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Exact motion estimation is a major task in autonomous navigation. The integration of Inertial
Navigation Systems (INS) and the Global Positioning System (GPS) can provide accurate lo-
cation estimation, but cannot be used in a GPS denied environment. In this paper, we present a
tight approach to integrate a stereo camera and low-cost inertial sensor. This approach takes
advantage of the inertial sensor’s fast response and visual sensor’s slow drift. In contrast to
previous approaches, features both near and far from the camera are simultaneously taken
into consideration in the visual-inertial approach. The near features are parameterised in
three dimensional (3D) Cartesian points which provide range and heading information,
whereas the far features are initialised in Inverse Depth (ID) points which provide bearing in-
formation. In addition, the inertial sensor biases and a stationary alignment are taken into
account. The algorithm employs an Iterative Extended Kalman Filter (IEKF) to estimate
the motion of the system, the biases of the inertial sensors and the tracked features over
time. An outdoor experiment is presented to validate the proposed algorithm and its accuracy.
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1. INTRODUCTION. Autonomous navigation for mobile vehicles is a popular
current topic (Yun et al., 2013; Chowdhary et al., 2013). It is vital to know a vehicle’s
position, velocity and attitude in many applications. An Inertial Measurement Unit
(IMU) consisting of three orthogonal accelerometers and gyroscopes is able to track
a carrier’s motion with high frequency, and has been successfully used for vehicle navi-
gation. However, the accuracy of the IMU deteriorates with time due to the accumu-
lation of inertial sensor biases and noises (Titterton and Weston, 2004; Noureldin
et al., 2011). GPS can provide position and velocity with limited error. The accumu-
lated error of an inertial sensor will receive periodic correction by integrating IMU
and GPS. Unfortunately, in environments where GPS signals are unobtainable

THE JOURNAL OF NAVIGATION (2015), 68, 434–452. © The Royal Institute of Navigation 2014
doi:10.1017/S0373463314000848

https://doi.org/10.1017/S0373463314000848 Published online by Cambridge University Press

mailto:xphu2012.nudt@gmail.com
https://doi.org/10.1017/S0373463314000848


(e.g., indoor, forest, underwater, on Mars, etc.) the GPS-aided IMU system is not suit-
able. Furthermore, high precision GPS receivers are always expensive and bulky, which
are not suitable for certain applications.
An alternative approach to restrain IMU error is the use of visual sensors such as

stereo cameras. Some important advantages of the Visual-Inertial System (VIS) are
listed below:

. The VIS can be lightweight, low-cost and is smaller than a high accuracy IMU/
GPS integrated system. With rapid recent development, IMUs and cameras have
become smaller and cheaper and are more common (such as in cars and mobile
phones).

. Since both IMUs and cameras do not need the transmission or reception of any
radio signals, they are completely passive sensors and are thus able to be used in a
GPS-denied environment and be part of an autonomous navigation system.

. The VIS is able to produce a more robust and accurate motion estimation than
either a camera or IMU acting alone. The main advantage of the IMU is that
it is able to accurately track the motion of a rapidly changing vehicle over a
short time, but it is subject to low frequency drift. In contrast, visual motion es-
timation is more accurate when the camera is moving slowly. These complemen-
tary properties work together to give a better motion estimation.

Recently, the fusion of vision and inertial sensors for navigation has received con-
siderable attention in the research community. Corke et al. (2007) presented a tutorial
introduction of inertial and visual sensing from a biological and an engineering per-
spective. Several algorithms of relative pose (translation and rotation) calibration for
hybrid inertial/visual systems can be found in Lang and Pinz (2005), Lobo and Dias
(2007) and Mirzaei and Roumeliotis (2008). Much research (Armesto et al., 2007;
Veth and Raquet, 2007; Kelly and Sukhatme, 2011; Chowdhary et al., 2013) has
been conducted into fusion algorithms of inertial and visual sensors for navigation.
However, these studies do not pay much attention to the different type of features in
an unknown environment.
In an unknown environment, the features may be near or far from the camera. The

near feature provides both distance and orientation while the far one mainly offers
orientation information. In this paper, we present our work on combining a stereo
camera and a low-cost inertial sensor for navigation in an Iterative Extended
Kalman Filter (IEKF) estimator. The features are divided into two categories, one
is far or viewed only in one camera, and the other can be seen in both cameras and
has a high parallax. To represent the two kinds of features, the Inverse Depth point
(introduced in Civera et al. (2008)), and 3D Cartesian point is employed.
In order to make full use of the VIS’s potential, the following factors have also been

considered: the varying biases of the IMU; the initial attitude of the IMU with respect
to gravity and feature detection, initialisation, tracking and management. A real data
experiment has been carried out to evaluate the performance of the proposed algor-
ithm. The result demonstrates that the algorithm presented in this paper is able to navi-
gate in an unknown environment autonomously, and has better accuracy than visual-
only and inertial-only approaches.
The remainder of the paper is organised as follows: related work is examined in

Section 2. In Section 3, we introduce our system and briefly discuss the preliminaries
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of the paper. In Section 4, we describe the VIS model, and then develop our IEKF-
based estimator in Section 5. An outdoor experiment and result are given in Section
6. Finally, we draw the main conclusions of our work in Section 7.

