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On the Uniqueness of Wave Operators
Associated with Non-Trace Class
Perturbations

Jingbo Xia

Abstract. Voiculescu has previously established the uniqueness of the wave operator for the problem

of C(0)-perturbation of commuting tuples of self-adjoint operators in the case where the norm ideal

C has the property limn→∞ n−1/2‖Pn‖C = 0, where {Pn} is any sequence of orthogonal projections

with rank(Pn) = n. We prove that the same uniqueness result holds true so long as C is not the trace

class. (It is well known that there is no such uniqueness in the case of trace-class perturbation.)

1 Introduction

In this note, all Hilbert spaces are assumed to be separable and all operators bounded.

As the title indicates, this note concerns wave operators arising from the problem

of perturbation by operators in norm ideals. But before discussing the details, it is

necessary to recall the relevant definitions and known facts.

A norm ideal of compact operators is a linear space C of compact operators on a

Hilbert space H which has the following properties:

(a) There is a norm ‖ · ‖C on C with respect which C is a Banach space.

(b) If T ∈ C and A, B ∈ B(H), then ATB ∈ C and ‖ATB‖C ≤ ‖A‖ ‖T‖C‖B‖.

(c) If T ∈ C, then T∗ ∈ C and ‖T‖C = ‖T∗‖C.

(d) ‖T‖ ≤ ‖T‖C for every T ∈ C, and the equality holds whenever rank(T) = 1.

(e) C 6= {0}.

Each norm ideal is intrinsically given by the associated symmetric gauge function.

One can therefore speak of norm ideal of compact operators without reference to the

underlying Hilbert space. We cite [4] as a standard reference for norm ideals.

Given a norm ideal C of compact operators, let C(0) denote the ‖ · ‖C-closure of

the collection of finite-rank operators in C. With the norm ‖ · ‖C, C(0) is itself a norm

ideal. In general C and C
(0) need not coincide. If C is not the trace class, then the dual

C
′ of C

(0) is also a norm ideal of compact operators [4, Theorem III.12.2]. In fact, for

any bounded linear functional F on C(0), there is an X = XF ∈ C ′ such that

F(T) = tr(TX), T ∈ C
(0).

Recall that an operator D is said to be diagonal if it is unitarily equivalent to an

operator diag{a j}
∞
j=1 on `2

+ defined by the formula

diag{a j}
∞
j=1{c1, . . . , c j , . . . } = {a1c1, . . . , a jc j , . . . }.

Received by the editors June 7, 2002.
Research supported in part by National Science Foundation grant DMS-0100249.
AMS subject classification: 47A40, 47B10.
c©Canadian Mathematical Society 2004.

144

https://doi.org/10.4153/CMB-2004-015-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2004-015-4


Wave Operators 145

If A = (A1, . . . , AN) is a commuting tuple of self-adjoint operators and C is a norm

ideal of compact operators, we say that A is simultaneously diagonalizable modulo C if

there is a commuting tuple (D1, . . . , DN ) of self-adjoint diagonal operators such that

A j − D j ∈ C, j = 1, . . . , N .

Voiculescu showed in [10] that, given a commuting tuple A = (A1, . . . , AN ) of

self-adjoint operators on a Hilbert space H and a norm ideal C of compact operators

on H, there is a spatial decomposition

(1) H = Hd(A; C) ⊕ Hnd(A; C)

with the following properties:

(i) Both Hd(A; C) and Hnd(A; C) are invariant under A.

(ii) A|Hd(A; C) is simultaneously diagonalizable modulo C(0).

(iii) Hnd(A; C) contains no nonzero invariant subspace for A on which A can be

simultaneously diagonalized modulo C(0).

The orthogonal projection from H onto Hnd(A; C) will be denoted by Pnd(A; C).

Given a commuting tuple A = (A1, . . . , AN ) of self-adjoint operators on a Hilbert

space H, it is elementary that we have the decomposition H = Hp(A) ⊕ Hc(A) such

that both Hp(A) and Hc(A) are invariant under A, A|Hp(A) is a tuple of diagonal

operators, and Ec({x}) = 0 for every singleton set {x} in RN , where Ec is the spectral

resolution of A|Hc(A). Let Pc(A) : H → Hc(A) be the orthogonal projections. It is

obvious that Pc(A) ≥ Pnd(A; C) for any norm ideal C of compact operators.

