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1. Introduction
Some years ago Lambe and Ward (1) and Erdelyi (2) obtained integral

equations for Heun polynomials and Heun functions. The integral equations
discussed by these authors were of the form

\ (1.1)
c

Further, as is well known, the Heun equation includes, among its special cases,
Lame's equation and Mathieu's equation and so (1.1) may be considered a
generalisation of the integral equations satisfied by Lame polynomials and
Mathieu functions. However, integral equations of the type (1.1) are not the
only ones satisfied by Lame polynomials; Arscott (3) discussed a class of non-
linear integral equations associated with these functions. This paper then is
concerned with discussing the existence of non-linear integral equations satisfied
by solutions of Heun's equation.

In §2 Heun's equation is given and Heun functions and Heun polynomials
defined. §3 is devoted to deriving the integral equation, while in §4 the partial
differential equation satisfied by the nucleus is solved. The method of solution
is that of separation of the variables and gives rise to solutions in terms of
products of hypergeometric functions. It is then demonstrated how suitable
nuclei may be chosen in order to construct integral equations satisfied by Heun
functions and Heun polynomials. Lame's equation is considered as a special
case.

2. Definitions
It is well known that, since any Fuchsian equation of the second order

with four regular singularities preserves this character under any homographic
transformation of the independent variable, three of the singularities can be
brought to z = 0, 1 and infinity.

The fourth then becomes some finite point z = a where, without loss of
generality, we can specify \a\ > 1. Such Fuchsian equations may always be
reduced to the standard equation

7? + I" + A + — Yf + r ' W 0 ' (2J)

dz2 [z z - 1 z — a) dz z(z-l)(z-a)
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where
l+a+fi-y-5-e = 0, (2.2)

and q is an arbitrary accessory parameter.
Equation (2.1) is called Heun's equation.
We adopt the following notation:

(i) The solution of the Heun equation which is analytic at the origin and
normalised so that it takes the value unity there, will be denoted by

Hu{a,q; oc,p,y,8; z) (2.3)

If no ambiguity is likely to arise, we may also adopt the more concise symbol,
Hu(q; z). (2.4)

The usual definition of a Heun function is given as that solution convergent
in a region of the z-plane which includes at least two singularities of the Heun
equation. In this paper, we shall be mainly concerned with Heun functions
convergent in a region containing the singularities z = 0, 1, the analysis being
readily adapted to deal with the other types of Heun function. Thus we define
a Heun function as follows.

(ii) If, in addition to the properties given in (i), Hu(q; z) is also regular at
z = l , i.e., when q is one of a set of characteristic values, Sleeman (4), then
Hu(q; z) becomes a Heun function and is represented by

Hu{qm; z), m = 1, 2, 3, .... (2.5)

(iii) If either a, p or both are negative integers (—n, say) and q takes charac-
teristic values and the properties in (i) apply, then we obtain n+1 Heun poly-
nomials, i.e. one for each value of q. Such functions are represented by

Hu{qmtn;z). (2.6)

3. The integral equation
Theorem. Let (i) w(z) be a solution of Heun's equation,

(ii) H(z, s, t) be a solution of the partial differential equation

(t-z)Ms(H) + (.zs)M,(H)+(s-t)Mz(H) = 0, (3.1)

where Mz is a differential operator defined by

+ [y(z - l)(z - a)+<5z(z - a)+zz{z -1) ] — + apzH,
dz

and w(z), H(z, s, t) are analytic in appropriate complex regions,
(iii) Cu C2 be suitable paths in the complex s, t-planes such that both the

quantities

r r t { 2 J ? ^ l l (3.2a)
JJ C l
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(3.26)
L I dt dt JJC 2

vanish,

(iv) the function

W(z)

= f f (s-O(sOv-1{(l-sXl-O}*-1{(l-s
Jc, Jc2

(3.3)
exist, and if the integral is singular, let it converge uniformly with respect to z
when z, s, t lie in appropriate regions.

Then W{z) is a solution of Heun's equation.