2. RELATED WORK. A considerable number of studies have been done on both
visual and inertial navigation. Visual odometry is particularly relevant to our work,
which has been focused on the use of either monocular or stereo vision to estimate
the egomotion of an agent from the environment. For monocular vision, the detected
feature has scale unobservability. In order to overcome this problem, Davison et al.
(2007) and Feng et al. (2012) used the fixed depth constraint. A delay feature initiali-
sation scheme were presented in Davison (2003) and Kim and Sukkarieh (2003). The
stereo camera, however, is able to provide scale through the baseline between cameras.
Davison (Davison, 1998; Davison and Murray, 2002) demonstrated an active stereo
visual Simultaneous Localisation and Mapping (SLAM) system based on EKF, but
they did not consider the distant features, so that it can be only used in the near
scene, such as indoors (Se et al., 2002). Distant features have bearing information
and it is unwise not to use them (Paz et al., 2008). However, vision-only techniques
depend on the available features, so it is difficult to recover the real track when all
tracked features are lost. In order to overcome the limitations of vision-only techniques
an approach that integrates a stereo camera and an IMU is developed.
Considerableworkhas been reported recently about a hybrid stereo camera and inertial

system. In order to estimate anUnmannedAerial Vehicle’s (UAV’s) position andvelocity,
Carrillo et al. (2012) and Kelly and Saripalli (2008) used a Kalman Filter to fuse stereo
visual odometry and inertial measurements. As a loosely coupled approach, they did
not use the inertial sensors to predict the tracked features. Our approach incorporates
stereo images and inertial measurements in a tight model. Veth and Raquet (2007) devel-
oped an image-aided inertial navigation algorithm, which is implemented by using a
multi-dimensional stochastic feature tracker. The algorithm is specifically evaluated for
operation using low-cost, CMOS imagers and Micro-Electro-Mechanical Systems
(MEMS) inertial sensors. The principal drawback of this algorithm is that the number
of landmarks actively tracked has to be constant, so the excess tracked features are
wasted. Mourikis and Roumeliotis (2007) presented an EKF-based algorithm for
vision-aided inertial navigation. The author introduced a special measurement model
that does not require the 3D feature position in the state vector. However, this approach
needs to store all the tracked features, and requires more storage capacity, which makes
the algorithm possibly not available in certain applications. While all of these algorithms
estimatemotion and structure, theydonot consider the different typeof features, (i.e. near
and far features), which is the primary focus ofourwork.Furthermore,we account for the
IMU biases and the alignment of the IMU with respect to local gravity.

3. PRELIMINARIES. In this section, we introduce our system used for auto-
nomous navigation. Then three reference frames and some notation that are used
throughout the remainder of the paper are presented. Finally, two kinds of feature
point parameterisations are introduced.

3.1. System Overview. Our VIS consists of a stereo camera and a MEMS
IMU (MIMU) sensor, as shown in Figure 1. The visual sensor, a PointGrey
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Bumblebee2 stereo camera, is able to provide a corrected stereo image, so we need not
to consider the lens distortions and camera misalignments. The inertial sensor is a
MEMS-based Mti-G unit, manufactured by Xsense Technologies, and it can
provide three-axis angular rate, linear acceleration and earth magnetic field data. To
synchronize the camera and the MIMU, a discrete bus is utilised. Due to the
MIMU and camera being attached rigidly, the relative pose of the camera and
the IMU, which were carefully calibrated before using the sensors, can be seen as
constant.

3.2. Reference Frames and Notation. When working with a sensor unit contain-
ing a stereo camera and MIMU, we consider three reference frames:

1) The world frame {W}: The pose of the VIS is estimatedwith respect to this frame
that is fixed to the earth. The features of the scene are modelled in this frame. It
can be aligned in any way; however, in this paper it is vertically aligned, and with
the x, y, z-axes aligned with the north, west and vertical axes respectively.

2) The camera frame {C}: This frame is attached to the moving stereo camera, with
its origin at the optical centre of the camera, and with the z-axis pointing along
the optical axis. There are two camera frames, as shown in Figure 1, where they
are aligned with each other with a known translation (in our case, the direction
cosine matrix between frame CL and frame CR is an identity matrix, and the
length of the baseline is 12 cm, so the stereo camera used in this paper can be
modelled as a standard stereo camera model); however, we choose the left
camera as the reference camera frame.

3) The IMU frame {I}: This is the frame of the IMU, with its origin at the centre of
the IMU body. And the x, y, z-axes denotes the front, left, up direction of the
IMU body respectively.

The relationship of the three reference frames is shown in Figure 1. The relative pose
between frame {I} and frame {C} has been carefully calibrated and is constant, while
the transition between frame {I} and frame {W} is variable. To determine the tran-
sition of the IMU is the main purpose for our process. For this target, we consider
the initial IMU position as the origin of the frame {W}.

