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ON THE EXTENSIONS OF SOME CLASSICAL
DISTRIBUTIONS*

by A. SRI RANGA and J. H. MCCABE
(Received 13th December 1988)

Some properties of polynomials associated with strong distribution functions are given, including conditions
for the polynomials to satisfy a three term recurrence relation. Strong distributions that are extensions to the
four classical distributions are given as examples.

1980 Mathematics subject classification (1985 Revision): 30B70, 33A65

1. Introduction

We consider distribution functions whose moments exist for positive and negative
values. That is functions ¥(¢) which are bounded and non-decreasing in (— o0, 00) and
for which the moments

b= § (0

are finite for n=0, 1, +2,.... Such functions have been described as strong
distribution functions because they arise as solutions of strong moment problems (see
[1,2]). The distribution is called symmetric if all the odd order moments are zero and is
called a positive half distribution if all the points of increase are on the positive real
axis.

The Hankel determinants are defined by

Hm Um+y - Hm+r-1
H(m)= Hm+1 Hms2 - Hm+r
Hm+r-1 Hm+r Hm+2r-2

for all positive and negative m and r =1, with
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H™ =0 and H{"=1.
For any strong distribution
HC™>0, r20, m=0,+1,+2,....

In the case of a positive half distribution we also have

HEm*V50, r20, m=0,+1,+2,...,
while for symmetric distributions

H@m*Y=0 and (—1YHZ"*Y>0, r=0, m=0,+1,+2,....

The first of these latter results is because the columns of H{" are linearly dependent if
both j and k are odd. The second follows from the well known Jacobi identity

(H™)? — H=DHY 4 HE D HE D=0,

2. Polynomials related to strong distributions

Given a strong distribution function y(t) we define the polynomials {Q,(z)}& by
| 7220 (D) diy(r)=0 0=S=sn-1

=Y,  S=n (2.1)

for n21, with Q(z)=1, and [x] denotes integer part of x.
In monic form the polynomials can be expressed as

K-2n ceo Mo
R — : :
2n\2) ==
Hz" i by Hap-,
1 z ... z*
H-2q e Mg
Q2n+1_' (-2n ) )
HER ko e Hany
1 z 22n+l

and, further,
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HGRUHG™, a0 =HGIYHED.

The existence of the polynomials is guaranteed by the positivity of HZ2™, r>0, m=

0, +1,..., and clearly all y, are positive. It is not difficult to show that the zeros of Q,(z)

are real and distinct, for all values of n>1.
A second sequence of polynomials is then defined in the usual way by

P)= | =20 4y, nzo 22

and clearly P,(z) is a polynomial of degree n—1 with leading coefficient y,.
Strong positive half distributions and strong symmetric distributions belong to those
distribution functions for which the following result holds.

Theorem. Let y(t) be a strong distribution function such that
HS 2"tV £0, n=0.
The polynomials Q,(z) and P,(z) each satisfy the three term recurrence relations
R3u(2)=(z = B2n)R2n-1(2) =02, R3,-5(2)
Rypi1(2)={(1+ #2041)2— B2+ 1} R2n(2) = 0204122 R2s—1(2)

for n=1 with Qu(2)=1,0,(2)=z—p,/tte, Po(2)=0 and P, (z)=p,. The coefficients are

(2.3)

given by
-2n+1)) 2 —2n+2 —2n+1 (—2n+1)
o _{H(Zn " )} H(Zn—nZ ) BZ _H(Zn " )H2n-”l
2n— -2n+2 —2n) ° n —2n+2) gy(-2n)
H(Zn—"l ) H(Zn " H(Zn—"l )HZn "
-2 2n+2 (—2 +1) (—2n)
. . HETHS 2D 8 _H%.¥ CHY
2n+1 7 2n+1)\2 2n+17 2 ~2n+1
{H(n " )} H(2n+")H(2n " )
fornx1.

Proof. First for the odd index, write

A(2)= {Q2n+ 1(2) -Zan(Z)} %2+ 1Z{Q2n(z) —2Q5,- 1(2)},

a polynomial of degree 2n at most, as

A(2)= — B2a+1Q24(2) + B(2),
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where B(z) is some polynomial of degree 2n—1 at most. Hence from (2.1) it follows that

§= ’-2'1, —'2n+1,-.., —2
V2n—0%2p+1(Y2n—V2n-1) $=-—1L

j EB(t) dy(t)= {

Since HS, 2" is non zero, then choosing a,,,, such that

Vant %20+ 1(Y2n—V20-1)=0

means that B(z) is identically zero. This gives the required three term relation. Further,
as y,, is positive, choosing a,,,, in this way is possible only if y,,—7;,-,7#0.
Expressing y,, and y,,_; in terms of the Hankel determinants and using the Jacobi
identity we find that y,,—y,,_,#0 if H5,2"*Y 0. In this case «,,,, can be given as in
the theorem. With this choice of «,,., the value of §,,,, can be found by considering
the integral equation

