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SUMMARY

The development of a set of two-locus descent measures is reviewed. The
three digenic measures, inbreeding coefficient and parental and recom-
binant descent coefficients, are considered in detail. The derivations of •
these three in pedigrees, fixed mating systems, and random mating in
monoecious or dioecious populations are given. General expressions for
digenic frequencies and disequilibria functions at any time are found by
applying the three digenic descent measures to two types of initial popula-
tions. The final or equilibrium status of the population is also given. As the
inbreeding coefficient is the same as the recombinant descent coefficient in
the case of complete linkage, avoidance or promotion of early inbreeding
has similar effects on the two coefficients. Estimable components of linkage
disequilibrium and other measures of association within and among
populations are elaborated.

1. INTRODUCTION

There is currently a great deal of interest in, and need for, two-locus theory in
population genetics since modern techniques for collecting data allow frequencies of
alleles at several loci to be found simultaneously. This data, when analysed on the
basis of an adequate theory, will provide a picture of the interactions between loci
and should indicate to what extent such interactions are the result of linkage or the
constraints of finite population size and/or the system of mating.

We have been concerned with developing a set of parameters on which a theory
allowing the analysis of two-locus data could be based. I t is the purpose of the
present paper to clarify our approach (Cockerham & Weir, 1968, 1973; Weir &
Cockerham, 1969a, b, 1973, 1974). To aid this review, we concentrate on digenic
measures in finite populations and show, for example, how they affect linkage
disequilibrium.

2. ONE-LOCUS PARAMETERS

The study of one-locus systems is well served by the inbreeding coefficient, F.
This one-locus measure gives the probability of identity by descent of genes within
an individual, while an analogous quantity, the coancestry coefficient 6, is for genes
chosen at random from two individuals.
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122 C. C. COCKERHAM ASTD B. S.

In the first place, the inbreeding coefficient summarizes information about the
mating system. Different systems can be compared on the basis of the appropriate
inbreeding coefficients. When F is known, a knowledge of population gene fre-
quencies, ipi for allele ait allows the expression of population genotypic frequencies as

P% = Pl+Pi(l-Pt)F, Pa4={l-F)PiPi (»*i)- (1)
(Note that PJJ* = P%i so that 2P%. is the total heterozygote frequency.) It is well
known that there is difficulty with such expressions for populations that are initially
heterozygous, and we return to this later.

Because F, and 6, find use in frequency expressions, they also find use in analyses
of variation (Cockerham, 1969, 1973). Expectations of various quadratic forms may
be phrased in terms of these measures or their analogues, and so clarify estimable
parameters and testable hypotheses. In these situations, the parameters do need to
change from being measures of identity by descent to being correlations.

Among the analogues of F and 6 mentioned above are those which deal with
population structure. Wright (1951) introduced FIT, FIS and FST and there are
others. Cockerham (1967) also utilized similar measures that apply to groups of
individuals.

The inbreeding coefficient or its analogues are often estimated from data sets,
generally by appropriate use of the results in (1). Knowledge of the sampling
distribution of F under any particular set of assumptions may then lead to tests of
hypotheses about such assumptions.

Not the least of the advantages of the ubiquitous inbreeding coefficient is the
ease with which it may be calculated. For pedigrees, Wright (1922) showed that the
inbreeding coefficient for an individual / whose parents had a common ancestor A,
with nx and n2 generations between parents and common ancestor, is given by

This expression is summed over all pathways from the parents to the common
ancestor, and then summed over all common ancestors, pathways always stopping
when they meet at a common ancestor.

Evaluation of F in regular systems of inbreeding was aided by the introduction
of the concept of identity by descent and associated probability treatments
(Male"cot, 1948). Recurrence formulas can be established and are well known.

We have found it helpful to look at F in a slightly different way. If allelic genes
a, a'- are on gametes uniting to form individual /, we say that Fz is the probability
that a, a' descended from one gene in an initial population. Alternatively, a and a'
are both descended from a gene on one initial gamete. This viewpoint does not
change the value of F but is helpful in relating present frequencies of gene combina-
tions to those in an initial population. Furthermore, we write the one-locus in-
breeding and coancestry coefficients as F± and 6lt respectively, and use the
equivalence sign = to refer to genes descending from one initial gamete. Such
genes are said to be equivalent by descent. If individual / receives genes a, a', then

a'), (3)
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while if genes a, a' are random genes from individuals B, C, respectively, then

dlBC = VTob(a = a% (4)

and F1{ = dlBC if / is an offspring of B and C.

3. TWO-LOCUS PARAMETERS

Our first attempt at a two-locus parameterization was to consider identity by
descent at two loci (Cockerham & Weir, 1968; Weir & Cockerham, 1969a, 6). If
gametes uniting to form individual / carry genes a, b, and a', b', respectively at
two loci, then the two-locus inbreeding coefficient is

FUl = prob (a = a! and b = b').

The pair of genes a, a' may or may not have descended from a gene on the same
initial gamete as the gene from which b, b' are both descended. This two-locus coeffi-
cient has been defined several times in the literature (e.g. Haldane, 1949) and we
were able to establish an algorithm which enabled Fn to be calculated for any non-
assortative system of mating. The algorithm required the introduction of trigametic
and quadrigametic measures in addition to the digametic Fn. We discussed an
identity disequilibrium function

Vn = Fn-Fl

but found really very little application for Fn. The difficulty was that this coefficient
did not allow the expression of joint genotypic frequencies at two loci with linkage
disequilibrium.

