

LemMmaA 6. If

g\z) = Zl al‘n ZP"Y

then
log u(r, g) ~ log u(r, F) (r — ).

Proof. Consider 7, < 7 < 7,41. If for some m we have »,, = n, then
“(7') g) = #(7’ F) (Tn <7< T'n+1),

and so the lemma is true as » — o through such values.
Suppose that there is no s such that »; = #n, and let », be the largest »,
satisfying »; < n. By construction,

(12) log a1 711 < €™log a,,, o7
We also have
(13) log @y, rum < log u(r, g) (1 < 7 < 1pa).
From (12) and (13) it follows that

e log u(r, F) <logu(r,g)  (ra <7 < ras),
and since, clearly,

log u(r, g) < log u(r, F) (r>0),
the lemma follows as » — o through values under consideration.
LeEMMA 7.
log u(r,f) ~log u(r, F)  (r—=).

Proof. Consider 7y, < 7 < 73,4,- Suppose that k; = v, and kg = v, If
n =m + 1, then

IOg M(T’,f) > IOg [.L(?', g) - (S + 1) IOg Ks+1 (rks <7< rka+1)7
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since in the range of r either
p(r,g) = ay ™ or u(r, g = ag.,
Also for 7z, < 7 < gy 401,
(s 4+ 1) log ki1 _ (s + 1) log ket
< =
ogung) < loganr M)
by Lemma 3 and the choice of the «,, In any case,

(14) log u(r, f) < log u(r, g),

so that we obtain Lemma 7 as » — » through values under consideration.
Suppose now that #» > m + 1. Then, by construction,

(S__) w)?

8
k ——2
Z:lak,r,,§,>x§+za,,,,r§§ p=mm+1,...,n),
1=

and so, as a little consideration shows,
s
ki .“(7 g)
Z ap v > =T (e <7< Ty i)
=1 Kst2
Hence

s ki

A, 7 w(r, g)
Z B > s(+§"g§ e <7 < Tiyr),
=1 K Kst2 Ks

which gives, using Lemma 5,
@+ o) > HBE (<7 <o ).
s+ N
Making use of Lemma 3 and the conditions on the «,, we obtain
log u(r,f) > (1 + 0(1)) log u(r, g) (rke <7 < Fpyyyy S — @),

Together with (14), the lemma follows as r — » through values under con-
sideration.
This completes the proof of Lemma 7.

From (1) and Lemmas 5, 6, and 7, it follows that f(2) satisfies Condition (i)
of the theorem.

LemMma 8. If h(z) = 3 b, 2" is an integral function such that
h(2) = by, 2" + by, 2" + by, 2" + of{u(r, )} (r > o),
where n, < ne < n3 depend on r, then
T(r, h) ~log u(r, h) (r > =).

Proof. By Cauchy's inequalities for the terms of a Taylor series, it follows
that for all large 7 each term of %(2) concealed in o{u(r, #)} is less than u(r, &)
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in modulus. In what follows we assume that we are dealing with 7 for which
this is true, so that the central index of k(2) is %y, %s, or #;.
Let u(r, h) = |by| 7", where £ = 1,2, or 3. If

[0a;] i < Gulr, k) (G#k;j=1273),
then on |z| = 7, when 7 is sufficiently large,
2u(r, h) > |h(2)| > Fu(r, h).

Hence the result follows in this case.
Suppose now that for j # k& we have

lbnjl i > tu(r, h).

Then one of j and k is 1 or 3. Assume, in fact, that one of them is 1. The
other case is similar. If

¢ (2) = buy 5" + bny 2°2 + by, 573,
we get

0—]~ log |p(re'®)|do > 1 g”(r 1)
T 0

+ ._1— walO |1 + % (76i0)n2—m + 1_7@ (1’6i0)n3—m
27T 0 g | bnl bnl

(15) > log “("Lh)

since the integral on the right is non-negative as can be seen by applying
Jensen’s theorem to

b
n‘l n‘Z n1 ng _nm3g—ni
nl ni

with |z| = r. Let n (0 < 7 < 1) be given, and let the set
E = 1{0:|¢(re’)| < nulr, h)}

be of measure 2wd. Then

2r
= | o loGe a8 < (1= 8) log 3u(r, B) + 8log mu(r, ).
0

Together with (15) this gives
log u(r, h) — log 4 < (1 — 6){log u(r, k) + log 3} + & {log u(r, k) — log(1/m)},
and so

log 12
“log(1/n)°
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Put k(z) = ¢(2) + R(z) and let

7 = max [2 r,rzllaji #Z(Qr(’z% , exp[—{log u(r, h)}%]] .

Outside the set £ we have

[(2)] > ()| — [R@)| > 36()],
and so, if F is the complement of E in (0, 27), then

(16) T 1) > 5 fF log | (re™®)|d8

1 10 §
> o J‘Flog [p(re)|do — log 2

> (1 — 8) log{nu(r, h)} — log 2

= {1+ o)) logulr, k) (r— =).
On the other hand, |k(2)| < B + o(1))u(r, k) (r — =), so that

an T(r,h) < (1 4+ 0(Q)) log u(r, k) (r = ).
From (16) and (17), the lemma follows.

From Lemmas 5, 6, 7, and 8 it follows that f(2) satisfies Condition (ii) of
the theorem.

Imperial College, London
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