0

I T AQMO =~ | T 0D,

- a0
The expression for the even index is verified in a similar fashion by considering

Q2n (Z) —ZQ2n~ l(z) = —ﬂZnQZn— l(z) —aZnQZn—Z(Z) + B(Z),

where B(z) is some polynomial of degree 2n—3 at most.
Having established the recurrence relations for the Q,(z), we then use the definition
(2.2) of P,(z) to show that they also satisfy the relations. O

The above recurrence relations indicate that the ratios P,(z)/Q,(z) are, for
n=1,2,3,..., the successive convergents of the continued fraction.

Uo o, 522 o, sz’ ag !

z—PBy —z—P; — (1+a3)z—f3 — z—B4 — (1 +as)z—Bs — z— P —

From the definition of P,(z) we see that

Pz T 1 Q,(t)
s S o= Qn()_jw 2t WO

Expanding the integrand in the second integral in inverse powers of z and using the
orthogonality properties of Q,(z) yields
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P2n(z)_ s _l_ __L__
m—_fw —dY()+0 (fﬂ“) n>1

and (24
Pynsr(2) _ ]‘) 1 td¢(t)+0<—l‘) nz0.

Qan+1(2) o z— z2*3

The symbol O(1/z") denotes a power series in inverse powers of z starting with 1/2".
Since

—-2n+1
HG
-2
HE,™

Q2n(0) =

then under the condition of the above theorem, @,,(0)#0. On the other hand Q,,,(0)
may be zero, but, if it is, we can show from the linear system of equations yielded by
(2.1) that Q5,, ;(0)#0. With these results we can expand the ratio P,(z)/Q,(z) in powers
of z and obtain

Pu@_ 7 id¢(t)+0(zz") nz1

QZn(z) -
" (2.5)
Py T 1 .
oo™ 1 S e+oE nzo.

3. Examples

1. The strong Tchebycheff distribution. We first consider the distribution function
Y 1(t) given by

el
NN

=0, t¢B

Ay ()= teB=[-b, —a]ul[a,b]

with 0<a<b< 0.

In the limit as a—0 and b—1 the distribution becomes the Tchebycheff distribution
and so we may view it as an extension to this distribution. Further, since a>0, the
function has finite moments of negative order and thus we refer to Y ,(f) as a strong
Tchebycheff distribution. We have the following result.

Theorem. For the strong Tchebycheff distribution function Y (t) defined above the
polynomials Q,(z) and P,(z) satisfy the three term recurrence relation (2.3) with a, and B,
given by
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ﬂn=0’ Urn="7,s nzl,

2 2
a3=% é‘y_’ a2n+1= %9 ngz’

Bl

where y=ab and A=(b—a).
Proof. Consider the continued fraction

ur o oa, 2a,z% a, a,z? a,

z —z —(1+2a)z2 -z —(I+a)z — z — -

(3.1)

in which a, =17 and a, = 1%/(4y).

As the coefficients of (3.1) are bounded then the continued fraction coverges uniformly
to an analytic function over every bounded closed region in the upper half plane
Im(z) > 0. See [4, Theorem 9]. Denoting this function by F(z) then

T 2
Ho a 2a,z
F == patcd e Sl
@) z — z — (142a,)z — f(2),

where f(z) is a 2-periodic continued fraction which can be written as

_ay a,z2
/@)= z — (14ay)z — f(2).

Solving for f(z) yields

=2 +a2) +/(Z*+a,)" —4da,(1 +a,)2>
2z '

S

If we now choose

a=/a, {/1+a,-/a,},

and

b=/a, {/1+a,+/a;},

then clearly a, =y and a, = A?/(4y) and we have

f(z)=512- (2 +ab)+ /7702 S —a?).
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The function f(z) has two values but only one of them is appropriate since F(z) must
take one value only. We note that Im F(z) <0 whenever Im(z) >0, see [4]. Consequently

f(2)=i {(224+ab)—. /22 —b? J22—a?}

and

F(2)=pdz/{\/2* —b* J2*—a?}. (3.2

The function F(z) can be written alternatively as

T t
F(z):@-"L | | dt

mpz—t b7 -0 [P—ad)

a result given in Van Assche [5].
We can show that ul == and hence

Fo)= [ L dur(0. (33)

Hence the continued fraction converges to the Stieltjes function of the strong
Tchebycheff distribution. Using results given in [3] we can then show that the
convergents P,(z)/Q,(z) of (3.1) satisfy (2.4) and (2.5) for this distribution. It is then easy
to show that Q,(z) and P,(z) satisfy (2.1) and (2.2) respectively, see [2]. This completes
the proof.