We then went quite a bit further (Cockerham & Weir, 1973; Weir & Cockerham,
1973, 1974) and defined a class of measures which gave the probabilities of equiva-
lence by descent for all (6) possible pairs, all (4) possible triples, all (3) possible two
distinct pairs, and the (1) quadruple of the two uniting gene pairs ab and a'b'. For
each of these 14 combinations of genes, the corresponding descent measure gives
the probability that all these genes descend from genes on one initial gamete.
Since we seldom need to distinguish between the descent status of two loci, sym-
metry allows us to reduce the number of measures to eight: three digenic, one tri-
genic, three for two distinct pairs and one quadrigenic. Once again we were able to
establish an algorithm for the calculation of these measures in all non-assortative
systems of mating and showed how, with a knowledge of the constitution of the
initial population, the measures led to two-locus genotypic frequencies. A conse-
quence of this was the ability to determine various disequilibrium functions, and
we derived expressions for the means, variances and covariances of sample linkage
disequilibria.

Our notation has apparently led to some difficulty in understanding the pro-
cedures. We were anxious that the need for 14 digametic measures, and similar
numbers of trigametic and quadrigametic ones, would not lead to a plethora of
symbols and so retained F for the digametic case within individuals and 6 for the
digametic case between individuals. Six suffixes are used, one for each possible pair
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of four genes, and combinations of these six accommodated triples and quadruples
of genes. In line with existing notation (e.g. Shikata, 1965), we used F1 and .Fn for one-
and two-locus inbreeding coefficients, i.e. for the non-gametic but allelic pairs a, a'
and b, b' within individuals. The probability of equivalence by descent for either
or both of the gametic but non-allelic pairs a, b and a', V is written as F1 or F11,
respectively. For either or both of the non-gametic and non-allelic pairs, a, 6' or a', b,
we use ±F or ^F, respectively.

4. DIGENIC DESCENT MEASURES

There are three types of gene pairs for the uniting gametes ab and a'b' and the
three digenic descent measures are

inbreeding coefficient: Fx — £[prob (a = a') +prob (b = b')],

recombinant coefficient: ±F = ^[prob (a = b') + prob (a' = &)],

parental coefficient: F1 = J[prob (a = b) + prob (a' = b')].

The quantities averaged in each of the three cases are often equal but it is the
average with which we are concerned. Both F1 and tF are digametic measures since
they refer to two genes, one on each of two uniting gametes, and this similarity is
emphasized by the similarity of notation. If the two loci are completely linked,
so that the pairs ab and a'b' are always transmitted between generations as single
units, there can be no difference between the inbreeding and recombinant coeffi-
cients and Fx = XF. We regard F± as a special case of ±F then. The third measure, F1,
is composed of monogametic ingredients but it is the digametic average that is
useful. In the special case of completely linked loci, we must have F1 = 1. If the
two gametes are from distinct individuals, B and G, we replace any descent measure
F with 6, the corresponding coancestry between B and C. As mentioned previously,
if I is an offspring of B and C, then Fz = dBC.

Between them the digenic measures contain a great deal of information about
the two-locus structure of a population, but before elaborating on this use of the
measures we establish a procedure for calculating them. By way of comparison to
classical theory, we start with a consideration of pedigrees.

5. PEDIGREES
For any individual / we trace the gametes received by / from its parents back

to a common ancestor A of these parents. In the calculation oixF, just as for Fv we
determine the contribution of A to xFj and see that a factor of \ is required for each
generation between the parents of/ and A. Having traced genes o, b' (or a', b) back
to two gametes from A, we recognize that with equal probabilities they are descended
from genes received on either one or two gametes by A and so are equivalent by
descent with probabilities FX

A or ±FA, respectively. We have argued, then, that if nx

and n2 generations separate the parents of/ from A,
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and this expression is to be summed over all paths from the parents of I to A, and
over all common ancestors A. The similarity to the classical result (2) for the in-
breeding coefficient is evident, and indeed (5) reduces to (2) for completely linked
loci, as it should.

As the evaluation of tF involves knowledge of F1 we now consider that measure.
Regardless of the mating scheme, any gamete received by individual / carries two
genes that are descended from two genes carried on either one or both of the

Bo

Fig. 1. A pedigree.

gametes received by a parent B oil. If the two loci are linked to an extent A, where
A is one minus twice the recombination fraction, then for the gamete received from

IB = *%+'• (6)

Since JP1 refers to the average of gene pairs ab, a'b' received by /,

where B, C are the two parents of / .
In pedigrees then, equations (5) and (6) are used in conjunction and expansions

made back to common ancestors for (5) and the initial individuals for (6). As an
illustration we consider the pedigree in Fig. 1, where the initial pair of individuals
A,H are non-inbred and unrelated. In Table 1 we show the three digenic measures
for all seven individuals. Descent status is given relative to the initial individuals
so that the initial gametes for which equivalence by descent is defined are those
gametes which united to form the initial individuals A, H.

9-2
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Table 1. Digenic descent measures for pedigree of Fig. 1.

Individual Ft tF F1

A 0 0 1
H 0 0 1

l + A
D 0 0

E 0 0

2
l + A

B
2 + A

8 16
4 + 3A + A2 16+16A + 2lA2+10A3 + A4

16 64

6. REGULAR SYSTEMS WITH SPECIFIED MATINGS

Regular inbreeding systems, when all matings are specified so that there is no
choice of mates, are also dealt with quite simply. We will consider only systems
where every individual leaves exactly two gametes to the next generation. Inbreed-
ing coefficients for populations of size N with two gametes per parent and under-
going various 'early' or ' late ' inbreeding mating patterns have been considered in
the past (Kimura & Crow, 1963; Cockerham, 1970).

In the various cousin, or maximum avoidance, systems least related individuals
are mated in any generation. A general recurrence formula in the case of N = 2V

was given for the inbreeding coefficient by Cockerham (1970) as

•^i =

where F1(() is the coefficient for each individual in the tth generation, and initially
there is no inbreeding: Flfo) = Fln) = ... = F1(v} = 0.