Figure 1. The VIS which consists of the stereo camera and theMIMU and the relationship between
the world {W}, camera {CL}, {CR}, and IMU {I} reference frames. The stereo camera and the
MIMU are rigidly attached.
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In the following section, we denote scalars in simple italic font (a, b, c); and denote
vectors, matrix in boldface non-italic font (R, p). In order to express a vector with
respect to a specific reference frame, a superscript identifying the frame is appended
to the vector, e.g., vW for the vector v expressed in the frame {W}. If a vector or
matrix describes the relative motion, we combine subscript letters to designate the
frames, e.g. pIW and RIW represent the translation vector and rotation matrix from
the frame {W} to the frame {I}, respectively.
Furthermore, we utilise both the identity matrix I and the zero matrix 0 frequently.

We use subscripts to indicate the sizes of these matrices, e.g. I3 represents the 3 × 3
identity matrix, and 03×6 represents the 3 × 6 zero matrix. The vector (or matrix) trans-
pose is identified by a superscript T, as in xT (or RT). As for variable x and its variants
~x; x̂, they indicate the real quantity, predicted quantity and estimated quantity of the
variable respectively.

3.3. Feature Points Parameterisation. We use Cartesian 3D points to represent
near feature, and Inverse Depth pointed to represent the far feature. In this paper,
we refer to the Cartesian 3D and the Inverse Depth simply as 3D and ID respectively.
And the standard representation for feature point in terms of a 3D point is

p3D ¼ X3D;Y3D;Z3D½ �T ð1Þ
while the ID point is

pID ¼ XC ;YC ;ZC ;ψ;f; ρ½ �T ð2Þ
An ID vector can be converted into a 3D vector by the following transition

p3D ¼ pWCW þ 1
ρ
m ψ;fð Þ ¼ XC ;YC ;ZC½ �T þ 1

ρ
m ψ;fð Þ ð3Þ

Where pCW
W is the first camera position from which the feature was first observed, ρ is

the inverse of the feature depth, and m is the direction of the ray passing through the
image point which can be denoted by ψ, φ azimuth and elevation

m ψ;fð Þ ¼ cosf cosψ; cosf sinψ; sinf½ �T ð4Þ

4. SYSTEM MODELLING
4.1. States Representation. We integrate the stereo images and MIMU measure-

ments based on the IEKF estimator. The state vector used in this paper consists of
IMU-related state vector and feature-related state vector, that is

x tð Þ ¼ xTI tð Þ; xTF tð Þ� �T ð5Þ
where x(t) is the complete state vector, xI(t) is the IMU sensor-related state vector, and
xF(t) is the feature-related state vector.
The purpose of this process is to determine the position, velocity, attitude of the

IMU. Additionally, we take the biases of the inertial sensors into consideration. Our
IMU sensor-related state 16 × 1 vector is

xI tð Þ ¼ qTWI tð Þ; vWIW tð Þ� �T
; pWIW tð Þ� �T

; bTg tð Þ; bTa tð Þ
h iT

ð6Þ
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where qWI(t) is a 4 × 1 vector which denotes a rotation quaternion (Diebel, 2006) from
the IMU frame {I} to the world frame {W}, vIW

W (t) denotes the linear velocity of the
IMU with respect to the world frame that expressed in the world frame, pIW

W (t) is the
position of IMU in the world frame, bg(t) and ba(t) are the IMU gyroscope and acceler-
ometer biases, respectively.
In the case of an unknown environment, the positions of the detected features are

unknown before. The true feature depths relative to the stereo cameras vary from
near to far. We utilise the ID point to denote the features at far or infinity, and 3D
point for near features. Then, the features-related state vector is

xF tð Þ ¼ xT3D tð Þ; xTID tð Þ� �T ð7Þ
where

x3D tð Þ ¼ pT1;3D tð Þ; pT2;3D tð Þ; :::; pTM;3D tð Þ
h iT

ð8Þ

xID tð Þ ¼ pTMþ1;ID tð Þ; pTMþ2;ID tð Þ; :::; pTMþN;ID tð Þ
h iT

ð9Þ

Both x3D(t) and xID(t) are expressed in the world frame. The number of 3D points and
ID points areM,N respectively. It should be noted that bothM and N are variable due
to the different image textures coming from changeable scenes.

4.2. Process Model. The system model describes the time evolution of the
IMU-related state xI(t) and the features-related state xF(t). In our approach, the
biases of inertial sensor bg(t) and ba(t) are modelled as random walk processes,
driven by zero-mean white Gaussian noise vectors, ng and na, with covariance matrices
Qg and Qa respectively. As for the rotational angular velocity of the earth, it is too
small, almost drowned in the noise of the MIMU gyroscope, so we do not take it
into consideration. The system model of the IMU is given by the following equations
(Titterton and Weston, 2004):

_qWI tð Þ ¼ 0:5Ω ωm tð Þ � bg tð Þ� �
qWI tð Þ ð10Þ

_vWIW tð Þ ¼ R qWI tð Þð Þ fm tð Þ � ba tð Þð Þ þ gW ð11Þ
_pWIW tð Þ ¼ vWI tð Þ ð12Þ