Proof. Consider the integral

= f U-
Jc, Jc2

Then

c, Jc2

(s-OMz(tf)dsrff
f f , - i «-i «-i

{(z-t)Ms(H)+(s-z)M,(H)}dsdt, (3.4)
using (3.1).

Consider the integral

I I (z - tXsty-1 {(1 -s)(l - Of " ' {(1 - s/a)(l - tla)Y~x w(s)w(OMs(H)dsdf,
Jc, Jc2
which on using the fact that

s ( 1 _ s y ( 1 _ s / a r M j | s ( 1 _ s ) ( 1 _ s / a ) |
ds I ds

becomes
a I I f-1(l-O*"1(l-'/«)£"1KsMO(z-O-{sv(l-s)*(l-s/a)c—Lsdf.

JcJc2 3s (. 5s j
(3.5)

Integrating (3.5) with respect to s by parts gives

I 3s 5s J C l

I s1>-1(l-s)a-1(l-s/a)e-1tfMs(w(s))ds.
Jc,
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If Cj is chosen so that the integrated part vanishes, then (3.5) becomes

1 {(1 -s/a)(l - t/fl)}«- »(z - t)Hw(t)Ms(w(s))dsdt.

(3.6)
JCiJC

Similarly, if C2 is such that

\t'il-tXl-tlaYU)f-H°f\]
L (. s* a/ J J C

vanishes, then (3.4) can be rewritten as

MZ{W)= [ [ {siy-*{(l-s)(\-t)y-l{(\-sla)(\-tla)Y-lH

x {(z - i)w(0Ms(w(s))+(s - z)w(s)M,(w(t))}dsdt.

If we write Heun's equation as

{Mz-apq}y = 0,
then on substituting for W{z) we have

x [(z - 0w(0{Ms(w(s)) - a^w(s)}

+ (s-z)w(s){Mt(w(0)-ai?qw(0}]dsdf = 0,

since w(s), w(t) are solutions of Heun's equation. Consequently, W(z) is a
solution of Heun's equation.

4. The solution of the partial differential equation satisfied by the nucleus
We introduce new variables (M, V, W) denned by the relations

in which / is an arbitrary parameter.
In terms of these new variables, equation (3.1) becomes, after tedious but

straightforward algebra,

(4.2)
w

where

8u2 dv2 dw2

In the special case y = \ equation (4.2) reduces to Laplace's equation so
that it is easy to write down suitable nuclei.
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We now make the further transformation to the variables (r, 9, $) related
to (w, v, w) by

u = r cos 9, v = r sin 9 sin (j>, w = r sin 9 cos <]>. (4.3)

Under this transformation (4.2) becomes

82H 6y-ldH \\d2H+ + A
lSi +2(2V-1) cot 2$ ̂ 1 = 0. (4.4)
8t2 dj]

+ rhrallSi +2(V1) cot 2$ ^r2 s in2 9\_8<t>2 d<j>

Consequently, in the case y = \ we obtain suitable nuclei for (3.3) in terms
of spherical harmonics in (r, 9, <f>).

A separated solution of (4.4)

H = R(r)G{9)K{.<t>), (4.5)

is obtained if R, G and K satisfy the ordinary differential equations

. _ l ) r ^ - A R = O, (4.6)
dr2 dr

and

sin2 9 [ ^ + {(4y -1) cot 9 - (2y -1) tan 9} — + AGI - fiG = 0 (4.7)
| u9 dO J

+ 2(2y -1 ) cot 2<t> ^ + ̂ K = 0, (4.8)
dp

^§ + 2(2y 1) cot 2<t> ^
a<p dp

X, n being separation constants.
A fundamental pair of solutions of (4.6) are

where mum2 are the roots, assumed distinct, of the equation

m2 + 2(3y - l)m - A = 0. (4.9)

If we put ^ = cos2 9 then we find that (4.7) takes the form

If p satisfies the equation
/?2+(2y-l)^-^/4 = 0, (4.11)

then
WK) = (l-fT'G<«) (4.12)

satisfies the hypergeometric equation

^ -3yp-p2)W = 0. (4.13)
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Thus (4.7) has the solutions