The last term, 1, in equation (7) was introduced by the first common ancestor,
v + 1 generations back. From our previous discussion then we see that

1 / *
1 (t-HJ+l) s) ^T i ^J 'ZiV \u=o

while equation (6) may be written as

and symmetry obviates the need for separate accounting of the two parents of an
individual. Equation (9) suggests that J^1 can be eliminated from (8) by taking

)- This provides the homogeneous equation
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Digenic descent measures for finite populations 127

which can be rearranged to show the following equivalence for all t,

1 " 1 "

Using the initial condition that the first v +1 values of XF are zero, the common
value of these two expressions is 1/2N and the lowest order recurrence formula for
F is seen to be i

We can show that F\t) will also satisfy a recurrence formula of exactly the same
form as equation (10) with initial values of F\t) = [|(1 + A)]f; t = O,l,...,v. In fact,
F1 and tF both satisfy one equation in any inbreeding system. If A is set equal to 1,
this is always the equation for F1 as well. The different initial values for the three
digenic measures ensure their different values in later generations, and the main
consequence of a common recurrence formula is a common rate of approach to equi-
librium values.

As an example of an early inbreeding system, we consider circular mating.
Individuals may be regarded as being arranged on the circumference of a circle
and each individual mated to both of its neighbours, each mating producing one
offspring. We restrict attention to the case of N = 2ra.

We need a series of recombinant coancestry coefficients ^(k)^ referring to the
equivalence of non-allelic genes on two gametes taken from individuals k apart
(k = 1,2,..., 2n— 1) in generation t. Since adjacent individuals mate

and the usual tracing of gametes back one generation gives

i0(l)te+D = i[i0(O)<t) + 21

while, since j0(O) refers to a common ancestor

+ 4 , »
We also see that

< f c < n - l ) , (13)
(14)

Equation (9) holds, and we have

15(i)«)=ie(2n-fc)a) (*=l ,2 , . . . ,n) . (15)

Now equations (11) to (15) may be amalgamated and some matrix manipulations
similar to those of Kimura & Crow (1963) used to provide a recurrence formula for
!-?«), and hence for F\t) and F1(t). The details are given in Appendix A, and here we
just present the first two cases, for N = 2 and N = 4:

N = 2 : l-f(t+2) = 2 1-̂ t+O + ^ 1-̂ tt + 1» A ) = A ) = °.

2V = 4 : x-F
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These results reduce to those given by Kimura & Crow (1963) for the inbreeding
coefficient when A = 1. Another early inbreeding system known as circular pair
mating (Kimura & Crow, 1963) may be treated similarly and details are given in
Appendix A.

7. FINITE POPULATIONS WITH RANDOM MATING

The next level of complexity in our discussion is for cases of finite populations of
constant size when matings are not specified. Various gametic sampling plans need
to be considered and there is the complication that all N members of a generation
do not now have the same pedigree. It is necessary to work with average measures,
denoted by bars; for example, F1(U is the average inbreeding coefficient for members
of generation t. Such averaging is additional to the expectations implied in all uses
of inbreeding or descent measures. These measures are probabilities of identity or
equivalence by descent and so they are the proportions of all possible replicates
of the population under study in which the corresponding genes have that descent
status. In a particular population, for example, two allelic genes are either identical
by descent or not, but for all possible replicates of that population we can talk about
the probability of them being identical by descent.

The first mating system we discuss in this section is for monoecious populations
with random mating including self-fertilization. Gametic output of parents is such
that there is a probability of 1/Ne that two gametes taken at random from a genera-
tion are from the same individual. In other words, 1/Ne is the probability of selfing
and the gametic variance effective number varies from Ne = N for equal chance of
each parent contributing each gamete to Ne = 2N— 1 for exactly two gametes per
parent.

The two non-allelic genes for which iFit+1) is defined are descended from one
member of generation t with probability l/Ne, and so are descended equally often
from genes on one or two gametes received by that individual. With probability
1 — 1/Ne the two genes are descended from genes on gametes taken from any two
distinct members of generation t. Such gametes have the same descent status as
gametes uniting to form a member of generation t. We have argued then that

1

We use (16) to provide the well-known result

and again equation (9) provides the transition for F1 (with all measures now written
as average measures). Explicit solutions to the three simultaneous transition
equations are
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A)], (19)

F\t) = [l+^l-AJ^-^yj/tl+^ll-A)], (20)

assuming the initial population to consist of non-inbred and unrelated individuals
{Flln = jjp(0) = 0, Fl0) = 1). These solutions may be seen more easily by obtaining
separate equations for each measure. Eliminating F1 from equations (9) and (16)
gives

n+A
or

1 \ = 1
2NJ At)+W;

which again reduces to (17) when A = 1. The parental coefficient also must satisfy
these last two equations.

The inbreeding coefficient is seen to increase monotonically from zero to one,
while the recombinant and parental coefficients approach a limiting value of

from below and above, respectively.
Since uniting gametes are chosen at random for this monoecious mating system,

Q(t) = JPJt) for each of the three digenic measures.
Our final mating system is for dioecious mating with Nm males and JV̂  females

every generation. Male and female gametes are united at random. Gametic produc-
tion is such that ljNem, llNef are the probabilities that two gametes taker) at random
from the group of males or the group of females, respectively, in any generation are
from the same member of that group. Then,

is the probability that any member of generation t + 2 receives two non-gametic
genes from one member of generation t. The effective number Ne varies from
4:NmNfl(Nm + Nf) with equal chance of any member of a group contributing any
gamete from that group to 2(N — 1) for each parent providing exactly two gametes
to offspring when Nm — Nf = N/2.

The two non-allelic genes for which x-PJt+g) is defined are now descended from one
member of generation t with probability i./Ne, and so are descended equally often
from genes on one or two gametes received by that individual. With probability
1 — 1/Ng the two genes are descended from genes on gametes taken from any two
distinct members of generation t. Such gametes have the same descent status as
gametes uniting to form a member of generation t + 1,

I F )

https://doi.org/10.1017/S0016672300017547 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300017547
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with the special, and usual, case of

_ 1 1 + F I l \ =

Equation (9), for average measures, remains appropriate. Notice that the three
average digenic measures apply to a random member of the whole of a generation,
whether that member is male or female.