_bg tð Þ ¼ ng tð Þ; _ba tð Þ ¼ na tð Þ ð13Þ
where ωm(t) and fm(t) are the angular velocity and the specific force measured by the
IMU. gW is the local gravity vector in the world frame. R(q) is the rotational matrix
corresponding to a quaternion vector. ω =ωm(t)− bg(t) = [ωx, ωy, ωz]

T is the rotational
velocity of the IMU expressed in the IMU frame, and

Ω ωð Þ ¼ 0 �ωT

ω �⌊ω×⌋

� �
; ⌊ω×⌋ ¼

0 �ωz ωy

ωz 0 �ωx

�ωy ωx 0

2
4

3
5 ð14Þ

For the feature-related state, we consider the static features in this approach, and all the
features are expressed in the world frame, then we have

_xF tð Þ ¼ 0 ð15Þ
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4.3. Measurement Model. In order to make full use of the potential properties of
the stereo camera and MIMU, the navigation and features tracking algorithms are
tightly-coupled. We consider the feature’s pixel coordinates in the image plane as the
measurement. The camera used in our approach is a perspective camera, so an ideal
pinhole projective model for our camera is feasible. Additionally, the stereo camera
gives a rectified image pair and the intrinsic parameters of the camera were known
before. However, if the camera intrinsic and distortion parameters were unknown,
we can obtain those parameters by observing a chequered target and performing the
camera calibration with Bouguet’s camera calibration toolbox (Bouguet 2006),
although this is not in the scope of the work presented here.
Measurement zi is the projection of the ith feature, at position pfi

C= [xi,yi,zi]
T in the

camera frame onto the image plane, and the projective camera measurement model is:

zi tð Þ ¼ ui
vi

� �
þ ηi ¼

fxi=zi þ u0
fyi=zi þ v0

� �
þ ηi ð16Þ

where u0,v0 is the camera principal point, f is the focal length, and ηi is the measure-
ment 2 × 1 noise vector with covariance matrix Ri = σi

2I2.
To estimate the position of an observed feature in the camera frame, the methods

depend on the type of feature. For features in 3D point

pCfi ¼ h3D xI tð Þ; pi;3D tð Þ� �
¼ RCI RT

WI qWI tð Þð Þ pi;3D tð Þ � pWIW tð Þ� �� pICI
� � ð17Þ

and for features in ID point

pCfi ¼ hID xI tð Þ; pi;ID tð Þ� �
¼ RCI RT

WI pWCW ;i þ
1
ρi
m θi;fið Þ � pWIW

� 	
� pICI

� 	 ð18Þ

where the sub-index i denotes the ith feature; RCI, pCI
I are the relative rotation matrix

and translation between IMU frame and the camera frame, which are known in
advance.

5. THE IEKF-BASED INTEGRATION ALGORITHM
5.1. Linearization Error Model. We wish to write the error-state equations of the

system model. For brevity, we do not indicate dependence on time in the following
section. The IMU-related error-state is defined as

δxI ¼ δθTWI ; δvWIW
� �T

; δpWIW
� �T

; δbTg ; δb
T
a

h iT
ð19Þ

For the IMU position, velocity and biases, the error is defined as δx ¼ x� ~x, where x is
a true quantity, and ~x is the estimate of the quantity. However, for a quaternion, if the
true quaternion is denoted as q and the estimate ~q, a different error definition will be
employed:

q ¼ ~q⊗ δq ¼ ~q⊗ 1; δθT=2
� �T ð20Þ
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where the operator of ⊗ denotes quaternion multiplication (Titterton and Weston,
2004). It is worthwhile to note that the attitude error δθ is a 3 × 1 vector while a quat-
ernion q is a 4 × 1 vector. Therefore, the dimension of the vector δxI is 15 which is a
little different from that of the vector xI.
Similarly, the feature-related state vector is defined as:

δxF ¼ δx3D
δxID

� �
¼ x3D � ~x3D

xID � ~xID

� �
ð21Þ

Note that the number of the 3D and ID point areM and N respectively, so the dimen-
sion of the vector δxF is 3M+ 6N. The complete error-state is defined as:

δx ¼ δxTI ; δx
T
F

� �T¼ δxTI ; δx
T
3D; δx

T
ID

� �T ð22Þ
then we obtain

δ _xI
δ _xF

� �
¼

F
I

0
15× 3Mþ6Nð Þ

0 3Mþ6Nð Þ×15 0 3Mþ6Nð Þ× 3Mþ6Nð Þ

" #
δxI
δxF

� �
þ nI

0 3Mþ6Nð Þ×1

� �
ð23Þ

where

FI ¼
�⌊ ωm � bg

� �
×⌋ 03×3 03×3 �I3 03×3

�RWI⌊ am � bað Þ×⌋ 03×3 03×3 03×3 �RWI

03×3 I3 03×3 03×3 03×3
06×3 06×3 06×3 06×3 06×3

2
664

3
775; nI ¼

03×1
03×1
03×1
ng
na

2
66664

3
77775 ð24Þ

As shown in Equations (7) to (9), the total number of features observed in one image is
M +N. We stack all the individual measurements to form one 2(M +N) × 1 measure-
ment vector

z ¼ zT1;3D; :::; z
T
M;3D; z

T
Mþ1;ID; :::; z

T
MþN;ID

h iT
ð25Þ

and the error measurement model is

δz ¼ z� ~z ¼ Hδxþ η ð26Þ
Where η ¼ ηT1 ; :::; η

T
MþN

� �T
is the measurement noise vector with the covariance

matrix R = blkdiag(R1,… ,RM+N);