Definition 1 Let C be a norm ideal of compact operators and A = (A1, . . . , AN ) be

a commuting tuple of self-adjoint operators. A sequence {ϕn} of functions on RN is

said to be C-admissible for A if the following hold true:

(i) For every n, |ϕn| = 1 on RN and ϕn is continuous on RN .

(ii) w-limn→∞ ϕn(A)Pnd(A; C) = 0.

Given commuting N-tuples A and A ′ of self-adjoint operators and a norm ideal

C, there exists a sequence which is C-admissible for both A and A ′. Indeed, because

Pc(A ⊕ A ′) ≥ Pnd(A; C) ⊕ Pnd(A ′; C), an even stronger statement, [12, Proposi-

tion 2.6], holds true.

The connection between (1) and wave operators was first established by Voiculescu

in [10]. Among the many results in [10], we in particular recall

Theorem 2 [10, Theorem 1.5] Let C be a norm ideal of compact operators such that

(2) lim
n→∞

n−1/2‖ξ1 ⊗ ξ1 + · · · + ξn ⊗ ξn‖C = 0,

where {ξ1, . . . , ξn, . . . } is any orthonormal set. Let A = (A1, . . . , AN ) and A ′
=

(A ′
1, . . . , A ′

N) be tuples of self-adjoint operators on a Hilbert space H such that

[Ai , A j] = 0 = [A ′
i , A ′

j] for all i, j ∈ {1, . . . , N} and such that

A j − A ′
j ∈ C

(0), j = 1, . . . , N.

Then there exists a partial isometry W such that

W = s- lim
n→∞

ϕ∗
n(A ′)ϕn(A)Pnd(A; C)

for any sequence {ϕn} which is C-admissible for A.
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The most striking feature of this result is the uniqueness of W . In other words, un-

der condition (2), the wave operator W is independent of the choice of the sequence

{ϕn}, so long as it is C-admissible for A. The reason we say this is striking is that, in

the original setting of wave operators, i.e., in the case of trace-class perturbation of

a single self-adjoint operator, not only is such uniqueness statement decidedly false,

but the non-uniqueness of wave operators is a fundamental fact of nature. Since this

uniqueness is the main interest of the present note, a little more elaboration is called

for.

Let C1 denote the trace class. For a single self-adjoint operator T on a Hilbert

space H, the decomposition H = Hd(T; C1) ⊕ Hnd(T; C1) given by (1) coincides

with the more familiar decomposition H = Hs(T) ⊕ Hac(T). Indeed, it follows from

a theorem of Carey and Pincus [1] that Hs(T) ⊂ Hd(T; C1), whereas the inclusion

Hac(T) ⊂ Hnd(T; C1) is a consequence of the Kato-Rosenblum theorem [5,7]. There-

fore Hs(T) = Hd(T; C1) and Hac(T) = Hnd(T; C1), i.e., Pac(T) = Pnd(T; C1). Let

e+
n (x) = einx and e−n (x) = e−inx, n ∈ N. According to Definition 1, both sequences

{e+
n} and {e−n } are C1-admissible for any self-adjoint operator T. It is a well-known

fact that there exist self-adjoint operators T and T ′ such that T − T ′ is of trace class

and such that the wave operators

W+(T ′, T) = s- lim
n→∞

{e+
n (T ′)}∗e+

n (T)Pac(T),

W−(T ′, T) = s- lim
n→∞

{e−n (T ′)}∗e−n (T)Pac(T)

do not coincide — see the Appendix. In other words, if we set f2n = e+
n and f2n−1 =

e−n for n = 1, 2, . . . , then the sequence { f ∗n (T ′) fn(T)Pnd(T; C1)} can fail to converge

in the strong operator topology, even though the sequence { fn} is still C1-admissible

for T.

The non-uniqueness of the wave operators for the perturbation problem T → T ′

has actual physical significance, for the operator S = W ∗
−(T ′, T)W+(T ′, T) contains

scattering information [8]. Also, the fact that W+(T ′, T) and W−(T ′, T) may differ

reflects a dichotomy [13] of the spectral flow of the canonical commutation relation.

To summarize, the wave operator for any C(0)-perturbation problem is unique if

C satisfies (2), and, for good reason, there is no such uniqueness when C is the trace

class. This naturally and obviously leads to the following question: what happens if

C is neither the trace class nor does it satisfy (2)? The purpose of this note is to report

that the uniqueness of W in Theorem 2 in fact holds whenever C is not the trace class.