Combining equations (9) and (22) provides

_ /3 + A 1\ = /1 + A 2 + A 1\ = A l =
- \—-NJ ^-[~2 2-Wj i ^ f l -g^»

which agaha reduces to (23) for complete linkage. The parental coefficient must
satisfy these same equations, and (24) provides the limiting values

For this dioecious scheme, the digenic coancestry coefficients are the same as the
coefficients for uniting gametes in the following generation, d^ = F(t+1).

The results obtained for monoecious and dioecious populations reduce to some
of those found previously (Cockerham & Weir, 1973). For N = Ne = 1, the results
in equations (18) to (20) are just those given previously for self mating while if
Nm = Nf — 1 and Ne = 2, equation (24) is the previous result for sib mating. In this
treatment of monoecious and dioecious systems, we have given a very simple deriva-
tion of results and avoided the introduction of gametic set measures (Weir &
Cockerham, 19696, 1974). While the three average digenic measures Fx, XF, F1 were
defined for gametes identified by the offspring generation, gametic set measures
also take into account the parent generation. This extra complexity is not necessary
in the present case, but it does allow the discussion of more restrictive gametic
sampling plans and is necessary for the trigenic and quadrigenic descent measures.

8. TWO GAMETES PER PARENT

We have made explicit mention a couple of times of inbreeding systems with two
gametes per parent. This situation is interesting because it offers a basis for com-
paring various early and late inbreeding schemes with various random mating
schemes. All such schemes have the same final value for parental and recombinant
coefficients. Certainly the same value

1F{x) = FU = l/[l + (2N-l)(l-\)] (25)

is seen to hold for the systems considered above: maximum avoidance, circular and
circular pan* mating and the types of monoecious and dioecious mating considered.
The result can be extended to all inbreeding systems with two gametes per parent
provided the population does not subdivide into reproductively isolated units. The
form of (25) shows that it is also necessary for the population eventually to become
completely inbred.
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To prove the result in general for the non-trivial case A + 1, we let X(t) be a function
defined for non-allelic genes carried on gametes uniting to form generation t. I t is
the average probability of equivalence by descent for all 4IV2 pairs of such genes.
Now 2N pairs are gametic and equivalent by descent with probability F\t). From
now on we will use bars on the digenic measures so that expressions will apply
whether or not all members of a generation have the same pedigree. A further
2N pairs are carried on pairs of gametes from single individuals and equivalent with
probability F(t), say. This number 2N made use of the assumption of two gametes per
parent. We write the probability of equivalence for the remaining iN(N — 1) pairs
on pairs of gametes from distinct individuals as Z(t), so that

Y 1 W. J. 1

(t) = 2 ^ ( t ) + 2 ^
Tracing the genes back one generation gives

2i\r G ^ * - " + * ^

= Wf ^t-1)+~2N ^-^+~lsT ^ - ^ + I N ^' t~1) ~ ^-^

where Wy.) refers to non-allelic genes on two gametes going to two individuals. The
first three terms in this last equation are now seen to be an alternative definition
for Xft-i), if genes are identified by the recipients rather than the donors of the
gametes on which they are located. In other words

-jj (̂ (t

so that XM = X(o) + ~ | (J%_i) - A - i

which, as (9) provides

leads to XM = X(o) +

Since Z(o) = — and X(oo, = Fj^ = ^ ^ then (25) follows.

If the transition equation for any particular digenic measure by itself is regarded
as a difference equation, then one minus the largest root of the corresponding
characteristic equation gives the final rate of approach to equilibrium for that
measure (Cockerham & Weir, 1968). These rates are given in Table 2 for five mating
schemes and three population sizes, and with A = 0-0((M)l-0. The values for A = 1
have been given previously by Kimura & Crow (1963). Any system in which the first

non-zero value of ±F is —j- needs care for A = 0. In these cases, this first non-zero

value is also the final value of XF so that final rates of approach to equilibrium apply
only to F1 and such cases are marked with an asterisk in Table 2.
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9. FREQUENCIES OF DIGENIC COMBINATIONS

With the details of evaluating the digenic descent measures established, we can
turn to the applications of these quantities. Data analysis is concerned with fre-
quencies rather than probability relations and, in general, we write the population
frequency of an individual formed by the union of gametes oi63-and afc6, as P$ . Note
that Pjj = Pfj. The subscripts on a and b now refer to particular allelic types. If dots
denote summation over all possible values of that suffix, then the following types
of digenic frequency are obtained

1*3 fc*t fc*t,Z*J

= gametic frequency for atbp

s P%

= recombinant frequency for a^-,

k.
pi.

3,1

= zygotic frequency for atak,

• I — ^ J hi
i,k

= zygotic frequency for bjbv

As our descent measures relate the present generation to the initial one, it is
natural to relate present frequencies to initial frequencies (always denoted by
script letters). Two types of initial populations are considered. The first type is
considered to be formed by the random union of a specific set of 2N gametes. This
specific set has ni}- gametes carrying alleles a^bj and is characterized by

These relations define 2^ and show that specific initial frequencies carry hats. The
initial ancestors are considered to be a randomization of the 2N gametes into pairs
so that initial genotypic frequencies are not specified, and frequencies in later
generations are averages over all possible pairings.

The second type of initial population is when the initial set of gametes is con-
sidered to be a random sample from an infinite randomly mating population
characterized by 0>u _ ™ »,. + Q

and frequencies in later generations are averages over all possible samples of gametes
as well as all possible pairings of gametes into genotypes.

The two sets of initial conditions are related in that the 'random' gametic
frequencies are expected values for the ' specific' gametes. Expectation, which is
also written as <?, is over all samples of gametes here and we have that

) = Pt,
27V — 1
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Other differences can be seen between the two initial conditions

- 1), ^ | - = S{^) = piPk.

Now consider the population frequency of ĉ fy gametes in a later generation.
Not only are such frequencies averaged over initial frequencies as described above,
but also they are averages over all possible replicate populations with the particular
mating system. This latter averaging process allows us to make use of the descent
measures, and we say with probability F1 a gamete is a copy of an initial gamete
(at the two loci of interest) and with probability 1 — _FX it has descended from distinct
initial gametes.

