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ON THE EXTENSIONS OF SOME CLASSICAL
DISTRIBUTIONS*

by A. SRI RANGA and J. H. McCABE

(Received 13th December 1988)

Some properties of polynomials associated with strong distribution functions are given, including conditions
for the polynomials to satisfy a three term recurrence relation. Strong distributions that are extensions to the
four classical distributions are given as examples.

1980 Mathematics subject classification (1985 Revision): 3OB7O, 33A65

1. Introduction

We consider distribution functions whose moments exist for positive and negative
values. That is functions il/(t) which are bounded and non-decreasing in ( — 00,00) and
for which the moments

n= \

are finite for n = 0, ±1, +2 , . . . . Such functions have been described as strong
distribution functions because they arise as solutions of strong moment problems (see
[1,2]). The distribution is called symmetric if all the odd order moments are zero and is
called a positive half distribution if all the points of increase are on the positive real
axis.

The Hankel determinants are defined by

« i » + l / * m + 2 •••

Hm+r-l Hm+r

for all positive and negative m and rS: 1, with
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Pm+r-l

f*m+2r-2
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20 A. SRI RANGA AND J. H. McCABE

H^[=0 and f/^>=l.

For any strong distribution

J/<2m>>0, r^O, ro=0, + 1 , ±2

In the case of a positive half distribution we also have

H<2m+1)>0, r^O, ro=0, ± 1 , ± 2 , . . . ,

while for symmetric distributions

Hgm+\l) = 0 and (-l) rH(
2

2 m + 1 )>0, r^O, m=0, ±1 , ±2 , . . . .

The first of these latter results is because the columns of Hf* are linearly dependent if
both j and k are odd. The second follows from the well known Jacobi identity

2. Polynomials related to strong distributions

Given a strong distribution function \p(t) we define the polynomials {Qn(z)}o by

= yn

for n ^ 1, with Q0(z) = 1, and [x] denotes integer part of x.
In monic form the polynomials can be expressed as

(2.1)

and, further,

<
2n

1 z ... z2

M-2n

Ti(-2n)
"2n+l

1 Z . . . Z 2n+l
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?2i. — ti2n+l/H2n ) V2n+ 1 ~ H 2n+ 2/n 2n+ 1 •

The existence of the polynomials is guaranteed by the positivity of ff'2ra), r^O, m =
0, + 1 , . . . , and clearly all yk are positive. It is not difficult to show that the zeros of Qn(z)
are real and distinct, for all values of n ^ 1.

A second sequence of polynomials is then defined in the usual way by

I e ( z ) f ( t ) (2.2)

and clearly Ptt(z) is a polynomial of degree n — 1 with leading coefficient fi0.
Strong positive half distributions and strong symmetric distributions belong to those

distribution functions for which the following result holds.

Theorem. Let \ji(t) be a strong distribution function such that

The polynomials Qn(z) and Pn(z) each satisfy the three term recurrence relations

R2n(z) = (z-P2n)R2n-i(z)-*2nR2n-2(z)
(2.3)

for n ^ l with Q0(z) = l,Q1(z) = z — n1/fiQ, Po(z) = 0 and Pl(z) = no. The coefficients are
given by

2 u(-2n + 2) rj(-2n+l) jj(-2n+l)
o _n2n n2n-l

(
2n-2

H^r'HV
(-2n)rr(-2n + 2) rr(- 2n+ 1) u ( - 2n)
2n + l"2n-l o _n2n+l n 2n
fir(-2n+l)\2 ' "2n+ 1 — „ ( - 2n) H ( - 2n+ 1)
i H 2 / « 2 + l « 2

Proof. First for the odd index, write

A{z) = {Q2n+l(z)-zQ2n{z)}-CL2n

a polynomial of degree 2n at most, as

A(z)=-P2n+1Q2n(z
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where B(z) is some polynomial of degree 2n— 1 at most. Hence from (2.1) it follows that

. s=-2n,-2n+l,...,-2
-r2n-l) S = - l .

Since H2~
2n) is non zero, then choosing a2ll + 1 such that

means that B(z) is identically zero. This gives the required three term relation. Further,
as y2n is positive, choosing <x2n+1 in this way is possible only if y2n—y2n-i^0-
Expressing y2n and y2n-i m terms of the Hankel determinants and using the Jacobi
identity we find that y2n — y2/I_i#0 if H(

2~2n+1)#0. In this case a2n+1 can be given as in
the theorem. With this choice of a2n+1 the value of )32n+1 can be found by considering
the integral equation

The expression for the even index is verified in a similar fashion by considering

where B(z) is some polynomial of degree 2« — 3 at most.
Having established the recurrence relations for the Qn(z), we then use the definition

(2.2) of Pn(z) to show that they also satisfy the relations. •

The above recurrence relations indicate that the ratios Pn(z)/Qn(z) are, for
n = 1,2,3,..., the successive convergents of the continued fraction.

Ho <*2 <*3Z2 <*4 <*sZ2 <*e '

z-fii - z-p2 - (l+a3)z-fi3 - z-p4 -

From the definition of Pn(z) we see that

Expanding the integrand in the second integral in inverse powers of z and using the
orthogonality properties of Qn(z) yields
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Q2n(z) Jaz-i

and (2.4)

The symbol 0(1/f) denotes a power series in inverse powers of z starting with 1/z*".
Since

-2n+l)

then under the condition of the above theorem, Q2n(0)^=0. On the other hand Q2n+i(0)
may be zero, but, if it is, we can show from the linear system of equations yielded by
(2.1) that Q'2n+i(0)¥=0. With these results we can expand the ratio Pn(z)/Qn(z) in powers
of z and obtain

and (2.5)

= J L
2n+l( J

-oo 2 -

3. Examples

1. The strong Tchebycheff distribution. We first consider the distribution function
by

= 0,

with 0<a<fc<oo.
In the limit as a-»0 and b->\ the distribution becomes the Tchebycheff distribution

and so we may view it as an extension to this distribution. Further, since a>0, the
function has finite moments of negative order and thus we refer to ipT{t) as a strong
Tchebycheff distribution. We have the following result.