Theorem 3 Let C be a norm ideal of compact operators which is not the trace class.

Let A = (A1, . . . , AN ) and A ′
= (A ′

1, . . . , A ′
N) be tuples of self-adjoint operators on a

Hilbert space H such that [Ai , A j] = 0 = [A ′
i , A ′

j] for all i, j ∈ {1, . . . , N} and such

that

A j − A ′
j ∈ C

(0), j = 1, . . . , N.

Then there exists a partial isometry W such that

W = s- lim
n→∞

ϕ∗
n(A ′)ϕn(A)Pnd(A; C)

for any sequence {ϕn} which is C-admissible for A.
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Our proof will be given in the next section. As it turns out, to replace (2) by the

more general condition that C 6= C1, we only need one new technical step (Lemma 4

below) in addition to Voiculescu’s ideas.

2 Proof of Theorem 3

Let A, A ′, C, {ϕn}, etc., be the same as in Theorem 3. To simplify notation, we write

Wn = ϕ∗
n(A ′)ϕn(A) and P = Pnd(A; C).

Lemma 4 Let {k(n)} be a sequence of integers such that k(n) > n for every n ∈ N.

Let Tn = W ∗
k(n)Wn − 1 and Yn = PT∗

n TnP, n ∈ N. Then [Yn, A j] ∈ C
(0) for all

n ∈ N and j = 1, . . . , N. Furthermore, there is a sequence {Zn} in the convex hull of

{Y1,Y2, . . . ,Y`, . . . } such that

(3) lim
n→∞

‖[Zn, A j]‖C = 0, j = 1, . . . , N.

Proof Let Sn = PTnP, n ∈ N. Then [Sn, A j] = P[Tn, A j]P. We first prove that

(4) [Sn, A j] ∈ C
(0), n ∈ N and 1 ≤ j ≤ N,

and that, for every j ∈ {1, . . . , N},

(5) lim
n→∞

tr([Sn, A j]X) = 0 if X ∈ C
′.

Let K j = A j − A ′
j , 1 ≤ j ≤ N . Because K j ∈ C

(0), (4) follows from the identity

(6) [Sn, A j] = P{W ∗
k(n)ϕ

∗
n(A ′)K jϕn(A) − ϕ∗

k(n)(A)K jϕk(n)(A ′)Wn}P.

Given an ε > 0, write K j = F + G in (6), where rank(F) < ∞ and ‖G‖C ≤ ε. Then

tr([Sn, A j]X)

=
(

tr(PW ∗
k(n)ϕ

∗
n(A ′)Fϕn(A)PX) − tr(XPϕ∗

k(n)(A)Fϕk(n)(A ′)WnP)
)

+
{

tr
(

PW ∗
k(n)ϕ

∗
n(A ′)Gϕn(A)PX

)

− tr
(

Pϕ∗
k(n)(A)Gϕk(n)(A ′)WnPX

)}

=
(

f1(n) − f2(n)
)

+ {g1(n) − g2(n)}.

We have the obvious estimates |g1(n)| + |g2(n)| ≤ 2‖G‖C‖X‖C ′ ≤ 2ε‖X‖C ′ and

| f1(n)| ≤ rank(F)‖PW ∗
k(n)ϕ

∗
n(A ′)Fϕn(A)PX‖ ≤ rank(F)‖Fϕn(A)PX‖,

| f2(n)| ≤ rank(F)‖XPϕ∗
k(n)(A)Fϕk(n)(A ′)WnP‖ ≤ rank(F)‖F∗ϕk(n)(A)PX∗‖.

We now use the condition that C is not the trace class. It simply means that C ′ consists

of compact operators [4, Theorem III.12.2]. In particular, X is compact. Since F
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is also compact, the weak convergence w-limn→∞ ϕn(A)P = 0 (see Definition 1)

implies

lim
n→∞

‖Fϕn(A)PX‖ = 0 = lim
n→∞

‖F∗ϕk(n)(A)PX∗‖.

Therefore limn→∞

(

| f1(n)| + | f2(n)|
)

= 0. This proves (5).

Now T∗
n Tn + T∗

n + Tn = (Tn + 1)∗(Tn + 1) − 1 = 0 because Tn + 1 = W ∗
k(n)Wn is

a unitary operator. Recall that Yn = PT∗
n TnP. Thus [Yn, A j] = [Sn, A j]

∗ − [Sn, A j],

and, by (4) and (5), we have [Yn, A j] ∈ C(0) and

lim
n→∞

tr([Yn, A j]X) = 0 for all X ∈ C
′ and j = 1, . . . , N.