0 1 oo

sin2" 6 P

where

0 0 a cos2 9

1-y l - 2 p - 2 y b

, (3y + 2p-l) + {(3y-l)2

a, o —

and p is a root of (4.11). Similarly, (4.8) has the solutions

0 1 oo

P

where

0 0 a' cos2

1-y 1+y V

, h, _ (2y-l)±{(2y-l)2+/*}*

The variables (r, 0, (j>) are given by

r2=l-
a

cos2 9 =
stz

c o s 2 <f> =
(s-a)(t-a){z-a)

(l-a)(stz-a)(s + t + z-l-a)

Thus typical solutions of the equation for the nucleus are

rm sin2" 9 P

0 1 oo

0 0 a cos20

1-y l - 2 p - 2 y b

1 oo

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

0

0 0 a' cos2

1-y 1+y b'

> (4.19)

The expression (4.19) gives a very wide range of nuclei suitable for integral
equations or relations for solutions of the Heun equation. The nuclei can be
chosen as combinations of the various branches of the P-functions involved and
may even be linear combinations summed over the separation constants k and
[i. We shall demonstrate the use of (4.19) in constructing suitable nuclei for
integral equations satisfied by Heun functions and Heun polynomials. We
shall take Ct to be a contour enclosing the points s = 0,1 and C2 as a similar con-
tour enclosing the points t = 0, 1. In the case of the Heun function regular at
the singularities z = 0, 1, we choose that nucleus which, when considered as a
function of z, is also regular at z = 0, 1. This can be achieved by taking that
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branch of the first P-function in (4.19) which, as a function of z, is regular at
the origin and belongs to the exponent 0 there and that branch of the second
P-function which, as a function of z is regular at z = 1 and belongs to the
exponent 0 there. Such a nucleus is of the form

rm sin 2>e 2F1(a, b; y; cos2 6) 2Fl(a', b'; y; sin2 <j>). ( 4 . 2 0 )

T h e c o n t o u r s Cu C2 m u s t b e c h o s e n so t h a t t h e s ingu la r i t i e s w h e r e c o s 2 0 = 1
o r oo a r e e x c l u d e d , i.e. w h e r e

a(s+t+z-l-a) = stz or 0. (421)

Then, with the nucleus (4.20), the " integrated parts " (3.2a, b) vanish if Cu C2

are each taken to be Pochhammer loop contours about the points 0 and 1.
The integral (3.3) thus represents a constant multiple (possibly zero) of the Heun
function. If, however, Re y > 0 or Re 8 > 0, and the separation constants
X and \i are chosen to make Re (y —a — b)>0 and Re (y—a' — b')>0, so that the
hypergeometric functions in (4.20) are regular at cos2 9 = sin2 <j) = 1, then the
contours of integration may be deformed into simple loop contours or straight
lines.

In the case of Heun polynomials, the nucleus, when considered as a function
of z, must be finite for finite values of z and also regular at the origin. Further,
if Hu(q, z) is a polynomial of degree n in z, then the nucleus must also be a
polynomial of degree n in z. If we again consider the nucleus (4.20), then at
least one of a, b and at least one of a', V must be negative integers.

If
X = 4(3y-l)«+4«2, n = 0, 1, 2, ..., (4.22)

then
a = (2y-l)+p + n and b = p-n. (4.23)

If
H = 4(2y-l)s+4s2, s = 0, 1, 2, ..., (4.24)

then
a' = (2y-l) + s, V = -s, (4.25)

and m = In or — 2(3y —1)—2« and/? = s ox — (2y— 1)—s. Hence

a = (3y-l)+s+n, b = s-n (4.26)
or

a = y-s+n, b = -(2y-l)-s-n. (4.27)
By taking

m = In, a = (3y— l) + s+n, b = s—n
and

a' = (2y-l)+s, V = -s,

then, if s—n and —s are negative integers, the nucleus, considered as a function
of z is finite for finite values of z and is regular at z = 0. It is therefore a suitable
nucleus for the Heun polynomial of degree n in z if s takes one of the values
s = 0, 1, ..., n. In fact, we could choose a nucleus which is the sum (over 5)
of nuclei of the form (4.20). Thus we see that, for one type of Heun polynomial
of degree n, there are (n+1) possible nuclei of the form (4.20). If Rey>0,
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Re<5>0 then the contours Cu C2 may be replaced by the straight line intervals
s = (0, 1) and t = (0, 1) respectively. Obviously, since the hypergeometric
functions in (4.20) are now polynomials, the further restrictions Re(y-a—b)>0
and Re(y—a'—b') > 0 do not apply. In the above analysis we have taken Ct, C2

