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Holomorphic Generation of Continuous
Inverse Algebras

Harald Biller

Abstract. We study complex commutative Banach algebras (and, more generally, continuous inverse

algebras) in which the holomorphic functions of a fixed n-tuple of elements are dense. In particu-

lar, we characterize the compact subsets of C
n which appear as joint spectra of such n-tuples. The

characterization is compared with several established notions of holomorphic convexity by means of

approximation conditions.

Introduction

By a classic result, the joint spectra of topologically generating n-tuples in complex
commutative Banach algebras are exactly the polynomially convex compact subsets
of C

n. The principal result of this paper is a similar characterization of the joint

spectra of holomorphically generating n-tuples in complex commutative Banach al-
gebras. Here, holomorphic generation refers to the holomorphic functional calculus,
which associates with every n-tuple a ∈ An in a complex commutative Banach al-
gebra A a continuous algebra homomorphism θa : O(Sp(a)) → A, where O(Sp(a))

denotes the algebra of germs of holomorphic functions near the joint spectrum Sp(a)
in its natural inductive limit topology. The tuple a is said to generate A holomorphi-
cally if the image of θa is dense in A. We find (Theorem 7.2 and Remark 7.3) that
a compact subset K ⊆ C

n is the joint spectrum of a holomorphically generating

n-tuple in a complex commutative Banach algebra if and only if every homomor-
phism from O(K) into C is the evaluation in a point of K. A compact subset of a
Stein manifold with this property is called auto-spectral.

Given a holomorphically generating n-tuple a ∈ An, one may strengthen the hy-
potheses by assuming that certain subalgebras B ⊆ O(Sp(a)) already have dense im-
ages under θa. This situation is interesting in its own right. Moreover, it helps to relate

auto-spectrality to other holomorphic convexity conditions (Corollary 7.4). If B con-
sists of the germs of holomorphic functions defined in a fixed open neighbourhood
U ⊆ C

n of Sp(a), then θa(B) is dense in A if and only if Sp(a) is holomorphically
convex in U . Similarly, if B consists of the germs of holomorphic functions defined

in holomorphically convex open neighbourhoods of Sp(a), then θa(B) is dense in A

if and only if Sp(a) is a Stein compactum, i.e., it has a neighbourhood basis consist-
ing of holomorphically convex open sets. Finally, let B ⊆ O(Sp(a)) be the algebra of
germs of quotients of holomorphic functions defined in a fixed open neighbourhood
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4 H. Biller

U ⊆ C
n of Sp(a) such that the denominator does not vanish anywhere in Sp(a).

Then θa(B) is dense in A if and only if Sp(a) is meromorphically convex in U . In

fact, compact subsets of a Stein manifold X which are holomorphically convex with
respect to some open neighbourhood can be characterized among the auto-spectral
subsets of X by a certain approximation property (Corollary 4.5). A similar character-
ization holds for Stein compacta (Proposition 5.4) and for meromorphically convex

compacta (Proposition 6.12).
Section 1 provides several important tools, and Section 2 introduces auto-spectral

compacta. Section 3 contains the direct proof that rationally convex compact subsets
of C

n are auto-spectral. Sections 4–6 treat holomorphic convexity, Stein compacta,

and meromorphic convexity, respectively. Section 7 applies all this material to the
theory of Banach algebras.

As the polynomials are contained in O(Sp(a)), every n-tuple which generates A in
the usual sense generates A holomorphically. Therefore, we are considering a wider

class of algebras, and polynomially convex compact subsets of C
n are examples of

auto-spectral sets. The main benefit of the concept of holomorphic generation, how-
ever, lies in the following advantage of O(Sp(a)) over the algebra of polynomials.
Even if O(Sp(a)) is not a Banach algebra, it is a complete locally convex algebra with

open unit group and continuous inversion. Locally convex algebras with these prop-
erties are called complete continuous inverse algebras. Large parts of the theory of
Banach algebras can be generalized to these algebras, and in fact they form a more
natural class than Banach algebras for many questions, including those considered

here. Continuous inverse algebras were introduced by Waelbroeck [45]. They play a
role in non-commutative geometry, in particular in K-theory [8, 10, 12, 35], and in
the theory of pseudo-differential operators [21]. Currently, they are attracting atten-
tion as the natural framework for Lie groups and algebras of infinite dimension [20].