Theorem. For the strong Tchebycheff distribution function if/iit) defined above the
polynomials Qn{z) and Pn(z) satisfy the three term recurrence relation (2.3) with an and /?„
given by
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U 2

=4 7' - '

where y = ab and k — {b — a).

Proof. Consider the continued fraction

z - z -

02

z -

in which a2 = y and a1=A2/(4y).
As the coefficients of (3.1) are bounded then the continued fraction coverges uniformly

to an analytic function over every bounded closed region in the upper half plane
Im(z)>0. See [4, Theorem 9]. Denoting this function by F(z) then

z - z -

where /(z) is a 2-periodic continued fraction which can be written as

z - (1+aJz -f(z).

Solving for /(z) yields

If we now choose

and

then clearly a2=>i and at =A2/(4y) and we have

1
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The function f(z) has two values but only one of them is appropriate since F(z) must
take one value only. We note that ImF(z)<0 whenever Im(z)>0, see [4]. Consequently

and

F(z) = iilzlQz2-* Jz2-a2}. (3.2)

The function F(z) can be written alternatively as

^ L M dt,

a result given in Van Assche [5].
We can show that nl = n and hence

F(z)= J - ! - # r ( 0 . (3.3)
- o o Z '

Hence the continued fraction converges to the Stieltjes function of the strong
Tchebycheff distribution. Using results given in [3] we can then show that the
convergents Pn(z)/Qn(z) of (3.1) satisfy (2.4) and (2.5) for this distribution. It is then easy
to show that Qn(z) and Pn(z) satisfy (2.1) and (2.2) respectively, see [2]. This completes
the proof.

We can express a and b in terms of y and A,

a A + A + k + ••• .

Also, by expanding the right hand side of (3.2) we see that the moments of ij/T(t)
satisfy

for n^O, where <ri=(2;)!/0!)2.

2. The strong Legendre distribution. Next we consider
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= 0,

again with 0 < a < b < oo.
The moments /i£e,n = 0, + 1 , + 2 , . . . of this distribution are easily found. As ipLe(t) is a

symmetric distribution function the polynomials Qn(z) and Pn(z) each satisfy (2.3).
Numerical evidence suggests that

X2 n2

/Jn = 0, cc2n = y, « „ „ - _ . _ _ n*l, (3.4)

where y = ab and X = (b — a).
The coefficients of the continued fraction

z — z — (l + a3)z — z — (1—a5)z —

are bounded and hence the continued fraction converges uniformly over every bounded
closed domain in the upper half plane Im(z) > 0. (See [4]). Hence, if the values in (3.4)
are correct then the continued fraction converges to

In the case when z = i we would then have

X
tant a n

1 / '
+ yj 1+ 1 + 1 + 1 +

where

y2(4n2-l
-(X2+4y)n2-y'

X2n2

Taking the even contraction leads, after some manipulation, to the well known
expansion

t a n " 1 x = - I2*2 22x2 3 V
1 + 3 + 5 + 7 + •••.

A second result in support of (3.4) is the asymptotic behaviour of an. From an analysis
similar to that given in Van Assche [5], of the three term recurrence relation (2.3), we
find that
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and clearly the expressions in (3.4) are compatible with these limits.

3. The strong Hermite Distribution. Thirdly we set

# H ( t ) = e-('2+fl2/'2)/2A - o o < t < o o

with 0<a<oo. In this case the moments fi" satisfy

for n ^ 1. We can also give n"n explicitly as

The distribution function \//H(t) is symmetric and hence the associated polynomials
Qa(z) and Pn(z) satisfy (2.3). Here computational evidence seems to suggest that

ft,=0, a2n = a and a 2 n + 1 = - , n ^ l .
a

Again we do not have any analytic proof of this result. However as before, we are able
to conjecture that it is true.

If the result is correct then

J a z - t ™ w z - z - ( l + l / a ) z - z - ( l + 2 / a ) z - z - •••.

This continued fraction is uniformly convergent over all bounded closed regions in the
half plane Im(z)>0. (See [4, Theorem 9]). Hence, by taking the even part of this
continued fraction, we find

— a — z2 — a — z* — a — z" — a —
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Then substituting z/{z2 — a) = + i, we get

i \+t2 j 1 + 1 + 1 + 1 +

This expansion is correct, and can also be obtained from the ./-fraction expansion of

J e-'2'2dt/(z-t),
— 00

by letting z = i.

4. A strong Laguerre distribution. Finally we consider

# i* (0 = t~*e~(l+"2"v2<fe. 0<t<oo

= 0,

with 0<a<cxD.
This is a positive half distribution and hence the polynomials Qn(z) and Pn(z) do

satisfy (2.3). It appears that

a2n_!=(2n-2)/a, a2n = (2n-l)a,

for n ^ l .
These results essentially follow from the strong Hermite case. Substituting z2=z and

t2 = u in (3.5) yields an M-fraction expansion for

J r1/2e-1/2(t+"1/0<fc/(z-l).
o

The coefficients of this M fraction can then be used to derive the a} and fij.
The moments f^f of this distribution function satisfy

for all positive and negative n.
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