to be contours surrounding the points s = (0, 1) and / = (0, 1) or with certain
restrictions on the parameters, straight lines joining them. If, in the case of
Heun functions, the restrictions Re y > O, Re d > 0, Re £ > 0 are applied, then
Cu C2 may be taken to be any pair of the straight lines joining the points (0, 1),
(0, a), (1, a) in the complex s, r-planes. "When Cu C2 are the same then only
two of the above restrictions are necessary. For Heun polynomials the same
arguments apply, except that here the restrictions may be removed if Cu C2

are Pochhammer loop contours surrounding any of the above pairs of points.
An important special case which may be considered is that in which the

parameters in Heun's equation take the special values a = — £«,/? = i(n + l)
(n being a non-negative integer) y = \ = 5 = e and a = k~2 where k is the
modulus of the Jacobian elliptic function snz. Heun's equation now takes the
algebraic form of Lame's equation,

HereM"2 = n(n + \)q.
If we put z = sn2w we obtain the Jacobian form of Lame's equation namely,

^ +{h-n(n + l)k2 sn2 u}y = 0. (4.29)
du

Further, if A is a root of a certain characteristic equation, then Lame poly-
nomials E"(u) are obtained, where m = 0, 1, 2, ..., N and N = Q«]. The
notation adopted here and in the subsequent discussion is due to Arscott (5).

With reference to the nucleus (4.20) we find, for

y = i , m = 2/j, p = s, a = s+n + i, b = s—n, a' = s, b' = —s.

and thus (4.20) becomes a constant multiple, dependent on n and s, of the
spherical harmonic

r2nPt(cos 6) cos 2s(p. (4.30)
If in (4.18) we put

z = sn2a, s = sn2j5, t = sn2?, a = k~2 (4.31)
we find that

r2 = Z2(fc2 sn2 a - k2 en2 j? - dn2 y), (4.32)

, „ k2 sn2 a sn2 B sn2 y ., . . .
0 = (fc

2sn^^n2Vd2
)'

 (4'33)

and
2 , dn2 a dn2 £ dn2 y . . . . .

cos (b = - (4 34)
fc'2[fc4sn2asn20sn2y-(/c2sn2a-fc2cn2j?-dn2y)]'
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Obviously we may take C1; C2 to be the straight lines joining s = (0, 1),
t = (0, a) and in the transformed plane these are taken to be the segments
(-2K, 2K) for /? and (K-2iK\ K+2iK') for y. From these results we see that
the nucleus (4.30) is suitable for integral equations satisfied by the Lame" poly-
nomial u££n(a). That is, we have the result

(*2K /*K+21K'

«£?„(«) = X\ r2nPl%cos 0) cos 2s«Ksn2 P - sn2 y)uEp?n{fi, y)dpdy,

for any s ^ n.
It is important to point out that, in the case of Lame's equation, the equation

satisfied by the nucleus is Laplace's equation and, consequently, it is a simple
matter to write down suitable nuclei without appealing to the form (4.19).

Integral equations of the type (4.35) have been discussed by Arscott (3) and
Sleeman (6). Finally we remark that, although the nuclei (4.19) may, as dis-
cussed above, be used to construct integral equations satisfied by Heun functions
and Heun polynomials, they may also be used to construct integral representa-
tions between the various solutions of Heun's equation. The number of possible
cases to be considered here is extremely large and will be treated in a subsequent
paper.

The author is indebted to Professor F. M. Arscott for his encouragement
during the progress of this work.
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