They appear as coordinate algebras in root-graded locally convex Lie algebras [33].
Their role in the theory of Banach algebras is related to the fact that every com-
plex commutative Banach algebra A is “sandwiched”, for every choice of an n-tuple
a ∈ An, between an algebra of holomorphic germs and an algebra of continuous

functions by the functional calculus homomorphism θa : O(Sp(a)) → A and the
Gelfand homomorphism γA : A → C(ΓA). If a ∈ An holomorphically generates A,
then the Gelfand spectrum ΓA is naturally homeomorphic to Sp(a) ⊆ C

n. Under this
homeomorphism, the composition γA ◦θa : O(Sp(a)) → A → C(ΓA) corresponds to

the restriction map O(Sp(a)) → C(Sp(a)).
This observation could be applied in the theory of central extensions of infinite-

dimensional Lie groups. Every complete commutative continuous inverse algebra A

over C gives rise to a universal differential module d : A → Ω
1(A) and a natu-

ral universal period homomorphism per : A× → HC1(A), a 7→ [a−1da], where
HC1(A) := Ω

1(A)/ im(d) is the first cyclic homology space of A. Note that the period
homomorphism factors through π0(A) ∼= A×/ exp(A), which is naturally isomor-
phic to the first Čech cohomology group of ΓA because the analogue of the Arens–

Royden Theorem can be proved for continuous inverse algebras [5, 5.3.6]. If im(per)
is discrete, then the identity component of SLm(A) has a universal central extension
for every m ∈ N. This condition is satisfied in all examples for which it has been
checked, which is difficult because it depends on detailed understanding of HC1(A).
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Holomorphic Generation of Continuous Inverse Algebras 5

The examples include commutative C∗-algebras, for which the universal differen-
tial module vanishes (Maier [29]), the algebra of smooth functions on a compact

manifold (Maier and Neeb [30]), and the algebra of compactly supported smooth
functions on a non-compact manifold (Neeb [32]). In the light of the present paper,
it would be interesting to decide whether the image of the universal period homo-
morphism of O(K) is discrete for a compact subset K ⊆ C

n, at least if K satisfies one

of the additional conditions studied here. As a first step, Neeb and Wagemann [34]
have recently proved that the differential module of germs of holomorphic 1-forms
in K is universal for O(K).

1 The Algebras O(K) and A(K)

A continuous inverse algebra is a locally convex unital algebra A over C such that the
group A× of invertible elements is open in A and inversion is continuous. We will

usually assume that A is commutative. Then the Gelfand spectrum of A is the set ΓA

of (unital) algebra homomorphisms from A onto C, which are automatically contin-
uous. Under the topology of pointwise convergence on A, the Gelfand spectrum is a
compact Hausdorff space, and a Gelfand Theory can be developed as in the case of

Banach algebras [4, 1.7].
We associate several algebras with each compact subset K of a second countable

complex analytic manifold X. (We will always tacitly assume that all connected com-
ponents of a manifold have the same dimension.) The algebra O(K) is the algebra

of germs in K of holomorphic functions defined in open neighbourhoods of K in X.
We topologize O(K) as the locally convex direct limit of the Fréchet algebras O(U )
of holomorphic functions in U with the compact-open topology (or, equivalently,
of the Banach algebras O∞(U ) of bounded holomorphic functions with the supre-

mum norm), where U varies over the open neighbourhoods of K in X. In this
topology, O(K) is a complete continuous inverse Hausdorff algebra. Indeed, we may
choose a metric d on X compatible with the topology and consider O(K) as the lo-
cally convex direct limit of the Banach algebras O∞(Un), where Un is the union of

those connected components of
{

x ∈ X ; d(x, K) < 1
n

}
which meet K. In this di-

rected system, the connecting restriction maps are injective by the Identity Theorem.
According to Dierolf and Wengenroth [13], a locally convex direct limit of a sequence
of normed algebras with injective connecting maps is a locally m-convex algebra. In

particular, inversion in O(K) is continuous on its domain [31, 2.8]. Moreover, the
Arzela–Ascoli Theorem (see, for instance, [15, XII.6.4]) entails that almost all con-
necting maps in the above directed system are compact. A locally convex direct limit
of a sequence of Banach spaces with compact injective connecting maps is called

a Silva space, and these spaces are complete Hausdorff spaces (see [17, §7]). The
spectrum of an element f ∈ O(K) is the image of K under any representative of f ,
for which we just write f (K). In particular, the spectral radius r in O(K) is given
by r( f ) = ‖ f |K‖∞. Since the compositions of r with the limit maps are continu-

ous, we find that r is a continuous semi-norm on O(K). We conclude that the unit
group O(K)× is open in O(K). Further details of these arguments, as well as a gen-
eralization to algebras of germs with infinite-dimensional domain and range, can be
found in [3].
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6 H. Biller

Three more algebras associated to K ⊆ X are constructed as follows. The restric-
tion of an element of O(K) to K is a continuous complex-valued function on K. We

obtain a Banach algebra A(K) ⊆ C(K) as the closure of the image of the restriction
homomorphism O(K) → C(K). We define a complete continuous inverse algebra
OX(K) ⊆ O(K) as the closure of the image of the germ map O(X) → O(K), and a
Banach algebra AX(K) ⊆ A(K) as the closure of the image of the restriction map

O(X) → A(K).