For specific initial gametes, later gametic frequencies carry hats and

(
A similar argument for the recombinant frequency leads to

( 2 7 )

Zygotic frequencies make use of the inbreeding coefficient in an analogous way and
we recall that $][ = pt so that

( — 27V 1

27V
m— (t#ft). (29)

For random initial gametes we can take expectations in equations (26) to (29)
or go directly to the frequencies of the infinite population from which the initial
gametes are drawn to obtain

(<**). (30)

The last two equations have brought us back to equation (1), but now the assump-
tions about initial gametes needed for the application of (1) have been revealed.

Two-locus genotypic frequencies in the final population, where the descent status
is F1(X) = 1, -F^) = iJjao), are given by the gametic frequencies since Pg(oo) = P^(oo),
-Pff(oo) = ^?(»)- These quantities are often referred to as the probabilities of fixation
of the gametes.
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10. LINKAGE DISEQUILIBRIUM

We have already denned @ip 3)^ for the initial gametes and now consider linkage
disequilibria in later generations. An experimenter often has a single population,
or line, for which he measures the linkage disequilibrium. Even so, there is more
than one form of linkage or non-allelic disequilibrium. If tildes denote within -line
or within-population values, there is linkage disequilibrium pertaining to P\\ or
genes on the same gamete, to P\] or genes on different gametes in the same individual
and to Pi£ or genes in different individuals. (PQ is the frequency of at bj in all possible
pairs of non-allelic genes between individuals within populations.) Only two com-
ponents of linkage disequilibrium are estimable within populations

^ g ? = not», j =
for genes within individuals, and

for genes between individuals, with a total within-population value of
With regular systems of mating such as maximum avoidance and circular mating,
or other forms of structured populations, frequencies PQ can be computed for each
class of relatives, i.e. P^(1), P++(2),..., P++(m) *& descending order of relationship and
a component of disequilibrium estimated for each step of increase in relationship

fyHk) = pi+Vc) _ pi+Vc+l) (jfc = 1, 2, . . . , » - 1)

and the total between individuals is Pl_j — P^(7l) or

Most populations or groups are not so structured, however.
Since

L «, N - !«,_,.

the usual measure of linakge disequilibrium within populations is

2N w+ N

which is almost the sum of the two, or the total within populations.
Theory cannot predict particular within-line values, so we take expectations

over lines to obtain
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for lines from a specific set of gametes, and

= P)\ - P^ = (F1 - jF) %,

P^ - P% = {XF - $) % (32)

for lines from random samples of gametes. (Recall that J) is the average of the
recombinant coefiicients for all pairs of individuals.)

With random union of gametes as in a monoecious population, XF = xd or
P\) = Pl+j and there is only one component of linkage disequilibrium within popula-
tions. In the dioecious population considered, ^ j = i-P(t+i) and there is a small
component that disappears with fixation. Of course all components within lines
disappear with fixation since F\n) = xF(oo) = 15(oo). The rates of approach to zero,
being the rates at which these coefficients approach their equilibrium values, differ
among types of populations however, and are much dependent on A.

The full complement of linkage disequilibrium is estimable only with independent
replicate lines or populations. With a sample of such independent populations, one
can calculate the frequency PlSj of all possible pairs of non-alleles between popula-
tions leading to an additional component of disequilibrium,

f)H _ pi+ pi-

which has expectations,

for lines from a specific set of gametes and

for lines from random samples of gametes. The total linkage disequilibrium, either
3% or %

includes that between and within replicate populations.
The final disequilibrium is just that between populations, since the components

within populations are zero. For a specific set of initial gametes

2N 1

monoecious equal chance(2N-1)[1 + N(1-A)]®«
(2V + 1 ) (1 + A) — 3 A dioecious equal chance

A)]•*** Nm = Nf = N/2

+ (2iV-i)(l-A)
ij t W° S a m e t e s Pe r Parent. (33)

Note in the latter case that there is no final linkage disequilibrium for genes which
recombine freely. Also, this case and monoecious equal chance with N = 1 generates
the classical result of Wright (1933) for self-fertilization. With N = 2, the final
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disequilibrium for dioecious equal chance and two gametes per parent are the
same, as they should be, for full sib mating.

For random samples of initial gametes, or the average over particular initial sets

general

monoecious equal chance
l + iV(l-A) t}

1 _ dioecious equal chance

t w o g a m e t e s Pe r P a r e n t -

These last values for the averages over all particular initial sets of gametes may
be partitioned into two components, one for lines from the same initial set

and one for different initial sets of gametes,

This last term is just the initial sampling covariance and is independent of the
subsequent mating system.

11. DISCUSSION

We discuss implications of the results found with digenic measures first before
relating this paper to the more general theory of descent measures. We do note here,
however, that parental and recombinant descent coefficients permit the same simple
elaboration of gametic frequencies and linkage disequilibrium as the inbreeding
coefficient does for one-locus genotypic frequencies. The determination of these
two coefficients closely parallels that of the inbreeding coefficient. Results have
been obtained for a variety of inbreeding systems which would have required
a formidable effort by usual approaches and these results have the advantage of
applying to any number of alleles at a locus.

(i) Final populations

The final descent status of populations for two gametes per parent every genera-
tion was shown to be independent of the particular inbreeding system. With free
recombination, A = 0, and two gametes per parent moreover, the final lines from
a specific set of gametes were shown to be in linkage equilibrium (equation (33)).
This is a generalization of the well-known result for continued self-fertilization from
a single doubly heterozygous individual.
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While the final descent status does not vary with mating system for two gametes
per parent, the rates of approach to final status do vary. For any descent measure F
the rate of approach to equilibrium is defined as

r(t) = ^

and the final value of this rate is r(co) = 1 — It, where R is the largest characteristic
root of the transition equation for F. For monoecious mating these rates are
constant over time, rx = l/2Ne for Fx and r1 = xr = (1 - A)/2+ l/2Ne for F1 and XF
[equations (18) to (20)], and this mating system serves as a standard for comparing
the effects of mating closer or more distant relatives. As expected the effects on the
recombinant coefficients are similar to the well-known (Kimura & Crow, 1963;
Cockerham, 1970) effects on the inbreeding coefficient. Greater degrees of avoidance
of mating relatives result in lower early values of the recombinant coefficient and
higher final rates of approach to equilibrium (Table 2).