Since C ′ is the dual of C(0), this means that 0 ⊕ · · · ⊕ 0 cannot be separated from

Ω = the convex hull of {[Y`, A1] ⊕ · · · ⊕ [Y`, AN] : ` ∈ N}

by any bounded functional on C(0). By the Hahn-Banach separation theorem,

0 ⊕ · · · ⊕ 0 lies in the ‖ · ‖C-closure of Ω. By the identity [B, A1] ⊕ · · · ⊕ [B, AN ] =

[B ⊕ · · · ⊕ B, A1 ⊕ · · · ⊕ AN ], there is a sequence {Zn} in the convex hull of

{Y1,Y2, . . . ,Y`, . . . } for which (3) holds.

Except for the use of Lemma 4, our proof of Theorem 3 follows the general strategy

of [10, Section 1]. In particular it requires the following two well-known lemmas.

Lemma 5 [10, Theorem 1.2] Let A = (A1, . . . , AN) be a commuting tuple of self-

adjoint operators and let C be a norm ideal of compact operators. If {Bn} is a sequence

of finite-rank positive contractions such that limn→∞ ‖[Bn, A j]‖C = 0, j = 1, . . . , N,

then

s- lim
n→∞

BnPnd(A; C) = 0.

Lemma 6 For each η ∈ C∞
c (R), there is a constant 0 < C(η) < ∞ such that the

following holds true: Let C be a norm ideal of compact operators and let X,Y ∈ B(H)

be such that [X,Y ] ∈ C. If X is self-adjoint, then [η(X),Y ] ∈ C and ‖[η(X),Y ]‖C ≤
C(η)‖[X,Y ]‖C.

Lemma 6 goes back to the 1970s, and there are numerous references for it. See,

e.g., [11, Lemma 1.4]. It can also be found in [2].

Proof of Theorem 3 We only need to prove the strong convergence of the sequence

{WnP}, where, as we recall, Wn = ϕ∗
n(A ′)ϕn(A) and P = Pnd(A; C). Since {ϕn} is an

arbitrary C-admissible sequence for A, the fact that the limit operator W is indepen-

dent of the choice of {ϕn} follows from this convergence and the following observa-

tion borrowed from Voiculescu [10, page 91]: If one mixes two such sequences, then

one obtains a new sequence of the same kind.

To prove the strong convergence of {WnP}, we suppose the contrary. Then there

would be a unit vector ξ ∈ PH and a 0 < d ≤ 1 such that supn≤k<k ′ ‖Wkξ−Wk ′ξ‖ ≥
3d for all n ∈ N. Thus, for each n ∈ N, there would be a k(n) > n such that

(7) ‖Wnξ −Wk(n)ξ‖ ≥ d.
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We will complete the proof by showing that this leads to a contradiction.

Let Tn = W ∗
k(n)Wn − 1 and Yn = PT∗

n TnP, n ∈ N. By Lemma 4, there is a

sequence {Zn} in the convex hull of {Y1,Y2, . . . ,Y`, . . . } such that (3) holds. Now

pick a function η ∈ C∞
c (R) such that 0 ≤ η ≤ 1 on R, η = 0 on R \ [d2/4, 5], and

η = 1 on [d2/3, 4]. Define Bn = η(Zn), n ∈ N. It follows from Lemma 6 and (3) that

(8) lim
n→∞

‖[Bn, A j]‖C ≤ C(η) lim
n→∞

‖[Zn, A j]‖C = 0, j = 1, . . . , N.

Note that (7) implies 〈T∗
n Tnξ, ξ〉 ≥ d2, n ∈ N. By definition, 〈Ynξ, ξ〉 =

〈PT∗
n TnPξ, ξ〉 = 〈T∗

n Tnξ, ξ〉. Because {Zn} is in the convex hull of {Yn}, this gives us

(9) 〈Znξ, ξ〉 ≥ d2, n ∈ N.

Since ‖T`‖ ≤ 2, we have 0 ≤ Zn ≤ 4. The conditions η = 1 on [d2/3, 4] and

η ≥ 0 on R ensure that Bn ≥ (1/4){Zn − (d2/2)χ[0,d2/2](Zn)}. Thus, by (9) and the

condition ‖ξ‖ = 1,

(10) 〈Bnξ, ξ〉 ≥ (1/4){d2 − (d2/2)} = d2/8, n ∈ N.