We can express a and b in terms of y and 4,

b=t=J+
a

=
i
ol

+A+ A+
Also, by expanding the right hand side of (3.2) we see that the moments of Y(f)

satisfy
Wa=g ¥ 0,00 a ),

ji=0

#1—-271— 1 =#;n+ 1 =0’ #iln—l =”;'"/(ab)2n+ l’
for n20, where o;=(2j)!/(j!).

2. The strong Legendre distribution. Next we consider

B
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dyr () =dt, teB=[—b,—a]u[a,b]
=0, t¢B

again with 0<a<b<co.

The moments uf%,n=0, +1, +2,... of this distribution are easily found. As . (t) is a
symmetric distribution function the polynomials ,(z) and P,(z) each satisfy (2.3).
Numerical evidence suggests that

Bn=0, a5,=v, a2n+1=7'm, nzl, (34
where y=ab and A=(b—a).
The coefficients of the continued fraction
O Y S PO L &

z —z —(14a3)z— z —(l—ag)z — -+

are bounded and hence the continued fraction converges uniformly over every bounded
closed domain in the upper half plane Im(z) >0. (See [4]). Hence, if the values in (3.4)
are correct then the continued fraction converges to

1
£ z_—t d'ﬁLe(t)'

In the case when z=i we would then have

A A a, ay a
tan™!| ——)== 2 2 -2
(1+y> [+ 1+1+1+-

where
204,,2
y*(dn*—1) >
=t 7 nz20
Azn+2 (/12+4)’)n2—y n=
2.2
An n=1.

An+1= — m,

Taking the even contraction leads, after some manipulation, to the well known
expansion

12x2
+ 3 +

22x2 32x?
5

tan !'x=
+ T +

—x

A second result in support of (3.4) is the asymptotic behaviour of a,. From an analysis
similar to that given in Van Assche [5], of the three term recurrence relation (2.3), we
find that
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\/‘1_2- {\/1+°‘2n+1—\/<12u+1}_’a
\/a {\/1+°‘2n+1+\/°‘2n+1}"’b

and clearly the expressions in (3.4) are compatible with these limits.

3. The strong Hermite Distribution. Thirdly we set
dyy(t)=e @2 g _ o <t< oo

with 0 <a < co. In this case the moments u) satisfy

I‘g=\/ 2nfe", pH 4 1 =Hin1 =0,
”}1211—2=“121n/a2"+1’
#;’n+2 =(2n+ 1)”gn+a2ugn-2’

for n=1. We can also give u, explicitly as

#gﬁﬁ Z (2n+1) Zo( )(8 g @m0 o

2 &\ 2r 41 (n—s)!

The distribution function ¥ g4(t) is symmetric and hence the associated polynomials
Q.(z) and P,(z) satisfy (2.3). Here computational evidence seems to suggest that

n
Bn=09 Uop=a and a2n+1=;’ ngl

Again we do not have any analytic proof of this result. However as before, we are able
to conjecture that it is true.
If the result is correct then

T 1 po a (l/a)z a (2/a)z a

—dyy(t) == - -
.L, ¢ Wal) —(+1la)z —z — (14+2/a)z — z — -
This continued fraction is uniformly convergent over all bounded closed regions in the
half plane Im(z)>0. (See [4, Theorem 9]). Hence, by taking the even part of this
continued fraction, we find

I L= 2 2 2 (9

-2’-g—z*-a— 72*~a - -~
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Then substituting z/(z2 —a) = +i, we get

< 1 2 1 2 3 4
1—/n/2 “Higl—- 2 2 2
n/ {£1+t2e } T+14+1414-.

This expansion is correct, and can also be obtained from the J-fraction expansion of

aj? e~ 12 dt)(z —1),

-

by letting z=i.

4. A strong Laguerre distribution. Finally we consider
Ay ()=t"te t*M2g  O<t<oo
=0, —o0o<tz0

with 0 <a<o0.
This is a positive half distribution and hence the polynomials Q,(z) and P,(z) do
satisfy (2.3). It appears that

ﬂ2n—1=2n_1+aa ﬂ2n=a’
A2n-1 =(2n—2)/a’ a2n=(2n— l)a’

fornz1.

These results essentially follow from the strong Hermite case. Substituting z2 =z and
t>=u in (3.5) yields an M-fraction expansion for

t~ 1/2 e—l/Z(Haz/t) dt/(z— 1)

Ot 8

The coefficients of this M fraction can then be used to derive the a; and §;.
The moments ul@ of this distribution function satisfy

Hp = H2p

for all positive and negative n.
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