H ¼ HT
1;3D; :::;H

T
M;3D;H

T
Mþ1;ID; :::;H

T
MþN;ID

h iT
ð27Þ

is the measurement Jacobian matrix. The individual measurement matrix Hi is com-
puted as follows:

Hi;3D ¼ Ji;zRCI ⌊ RT
WI pWfi � pWIW


 �
 �
×⌋ 03×3 �RT

WI 06×3 ::: RT
WI :::

h i
Hi;ID ¼ Ji;zRCI ⌊ RT

WI pWfi � pWIW

 �
 �

×⌋ 03×3 �RT
WI 06×3 ::: Ji;ID :::

h i
ð28Þ
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with

Ji;z ¼ f

~z2i

~zi 0 �~xi
0 ~zi �~yi

� �
;

Ji;ID ¼ RT
WI I3 ½Ji;m; Ji;ρ�

� �
;

Ji;m ¼ 1
ρi

�cosfi sinψi �sinfi cosψi

cosfi cosψi �sinfi sinψi

0 cosfi

2
64

3
75;

Ji;ρ ¼ 1
ρi

pWCW ;i � pWIW

 �

� RWIpICI
h i

ð29Þ

5.2. Algorithm Implementation. As shown in the previous section, the equations
of the process and measurement model are nonlinear. In order to reduce the lineariza-
tion error of the nonlinear equations, the IEKF scheme is employed. The IEKF fuses
the inertial measurements and visual stereo image pairs in a tightly-coupled approach,
as shown in Figure 2.
There are mainly four parts in the flowchart shown in Figure 2. The measurements

of MIMU ωm(t) and am(t) are used for updating the inertial related state vector xF(t) by
employing Equations (10) to (13), which is the process of inertial navigation. Before
inertial navigation is available, there is an alignment of the IMU using a short
period of static inertial data for level alignment and magnetometer data for azimuth
alignment, which is detailed in the next section.
As for the image processing part, the images coming from the stereo camera are used

for tracking the observed features, and for detecting new features. During the feature
tracking process, a Kai-Square test based outlier rejection method is employed by uti-
lising predicted feature locations ~z tð Þ and variances S(t). Details on this part are also
discussed in a later section.
The system states management section is an intermediate link with three main tasks:

firstly, to manage the feature-related states according to the results of the image pro-
cessing; secondly, to compensate the predicted states based on the estimated state
errors from IEKF and finally to give the best states estimation.
The IEKF part is the core of the flowchart, with the aim of fusing the inertial mea-

surements and stereo image sequences. The detailed process of the IEKF can be seen in
the following section.

5.3. The Pseudo Code of the IEKFAlgorithm. In order to minimize linearization
errors of the nonlinear model, we employ the IEKF to update the states. The pseudo
code of the algorithm is as follows:
For j = 1: IterNum

1) Employ Equations (16), (17) and (18) to predict the measurement vector ~zj which
is a function of the current iteration ~xjkþ1;kþ1;

2) Compute the measurement Jacobian matrixHj around the current iteration using
Equations (27), (28) and (29);
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3) Compute the measurement error vector δzj ¼ z� ~zj and its variance matrix

Sj ¼ HjPkþ1;kH jT þ R ð30Þ

4) Compute the Kalman gain matrix Kj ¼ Pkþ1;kHjT Sj� ��1
and compute the state

error correction vector δx̂jkþ1;kþ1 ¼ δxjkþ1;kþ1 � Kj Hjδxjkþ1;kþ1 � δzj

 �

;

5) Compensate current state ~xjþ1
kþ1;kþ1 ¼ ~xjkþ1;kþ1 þ δx̂jkþ1;kþ1, then reset the error

state δxk+1,k+1
j+1 = 0.

End

The covariance matrix of the state x for the final state is updated by Pk+1,k+1 =
(I−KH)Pk+1,k, where the matrix K and H are from the final iteration.

5.4. The Static Alignment of the Low-Cost IMU. The purpose of the alignment of
the low-cost IMU is to estimate an initial attitude of the IMUwith respect to the world
frame and the initial inertial sensor biases.
Under the static condition, a conventional method to obtain the IMU attitude is

parse alignment (Titterton and Weston, 2004) by using gravity and the earth’s rotation
angle rate. However, it is unavailable in this work because of the high level noise of the
gyroscope in the IMU which can submerge the earth’s rotation angle rate. In our ap-
proach, we use gravity and accelerometer measurements to determine the tilt angle
(roll and pitch), and obtain the azimuth angle using the magnetometer. The tilt
angle can be calculated as follows:

θx ¼ atan 2 gy=gz
� �

θy ¼ �asin gx=gð Þ ð31Þ

where θx,θy are the tilt angle roll and pitch respectively, gx, gy, gz are the accelerometer
measurements of the IMU, and g is the determinant of local gravity. With the know-
ledge of roll and pitch angles and the magnetometer measurements, we can obtain the

Figure 2. The flowchart of the tight integration system of the stereo camera and the MIMU. The
flowchart is divided into four parts with different colours, namely inertial navigation part (black
part in the flowchart); image processing (blue) consisting of feature detecting, tracking and
outlier rejection; the part of IEKF (green) and the system states management part (red).
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yaw angle with respect to the magnetic north as follows

MxH

MyH

� �
¼ cos θy

0
cos θy sin θx
cos θx

�cos θx sin θy
sin θx

� � Mx

My

Mz

2
4

3
5 ð32Þ

θz ¼ atan 2 MyH ;MxH
� �þ δ ð33Þ

whereMx,My,Mz are the magnetometer measurements of the IMU, MxH,MyH are the
magnetometer measurements of the IMU frame projected on the horizontal plane, and
the local declination angle δwhich can be determined from a lookup table based on the
geographic location is added to correct for true north.
Once we get an initial attitude of the IMU, we perform a standard Kalman filter to

estimate the biases of inertial sensor and refine the other IMU-related states. In this
progress, the state of Kalman Filter is same to the IMU-related state in Equation
(6). As for the measurement model of the filter, the position and velocity of the
IMU are chosen as the measurment of the filter because of the position remaining un-
changed and the velocity remaining zero during the static period. The measurement
model is presented as follows:

δy ¼ 03×1 � ~vWIW
03×1 � ~pWIW

� �
¼ HyδxI þ ηy ð34Þ

where

Hy ¼ 03×3 I3 I3 03×6½ � ð35Þ
5.5. Feature Detection, Tracking, and Outlier Rejection. In order to find salient

features in the images efficiently, we use the fast corner detection (FAST) algorithm
proposed by Rosten and Drummond (2005; 2006) to detect corner features in the
left image. The major advantage of the FASTalgorithm is that it can reach an accurate
corner localization in an image with high efficiency. Once new features are detected,
then we track them in the current right image as well as the next left images by employ-
ing the Kanade Lucas Tomasi (KLT) tracker (Shi and Tomasi, 1994). The KLT tracker
allows tracking features over long image sequences and undergoing larger changes by
applying an affine-distortion model to each feature. Additionally, the left-right image
matching and the current-next image matching play different roles in our approach,
they are used for features initialization and filter updating respectively.
However, matched points are usually contaminated by outliers which may be caused

by image noise, occlusion, image blur and changes in viewpoint. Attention has been
paid to outlier rejection. For left-right matching, we employ the epipolar geometry
constraint for outlier removal. Since the stereo cameras used in our work are
aligned with each other, the epipolar geometry constraint (Szeliski, 2011) can be sim-
plified as vR− vL= 0 ± S. In this formulation, vR,vL are the pixel vertical coordinates in
the right and left image, and S (in our case, the value of S is 1·5 pixel) is a threshold
previously defined for acceptable noise level.
In the case of current and next image matching, we employ a Chi-square test to

detect and reject the outliers. At every epoch, when a new measurement is available,
then we have

δzTi S
�1
i δzi ∼ χ2 2ð Þ ð36Þ
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Where δzi is a 2 × 1 measurement residual vector with its variance Si which can obtain
from Equation (30), and χ2(2) represents a Chi-square distribution with a degree of
2. We reject any feature measurement whose residual is above the threshold.

5.6. Features Initialization and Management. Once a new feature is detected, it is
preprocessed with a feature initialization procedure. Firstly, features are classified ac-
cording to the comparison between their disparity and a given threshold (e.g. 7 pixels).
Features with high disparity are initialized as 3D features, and others are initialized as
ID features. For 3D feature, the initialization procedure is as follows:

p3D ¼ f qWI ; p
W
IW ; pCf


 �
¼ RWIRT

CIp
C
f þ RWIpICI þ pWIW ð37Þ

pCf ¼ g uL; uR; vL; vRð Þ ¼ b uL � u0ð Þ
d

;
b vL � v0ð Þ

d
;
bf
d

� �T
ð38Þ

where (u,v) is the pixel coordinate in the image, b is the baseline of the stereo camera,
and d = uL− uR is the disparity.
For the ID feature, we have

pID ¼ h qWI ; p
W
IW ; uL; uR; vL; vR

� �
XC ;YC ;ZC½ �T¼ pWIW þ RWIpICI
ψ ¼ arctan ny; nx

� �
f ¼ arctan nz;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx2 þ ny2

q� 	

ρ ¼ d=bf

ð39Þ

where [nx,ny,nz]
T=RWIRCI

T [u− u0, v− v0, f]
T. Note that the covariance of p3D, pID can

be derived from the image measurement error covariance matrix Ri and state covari-
ance matrix P.
In order to reduce the number of the state degrees of freedom, we convert the ID

point to the 3D point properly. The analysis of the linearity of the functions that
model both depth point and ID point distributions needs to be taken into consider-
ation. We utilise a linearity index presented by Civera et al. (2008) to get around
this issue. We calculate the linearity index at each step, and compare with a linearity
threshold to determine whether covert or not.