There are large differences between the rates r1 and r1 = 1r unless the population
size is very small or the linkage parameter is very large. For monoecious mating,
for example, r1 = (l — A)/2 + r1 is dominated by A and is much greater than r^
unless A is close to 1.

(ii) Initial gametes

We considered two separate starting conditions for gametes and illustrated the
differences for final linkage disequilibria. Probably the most illustrative difference
is for one-locus genotypic frequencies. If we write

-aab (34)

then the expressions (28), (29) for specific initial gametes become

2Pha = 2(i-FUo)ptpk (»#fc), (36)

which have the same form as (30) for random initial gametes, but involve the exact
allelic frequencies in the founder population.

The difference between Fx and Fx has concerned plant geneticists for some time,
particularly with reference to self-fertilization. There is doubt as to whether geno-
typic frequencies should be written with F1(o} = 0, F1(i) = £,... or with F1(i) = 0,
•^i,2) = h ••• f° r selfing from a single individual (N = 1). The latter set requires
F1(o = — 1 to express the initial frequencies correctly and although this appears
strange, it is a valid consequence of (34). We have started out arbitrarily with
F1(m = 0 and then allowed F1(a to be dictated by the mating system. When there is
a specific set of initial gametes with specified frequencies, the expressions (28), (29)
or (35), (36) must be used. Hardy-Weinberg frequencies are obtained in such systems
when Fx = 0, which is the first (not initial) generation for selfing. Specific gametic
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sets also constrain allelic frequencies to be integral multiples of 1/2N so that for
one specific initial individual ^ = 0,^,1 -with £ being the only one of interest usually.

As further illustration of the difference between the two types of initial gametes,
we list F1 and F1 for full sib mating (S), monoecious mating with equal chance
gamete production (Mcc), and monoecious mating with two gametes per parent
(Mtg), all with N = 2, in Table 3. For specific initial gametes we expect full sib
mating to have Hardy-Weinberg frequencies in the second generation, Mec in the
first generation, and Mtg never actually attains the frequencies but passes through
F1 = 0 between the first and second generation. Because of the nature of the mating
system, Mec is always expected to have Hardy—Weinberg frequencies in the first
generation for all values of N. By contrast, for random initial gametes we average
over all random samples of gametes and the initial population has the same fre-
quencies as the infinite population from which the gametes are drawn. In other
words, the initial generation always has Hardy-Weinberg frequencies and we just
use F1 in equation (30). This discussion amplifies the comment following equation (1).

Table 3. Values of Fx and F1 for three mating schemes with N = 2

Generation

Mating scheme

Full sib

A

Monoecious (equal chance)

Monoecious (two gametes
per parent)

A

0

0

- *

0

-i

0

- i

1

0

- t

i
0

i
9

2

i
0

1 6

i

3

1

ax
64

1 6

81
216
37

162

4

*

i

2 5 6

SX
61

-Si!
1 2 9 f
8 4 7
9 7 2

(iii) Initial individuals

We have already remarked that our frequency expressions do not apply to
a specific set of initial genotypic frequencies, although the random initial gametes
case essentially assumes Hardy-Weinberg frequencies initially. This is in contrast
to the approach to Kimura (1963). Kimura's probability method for inbreeding
systems has many similarities to the digenic descent approach. In essence he worked
with frequencies P\\, Pij and P^j with the first and last being fractionated into
analogues for various categories of gametes as required. The transitional arguments
for the digenic P's are, of course, identical to those for .Pi and its analogues.

The difference between our approach and that of Kimura is that we have divorced
the descent measure arguments from any frequency considerations and then

10 GRH 30

https://doi.org/10.1017/S0016672300017547 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300017547


140 C. C. COCKEBHAM AND B. S. WEIR

applied them to (two sets of) initial gametes. Kimura argues back to the exact
constitution of genes in the founder individuals.

We have avoided the complication of arguing back to exactly specified founders
to preserve simplicity but we can extend our measures to handle these cases. We
demonstrated this earlier for sib mating (Cockerham & Weir, 1973) and now give
the extension for monoecious populations.

For a monoecious population, in addition to F1 we let Fx be the probability that
non-allelic genes on one gamete descend from genes on two gametes within one
founder individual and F\ be the probability that they descend from two gametes
in different founder individuals. Evidently F1, Fx and F\ sum to one since they are
the probabilities of the only three possible descent histories of the two genes. For
non-allelic and non-gametic genes we define XFX, xFy in the same way with XF, XFX

and xFy summing to one.
Among the founder individuals we let &*j, $*£ be the recombinant frequency

of genes within and among individuals so that gametic population frequencies for
a specific set of initial individuals are now written as

i+_ ( 3 7 )

Since Fx, 1FX a n d F\, xFy have the same joint one-step t ransi t ion equat ions as do
F1, XF, each of t h e six measures satisfies the same second degree homogeneous
recurrence equa t ion (21). The measures have different initial values, however, as
shown in Table 4, so t h a t (21) is satisfied for F1, XF for t ^ 0 while t ^ 1 is required
for t h e o ther four measures . The different initial conditions mean t h a t measures
sat isfy different non-homogeneous recurrence equat ions of first order. These
equa t ions differ in the i r cons tan t terms a n d have t he following solutions

F i-A

2Ne

X. T> 1 + A X

w h e r e j R = _ _ - _ .
Final values of the measures follow from these equations by setting i?' to zero.