Among the subalgebras of C(K) obtained from these algebras by restriction we
have the inclusions

O(X)|K ⊆ OX(K)|K ⊆

{
O(K)|K
AX(K)

}
⊆ A(K) ⊆ C(K).

All these algebras are different if X = C and K is the annulus

K =
{
ζ ∈ C ; 1

2
≤ |ζ| ≤ 1

}
.

Indeed, an element f ∈ OX(K)|K \ O(X)|K is defined by f (ζ) = (ζ − 2)−1. All
elements g ∈ AX(K) satisfy

∮
|ζ|=1

g(ζ) dζ = 0, so that we find a function g ∈

O(K)|K \ AX(K) by setting g(ζ) = ζ−1. Since

∞∑

k=1

1

k2
cos kt =

(t − π)2

4
−

π2

12

for all t ∈ [0, 2π], the function

h : K −→ C, ζ 7−→

∞∑

k=1

1

k2
ζk

is an element of AX(K) which is not real-differentiable on the unit circle and hence
does not belong to O(K)|K . The function g + h belongs to A(K), but not to O(K)|K ∪
AX(K), and A(K) 6= C(K) because the elements of A(K) are holomorphic in the
interior of K.

Remark 1.1 For a compact subset K of a complex analytic manifold, the algebra of
continuous complex-valued functions on K which are holomorphic in the interior
of K is another interesting closed subalgebra of C(K). It is also sometimes denoted

by A(K). This algebra and A(K) in our sense coincide for simple K, for instance
if K is convex, but they are different in general. A (topologically complicated) com-
pact subset of C for which this occurs is described by Gamelin [19, Section II.1].
We illustrate this phenomenon by three compact subsets of C

2 which are increas-

ingly complex and convincing. The first (and rather trivial) example is provided by
K :=

{
ζ ∈ C

2 ; |ζ1| < 1, ζ2 = 0
}

. Secondly, if K ⊆ C
2 is the unit sphere, then ev-

ery element of O(K) extends to a holomorphic function on a neighbourhood of the
unit ball (see, for instance, Range [36, II.1.6]). Therefore, every f ∈ A(K) satisfies

https://doi.org/10.4153/CJM-2007-001-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2007-001-2


Holomorphic Generation of Continuous Inverse Algebras 7

∮
|ζ1|=1

f (ζ1, 0) dζ1 = 0. While these two examples are “thin”, the third is a compact

subset K ⊆ C
2 which is the closure of its interior. Define

K1 :=
{
ζ ∈ C

2 ; ‖ζ‖2 ≤ 3, |ζ1| ≥ 1
}

,

K2 :=
{
ζ ∈ C

2 ; ‖ζ − (4, 0)‖2 ≤ 1
}

,

K3 :=
{
ζ ∈ C

2 ; 5 ≤ ‖ζ‖2 ≤ 6
}

, and

K := K1 ∪ K2 ∪ K3.

Then K1 ∩ K2 = {(3, 0)} and K2 ∩ K3 = {(5, 0)}, while K1 and K3 are disjoint.

The interior K◦ is the disjoint union of K◦
1 , K◦

2 , and K◦
3 . Every element of O(K) is

the germ of a holomorphic function defined in a connected open neighbourhood
of K, and hence of a holomorphic function defined in an open neighbourhood of
the compact ball with centre 0 and radius 6 by the extension phenomenon quoted

above. Therefore, every f ∈ A(K) satisfies
∮
|ζ1|=2

f (ζ1, 0) dζ1 = 0. Thus an element

of { f ∈ C(K) ; f |K◦ ∈ O(K◦)} which does not belong to A(K) is defined by ζ 7→ 1
ζ1

on K1 and ζ 7→ 1
3

on K2 ∪ K3. A slightly more complicated example for which the

interior of K is even a Stein domain is described by Range [36, VII.2.2].
Conditions on compact subsets K ⊆ C

n under which A(K) equals the algebra of
continuous complex-valued functions on K which are holomorphic in the interior
of K have been studied extensively; see Gamelin [19, Section VIII.8] for n = 1 and

Range [36, VII.2.1] for n > 1.

For the following lemma, recall the notion of the joint spectrum of an n-tuple
a = (a1, . . . , an) in a commutative continuous inverse algebra A over C. This is the
compact subset of C

n defined as

SpA(a1, . . . , an) := {(χ(a1), . . . , χ(an)) ; χ ∈ ΓA} .