6. EXPERIMENT AND RESULTS
6.1. Experimental Procedure. In order to evaluate the performance of the pro-

posed algorithm, we performed experiments using a test rig which consists of the
VIS and a laptop for data acquisition (Figure 3(a)). The cameras’ field of view is
70° with a focal length of 3.8 mm, and the resolution of image is 640 × 480 pixels.
Stereo images are sampled at a rate of 10 Hz whereas MIMU provides measurements
at 100 Hz. In the following section, we will present a typical result from an outdoor test
which is a representative sample of the performance of the proposed algorithm across a
series of trials.
At the beginning of the experiment, we put the sensor on the ground to initialise the

attitude and inertial sensor biases with a stationary alignment for approximately one
minute. After this alignment period, the sensor was picked up and moved in the
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hand, at a walking speed of 3–5 km/h. The profile is a closed rectangle loop, with a
total length of about 120 m, and a height of about 1·5 m above the ground during
moving. In the scene, there are both near and far features, as shown in Figure 3(b),
which is a sample image from the data collection. Image sequence and corresponding
MIMU data were collected in a laptop. We processed the data in MATLAB with the
proposed algorithm on a Core 2 Duo 2.5 GHz desktop computer.

6.2. Results
6.2.1. Inertial-only Solution and Results. The collected data are composed of

1610 stereo pairs and 21800 inertial measurements. We did a stationary alignment
by using the first 6100 inertial measurements. The main purpose of the alignment pro-
cedure is to obtain an intial attitude of the IMUwith respect to the world frame (in our
case, the x, y, z-axes of the world frame are aligned with north, west and up direction
respectively) and to estimate the inertial sensor’s biases. Since the static state of the
IMU, the estimated velocity shown in Figure 5 and position shown in Figure 6 are
close to zero in the first 61 seconds. In order to show the importance of estimating
and compensating sensor biases of the MIMU, for inertial-only solution, we per-
formed two separate inertial navigation experiments. The two inertial navigation pro-
cesses use the same intial position, velocity and attitude, but are different in whether
compensating the sensor biases or not. We use “iner-only-uncomp” to denote the in-
ertial-only solution without compensating sensor biases and “iner-only-comp” to
denote that with compensating biases. The results are compared in Figures 4 to 6.
Due to the accumulative error of the biases and noises of the low-cost inertial
sensor, the iner-only-uncomp results deteriorated tremendously making them barely
useful for navigation tasks alone. On the other hand, the iner-only-comp approach,
which compensated the sensor biases, is able to keep an acceptable error for a short
time. The comparison evaluates the importance of estimating and compensating the
inertial sensor biases for the navigation task, especially the low-cost inertial sensors.
In addition, it is necessary to point out that in spite of the considerable accumulative
error in the iner-only solution, it is enough for VIS, because the consecutive measured
image can revise the accumulative error periodically.

6.2.2. Comparison of Iner-only, Vis-only and Vis-iner Solution. For simplicity,
iner-only, vis-only, and vis-iner are used to represent three different solutions, namely
inertial-only solution, visual-only solution and inertial-visual solution respectively.
The iner-only solution has been discussed above. As for the vis-only solution, we

Figure 3. (a) Data collection system, which consists of a laptop and the visual-inertial system.
(b) A sample image from outdoor data collection, which contains both near (circles) and far
(crosses) features.
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employed the algorithm presented in Civera et al. (2010). The estimated trajectories for
vis-only and vis-iner are also overlaid on the horizontal plane in Figure 4. The black
line in Figure 4 is the reference path which is obtained by manually tracking the real
trajectory according to the image sequences in the test scenario and overlaying the
tracked trajectory on the horizontal plane. As shown in Figure 4, both the vis-only
and vis-iner estimated trajectory generally correspond to the real path, which improves
the position error by several orders of magnitude over the iner-only result. Detailed vel-
ocity and position estimation are compared in Figures 5 and 6.

Figure 5. Estimated velocity comparison for iner-only-uncomp (magenta dotted line),
iner-only-comp (blue solid line), vis-only (green dash-dotted line) and vis-iner (red dash line)
solution. After the 61 seconds alignment period, the estimated velocity by iner-only-uncomp
diverged tremendously while the iner-only-comp keeps stable for a short time. The vis-only
and vis-iner solutions have similar results. In spite of that, the vis-iner shows a smoother
solution than the vis-only.

Figure 4. Estimated path in the horizontal plane for iner-only-uncomp (sensor biases
ignored), iner-only-comp (sensor biases compensated), vis-only and vis-iner solution. The
iner-only-uncomp and iner-only-comp solutions exceed the scale of the map after 70 and 76
seconds, respectively. The path estimated by vis-iner agrees well with the known path (the
black line) and shows smaller errors in position and heading than the vis-only solution.
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Note that, in this case, the reason for the similar results of the vis-only and vis-iner
solution is that there are numerous features in the scene. The profiles of vis-iner and vis-
only result (as shown in Figure 4) are more or less the same, however, the vis-iner result
shows less closure error than the vis-only result due to the smaller heading error in the
vis-iner solution. As for the height estimation, as shown in the right and bottom box of
Figure 6, the height estimated by the vis-iner solution is about 1.5 m and remains
stable, which is closer to the actual height. The total length of the trajectory is
about 120 m, and the position error of the vis-iner solution is less than 3 m.