With a founder population of all doubly heterozygous individuals ABjab

and equation (37) leads to
*AB

<->
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as obtained by Kimura (1963) and Wright (1933) with Ne = N. For other founder
populations, we need simply modify the 3P's.

I t is interesting that Kimura (1963) had the correct transitional factor,
(1 + A)/2 — 1/2JV, for monoecious mating, although he did not apply it to the decay
of linkage disequilibrium. Much later, Galley & Curnow (1972) pointed out its
correctness in contrast to (l + A)(2iV- 1)/4JV found by Hill & Robertson (1966)
and Karlin & McGregor (1968).

Table 4. Initial values of descent measures for monoecious mating

t

Measure 0 1

p i t 1 + A

F 0 - L 1+A 2Ne-\
1 2N. 4N.

F- 0 +
2 4 4JV,

w f J _ i-A
1 ' 2Ne 4N.

F o
1 " Nt 2Ne N,

(iv) Estimation of linkage disequilibrium

The analogy between the partitioning of linkage disequilibrium into components
and the partitioning of the variance of gene frequencies into components (Cocker-
ham, 1969,1973) may have been noted. If we let s index the gamete, n the individual
and m the population, then the random variables

xmns = 1 if the gamete carries ait

= 0 otherwise;

Vmns = * if the gamete carries bjt

= 0 otherwise

can each be analysed into three components of variance; that within individuals,
between individuals within populations, and between populations. There is an
exact analogy for products, xy, as for squares and products of a; or of y. The details
of analysis will not be repeated here, but any of the estimation procedures (Cocker-
ham, 1973) may be utilized. The components of covariance to be estimated are the
D's which are set out on page 142, along with the components of variance for
random samples of initial gametes.
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Between cr\{ =
populations

Between <j\t =
individuals

Within cr^f =
individuals

Total cr2
Ti =

Components

XX

$iPAl-P<)

(F^djpAl-p,)

(1-FJpAl-Pi)

pAi-Pt)

of variance

< = (F,

< = q,V

Ai-Q,)

u) &>'

<) D «

Components
of covarianee

xy

= (Fl-1F)2>ii

Given the appropriate data, unbiased estimates of all the components are available.
Various intraclass correlations from the components of variance are of interest

J

the far right term being the correlation for alleles within individuals within popula-
tions. In practice these correlations bear definitions of a general nature rather than
just accounting for drift. The components of covariance may be viewed also as
fractions of the total

F1 Df

While free of the unknown parameter @ip they involve ratios of the parental and
recombinant descent coefficients. The ratio $\FX approaches one as the populations
approach fixation. The portion 1/is reflective of the mating system just as is/x and
both are zero with random union of gametes. Selection or other perturbing forces
may affect tf and /x differently, however.

Correlations of effects by category are available

o -

where Kti = ^iilcrTicrTj. These involve the unknown parameter 3)^, and only with
historical information can one extract information other than that provided in the
context of the general formulations.

Consider now the estimation of linkage disequilibrium in a single population.
There is no problem in estimating D$ and D%J or their sum if double heterozygotes
can be distinguished. Often, however, genotypic classification is such that the two
types of double heterozygotes are not distinguished and in this case DU and T)l£ are
not separable. Dr Peter Burrows (unpublished) considered the estimator
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which is actually the mean product (corresponding to the mean square) for between
individuals in the analysis of covariance. The equivalent expressions

have expectation <?£iy = Ai3- = D% + 2Db
j.

Based only on the assumption that the observed genotypic proportions were multi-
nomially distributed, Burrows showed that A was the 'best' unbiased estimator
for A and produced its variance which involved three and four gene disequilibrium
functions in addition to two gene disequilibria. However, if one assumes random
union of gametes, then Dy = 0, Ai;- = D% and A^ is an unbiased estimator of DlJ,
with variance

, (2pf- l ) (2g,- l ) -,. 1 „
2N "W+N(N1){ w) •N-l 2N "W+N(N-1)

Under the assumption of random mating, there is no unique ' best' unbiased esti-
mator of D$. The maximum likelihood estimator given by Hill (1974), a solution
to a cubic equation, has an asymptotic variance which tends t o ^ l — pt) q^(l — q^/N
as D% tends to zero, which is not substantially different from that for &{j.

(v) Testing hypotheses about linkage disequilibrium

Before turning to tests of significance it is useful to identify the factors which can
affect linkage disequilibrium. Note that we are considering inferences based on
zygotic frequencies of individuals which survived until the frequencies were
recorded.

We use the term 'random union of gametes' to imply that non-gametic genes are
united at random at the time of zygote formation. In addition to non-random
mating, many factors can lead to non-random union of gametes. Differential
fecundity and fertility in monogamous matings and maternal—paternal incom-
patibilities in general can lead to non-random union of gametes even when there is
random mating. Gametes are not united at random when subdivisions are amalga-
mated or when there is gametic or zygotic migration in single subdivisions. It was
pointed out previously in this paper that separate sexes with random mating but
without other perturbing forces also cause a slight but trivial deviation from random
union of gametes. Different gene frequencies in the two sexes can have a large effect.
All of these factors can affect Db, and all such effects as well as zygotic selection can
lead to Db =)= 0. Cancellations can occur among the various effects however, to result
in no net effect on Db.

With random union of gametes and no zygotic selection, Dw is a measure of the
linkage disequilibrium in gametes that form the zygotes. It is equal to one-half the
difference between the frequencies of coupling and repulsion double heterozygotes.
If the two types of double heterozygotes have the same survival values, then
zygotic selection will not introduce a non-zero value of Dw, and the nature of the
test of the hypothesis that Dw = 0 is not affected. The power of the test may be
affected though. Otherwise, any of the factors leading to non-random union of
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gametes or linkage disequilibrium in the gametic constitution of the parents can
have an effect on Dw. These effects of course are not necessarily the same for Dw as
for Db.