Since A j − A ′
j ∈ C

(0), j = 1, . . . , N , and ϕk is continuous on RN , every Wk − 1 is

a compact operator. Consequently, {(Wk(n) − 1)∗ + 1}{(Wn − 1) + 1} − 1 = Tn is

compact. Thus each Zn is also compact. Since η = 0 in a neighborhood of 0, the rank

of each positive contraction Bn = η(Zn) is finite. Because ξ ∈ PH = Pnd(A; C)H, (8)

and (10) together contradict Lemma 5. This completes the proof.

Appendix

The fact that the two wave operators

W+(T ′, T) = s- lim
t→+∞

e−itT ′

eitTPac(T),

W−(T ′, T) = s- lim
t→−∞

e−itT ′

eitTPac(T)

can differ for self-adjoint operators T, T ′ satisfying the condition T −T ′ ∈ C1 is well

known. But since the main point of this note is the uniqueness of wave operators for

non-trace-class perturbation problems, it is only appropriate to include a contrasting

example in the case of trace-class perturbation. We will therefore present a pair of

self-adjoint operators T, T ′ such that T − T ′ belongs to the trace class and such that

W+(T ′, T) 6= W−(T ′, T). We reiterate that the material presented below contains

nothing new and is only meant to save the non-expert reader an unnecessary trip to

the library.

Let D denote the differential operator (1/i)d/dx on its usual domain in L2(R). Let

V ∈ C∞
c (R) be a function such that 0 ≤ V ≤ 1 on R, V = 0 on R \ [−1, 2], and

V = 1 on [0, 1]. Define η(x) =
∫ x

−∞
V (y) dy, x ∈ R. Let D ′

= D+V and let U be the

unitary operator of multiplication by eiη on L2(R). Then U ∗DU = D ′. Obviously,
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Pac(D) = 1. Furthermore, e−itD ′

eitD
= U∗e−itDU eitD and (eitD f )(x) = f (x + t),

f ∈ L2(R). Thus the two wave operators W±(D ′, D) = s-limt→±∞e−itD ′

eitD are

easily computed: We have

W+(D, D ′) = U∗ and W−(D, D ′) = eiθU∗, where θ =

∫ ∞

−∞

V (y) dy ∈ [1, 3].

It is well known (see, e.g., [8, Theorem XI.20]) that χ[−1,2](D + i)−1 belongs to the

Hilbert-Schmidt class. (This also follows from the fact that χ[−1,2](D2+1)−1χ[−1,2] ∈
C1, which is easy to establish because the kernel function of (D2 + 1)−1 can be com-

puted using Fourier transform.) Therefore

(A.1) (D + i)−1 − (D ′ + i)−1
= (D ′ + i)−1V (D + i)−1 ∈ C1.

Define the function ϕ(t) = (t2 + 1)−1 on R. Let T = ϕ(D) and T ′
= ϕ(D ′). Then

T and T ′ are bounded self-adjoint operators. It follows from (A.1) that

T − T ′
= (D + i)−1(D − i)−1 − (D ′ + i)−1(D ′ − i)−1 ∈ C1.

It is easy to see that T = ϕ(D) is purely absolutely continuous on L2(R), i.e.,

Pac(T) = 1. We have ϕ ′ > 0 on (−∞, 0) and ϕ ′ < 0 on (0,∞). For this reason we

write E+ = E(−∞, 0) and E− = E(0,∞), where E(·) is the spectral resolution for D.

(A.1) guarantees that the invariance principle for wave operators applies to the pair

of operators D, D ′ and the function ϕ. More precisely, by [8, Theorem XI.11], we

have

W+(T ′, T) = W+

(

ϕ(D ′), ϕ(D)
)

= W+(D ′, D)E+ + W−(D ′, D)E−,

W−(T ′, T) = W−

(

ϕ(D ′), ϕ(D)
)

= W−(D ′, D)E+ + W+(D ′, D)E−.

Thus W+(T ′, T)E+ = U∗E+ and W−(T ′, T)E+ = eiθU∗E+. Obviously, E+ 6= 0. Since

eiθ 6= 1, we have W+(T ′, T) 6= W−(T ′, T) as promised.
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