6.2.3. Comparison of Using Different Types of Features. In order to compare the
performances of utilising different features, we ran our algorithm three times with near
features, far features and both near and far features (designated as “N&F”) respect-
ively. The results are compared in Figure 7. The results show that the far features-
only solution has a good heading estimation, but a poor position estimation.
Meanwhile, the near feature-only solution shows the opposite performance. The
results prove that the near features have much more range information whereas the
far features provide more bearing information. However, in our approach, the N&F
solution takes advantage of both the near and far features, providing a better perform-
ance than either of them.

6.2.4. Feature Tracking and Management. In our approach, IEKF is used for the
integration of the visual and inertial data, which can estimate the states’ value as well
as their variance. Figure 8 shows the features in the image plane and the world frame.
The results show that a large number of features-matching succeeded while a few fea-
tures failed. However, the failed features are mainly the features running out of the
field of view or shaking features. It is worth noting that this is the result of stable
filter running, in which the variance of the feature is estimated correctly, and can be
used for outlier rejection.

Figure 6. Estimated position comparison for iner-only-uncomp (magenta dotted line),
iner-only-comp (blue solid line), vis-only (green dash-dotted line) and vis-iner (red dash line)
solution. The left column shows that the vis-iner result has significant improvement over the
iner-only results. The zoomed in position results are shown in the right column. Compared to
the vis-only result, the vis-iner has higher estimation precision, especially in the height
direction (z-axis).
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We abandoned the failed features and detected a new one, the features in the world
frame are classified into ID and 3D representation (as shown in Figure 8 (b)). For the
ID features, they have great uncertainties in the range when they are initialised.
However, as the camera moves, the baseline increases, reducing the uncertainty in
the range of an ID feature. Once the depth estimate of the ID feature is sufficiently ac-
curate, we convert the 6D vector to the 3D representation, which will reduce the com-
putational burden. The dynamic process can be seen in an accompanying video file
available on request from the corresponding author.

6.2.5. Running Time of The System. In order to evaluate the real time perform-
ance of our system, the execution time of data processing is presented. At the begin-
ning, the algorithm just does the static alignment which does not utilise the images,
so the execution speed is very fast, as shown in Figure 9 (a). After the static alignment,
the system begins to execute the IEKF procedure which mainly contains several time-
consuming steps, namely image load, feature detect, feature track, IEKF update,
feature manage and others, and their detailed execution time for one second data

Figure 7. Performance comparison for using near, far, and N&F features. (a) shows the estimated
path in the horizontal plane and (b) gives the 3D trajectory estimation.

Figure 8. The features in the image (a) and their position and variance estimation in the world
frame (b). Most features in the image (a) matched successfully, with a few features failing and
being newly detected. In the 3D image (b), the red crosses indicate the position estimation of
currently tracked features, the blue and green ellipse indicate the variance of the features. Note
that, the blue and green ellipse look like bold lines radiating from a common centre (in our case,
the centre is the camera), which is the result of the great uncertainties in the range direction.
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are shown in Figure 9 (b). Clearly, the feature detection consumes the highest time and
is followed by the IEKF update procedure. At time 61 s, the execution time increases
dramatically, as shown in Figure 9 (a). The reason is that this is the first image frame
which spends much time on detecting the new features. After that, the execution time
falls to an average level which is about 0.5 s. The average execution time shows that our
system can work in real time and has a good real time performance.

7. CONCLUSIONS. In this paper, we combined a low-cost inertial sensor and
stereo cameras for an autonomous navigation task. Both the IMU and cameras are
passive sensors, which allow the vehicle to navigate in GPS denied/shaded environ-
ments. In contrast to previous approaches, we account for both near and far features
in the scene, in which the near features contain distance and orientation information
whereas the far features provide orientation information. The two kinds of features
are represented in terms of 3D points and Inverse Depth points respectively, and
fused with inertial data in IEKF. The number of the features can be inconstant, and
the ID features are properly converted into 3D ones for the sake of reducing the com-
putational burden and storage space.
The proposed algorithm has been applied to an outdoor test. The comparison shows

that the vis-iner approach has more multiple orders of magnitude improvement than
the inertial-only solution, and has a more precise and smooth motion estimation
than the visual-only. What is more, the result also shows that using both near and
far features has a certain advantage over using only one of them, with the position
error being less than 3 m for an outdoor path of 120 m length. With the results seen
herein, the tight integration of stereo cameras and low-cost inertial sensor proposed
in the paper has a precise motion estimation performance, and can be used for auton-
omous navigation tasks.
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Figure 9. The execution time of processing 1 s datawhich consists of 100 inertial measurements and
10 image pairs. (a) shows the execution time versus the real test time and (b) shows the main steps
and their execution times.
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