Without zygotic selection, the manner in which gametes unite does not affect the
total disequilibrium Dw + Db = P^ — P]^. This is because, in this case, neither P*?
nor P]^ reflects the system of gametic union. However, the effects of the factors
which led to non-random union of gametes and which contributed to Dw and to Db

are now summed together into the one measure, Db + Dw.
Several different hypotheses about linkage disequilibrium within a single line or

population may be tested. The first three hypotheses require the complete identifica-
tion of double heterozygotes so that gametic frequencies can be determined.

Random association of non-allelic genes on uniting gametes is tested by consider-
ing the hypothesis

Under this hypothesis, the quantity

is unbiased for Pity and so is compared to Plj values. The unbiasedness follows from
taking expectations in the identity

* & •

Under Hv Pj has expected value prfp while P+y always has expected value
Pi£) = p&y A chi-square goodness of fit test is performed on the two by two table
with rows i, I and columns j , j . The test statistic

is distributed as x2 with one degree of freedom when Hx is true.
The hypothesis

Ha:

states that non-allelic genes are associated at random within gametes. The sample
gametic frequencies P){ are compared to

which are unbiased estimators for p^ when H2 is true. The unbiasedness follows
from the same type of argument used for prf^- The test statistic X\ is obtained
from X\ by replacing P]j with P]{ and px qix with P~

A test of the hypothesis that Z>£J is zero is equivalent to testing the equality of
double heterozygote frequencies.

«
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Coupling and repulsion double heterozygotes are compared to their mean frequency
to give the one degree of freedom chi-square test statistic

Y2 —

We can also regard this as a test of non-allelic genes being associated more strongly
within gametes than between uniting gametes. When Hx is true and there is no
association between non-allelic genes on uniting gametes, Hz becomes equivalent
to H2. I t is possible for H% to be true when Hx and H3 are both false. The usual
procedure would be to test Hx and H3 and proceed to a test of H2 only if these two
were both rejected.

Without complete classification of double heterozygotes, any test for associations
between non-allelic genes must involve some composite hypothesis such as

As in all composite hypotheses this includes P\\ = p^ and Plj = ptqit but also
other alternatives involving non-zero values of (P^.—piq^) = —{Pj—Pi<lj)- Dis-
regarding these latter alternatives, p^ is an unbiased estimator of p^ and

4

\
is the one degree of freedom chi-square statistic.

We are making in this treatment the usual assumptions that allow X\,
i — 1,2,3,4 to be treated as chi-square variables when the null hypotheses are true.
These assumptions, such as the asymptotic normality of the various sample values
P, p, q, generally require large sample sizes N. A more detailed discussion of testing
for disequilibria, including reference to small samples, will be presented elsewhere.

While no explicit expressions can be given, the maximum likelihood estimator
of Hill (1974) involves both Dw and Db and tests of significance involving this
statistic are of composite hypotheses.

(vi) General descent theory

The present treatment of digenic descent measures had a threefold purpose. In
the first place we wanted to elucidate the descent status of pairs of genes in finite
populations and discuss the behaviour of digenic frequencies and disequilibria.
If that was all it might be questioned if it was necessary to erect a structure different
from that of Kimura (1963). We offer our system as part of a more general two-locus
theory. A second purpose for this paper then is that it serves as a review and a
clarification of our general theory. Also, the descent coefficients lead naturally into
the elaboration and clarification of the components of linkage disequilibrium,
whatever the cause, and serve as an interpretive basis in the case of drift alone.

Descent measures are based on the very simple notion of from which gametes,
amongst an initial set of gametes, various pairs, triples or quadruples of genes, are
descended. The probabilities of the various descent relations may be found by
methods reminiscent of those used for the inbreeding coefficient. The measures
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are then combined with frequencies for the founder gametes to provide frequencies
and disequilibrium functions for various combinations of genes.

Although the basic ideas are simple, the details of evaluation do sometimes lead
to obscurity, and so in the present paper we considered only two genes at a time
and did not employ the gametic set measures otherwise needed for group mating
schemes. Such restrictions may provide clarity but prevent the full potential of the
measures being used. For example, digenic measures allow a discussion of expected
values of within-line linkage disequilibria, but the full set of measures, up to quadri-
genic, are necessary to evaluate variances. The full set of measures also lead to
a parameterization of two-locus genotypic frequencies, and the means and variances
of two-locus quantitative characters.

This investigation was supported in part by NUT research giant no. GM 11546 from the
National Institute of General Medical Sciences.
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APPENDIX A

General treatment of circular and circular pair mating

For circular mating, if we add equation (9) to (11)-(14), we have a set of (n + 2)
simultaneous transition equations in -^F, F1 and id(Jc) (k = 1,2,...,»). If these
(n + 2) quantities are written as a vector z%> then the transition equations become

The characteristic equation |S — xl\ = 0 of the matrix H is found to be

z(l + A - 2x) (1 - 2x) OB_1(2- ix) + [4a;2- (2 + 3A)x +A] <J>W_2(2 - 4a;)

where $>n(z) is the nxn Wolstenholme determinant

z 1 0 ... 0 0 0

1 z 1

0 1

0 0 0

0 0 0

0 0 0 0 1

Using <DTC(z) = zOn_1(z) — Om_2(z) and removing the factor (x — 1) the above equation
reduces to the (n+ l)th degree equation

(4a;2 - 2a;A - A) On_i(2 - 4a;) + A<J>n_2(2 - 4a;) = 0.

From previous theory (Cockerham & Weir, 1968) we know that this last equation
furnishes the recurrence relation for XF. The first two instances are:

and, together with the appropriate initial values, these lead to the recurrence for-
mulas for -JP given in the text.

The mating system known as circular pair mating can be treated similarly.
A population of size N = inis imagined as being arranged in 2n cages on the circum-
ference of a circle. In each generation a male is mated with a female in the cage to
his right. One male and one female offspring from this mating constitute a cage in
the next generation. Progress of the digenic descent measures is governed by the
characteristic equation

- 4Ax2 - 2Ax - A) <Dn_x(2 - 4x) + AOW_2(2 - 4a;) = 0.
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