As in the case of Banach algebras, the joint spectrum of a ∈ An is the set of λ ∈ C
n

such that the ideal of A generated by λ1 − a1, . . . , λn − an is proper.
The compact sets in which we are most interested are joint spectra of n-tuples in

continuous inverse algebras, so they are subsets of C
n. In Section 4, however, we will

also be led to consider more general ambient manifolds, namely, envelopes of holo-

morphy of open subsets of C
n. The natural class of manifolds for our theory is the

class of Stein manifolds. These can be defined as those complex analytic manifolds X

which admit a biholomorphic embedding ι : X →֒ C
n onto a closed submanifold of

some space C
n. Their intrinsic characterization will be recalled in Section 4. Their

most important property for us is the existence of an open neighbourhood U ⊆ C
n

of ι(X) and of a holomorphic map ρ : U → X which is a retraction for ι, i.e., which
satisfies ρ ◦ ι = idX . This fact is due to Docquier and Grauert [14]. A proof can
also be found in the monograph by Gunning and Rossi [23, VIII.C.8]. In fact, a Stein

manifold is a holomorphic neighbourhood retract in any complex manifold in which
it is embedded as a closed submanifold, see Siu [42, Corollary 1].

Here, Stein manifolds give rise to another pair of continuous inverse algebras,
which will be used in Section 5. Let K be a compact subset of a Stein manifold. The
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8 H. Biller

closure in O(K) of the algebra of germs of holomorphic functions defined in Stein
open neighbourhoods of K will be called OSt(K). The closure of its image under the

restriction map O(K) → A(K) will be called ASt(K).

Lemma 1.2 (Spectra of O(K) and of A(K)) Let X be a second countable complex an-

alytic manifold, and let K ⊆ X be a compact subset. Let A ⊆ O(K) be a closed unital

subalgebra, and set B := A|K ⊆ C(K), the closure of the image of A under the restriction

homomorphism O(K) → C(K). Then the spectral radii in A and in B are given by the

supremum norm on K. The restriction map f 7→ f |K : A → B induces a homeomor-

phism from ΓB onto ΓA. In particular, if f ∈ An then SpA( f ) = SpB( f |K ).

In the important special case that A = O(K), this result is due to Harvey and
Wells [24, 2.4]. It often allows us to switch between A and B. The algebra A is useful
because it consists of germs of holomorphic functions. The algebra B is only defined
in terms of A, but the description of its topology is more concrete, and it has the

advantage of being a Banach algebra.

Proof The spectrum of an element f ∈ C(K) is f (K). Similarly, if f is a holomor-
phic function defined in an open neighbourhood of K in X, then the germ f̃ of f

in K satisfies Sp
O(K)( f̃ ) = f (K). Hence the spectral radii in C(K) and in O(K) are

the supremum norm on K. In a Banach algebra, the spectral radius of an element

of a closed subalgebra with respect to that subalgebra equals the spectral radius with
respect to the whole algebra (see, for instance, Rudin [39, 10.18]). In a continuous
inverse algebra, the corresponding fact can be proved in a similar way [6, 1.7]. This
proves the assertion about spectral radii in A and in B.

The map ρ∗ : ΓB → ΓA induced by the restriction map ρ : A → B is continu-

ous, and it is injective because ρ(A) is dense in B. Since characters of continuous
inverse algebras are majorized by the spectral radius, every element χ ∈ ΓA factors
through ρ and induces a character of B. This proves that ρ∗ is surjective, and it is a
homeomorphism because the spectra are compact.

Finally, we choose f ∈ An and calculate

SpA( f ) =
{
χ×n( f ) ; χ ∈ ΓA

}
=

{
χ×n( f |K) ; χ ∈ ΓB

}
= SpB( f |K ).

(Here χ×n( f ) := (χ( f1), . . . , χ( fn)).)

Remark 1.3 In the situation of Lemma 1.2, note that B ⊆ C(K) is a realization of
the completed quotient of A ⊆ O(K) with respect to the spectral radius seminorm,

or, equivalently, a realization of the closure of the image of A under the Gelfand ho-
momorphism into C(ΓA). In particular, the set {evζ ; ζ ∈ ∂K} ⊆ ΓB of evaluations
in boundary points of K contains the Šilov boundary of B.

Under mild completeness assumptions, a commutative continuous inverse alge-
bra A over C admits an n-variable holomorphic functional calculus, of which we
recall the main statements. The appropriate completeness hypothesis is Mackey-com-

pleteness, which means that the Riemann integral
∫ 1

0
γ(t) dt exists for every smooth
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Holomorphic Generation of Continuous Inverse Algebras 9

curve γ : [0, 1] → A. This is equivalent to the convergence of all members of a cer-
tain class of Cauchy sequences. A convenient and comprehensive reference for this

concept is Section 2 of the monograph by Kriegl and Michor [28].

In the situation of the preceding paragraph, choose an n-tuple a ∈ An. The holo-
morphic functional calculus provides a continuous homomorphism of unital alge-

bras f 7→ f [a] : O(Sp(a)) → A which maps the germ of the j-th coordinate function
ζ 7→ ζ j : C

n → C to a j . For Banach algebras, the construction is due to Šilov [41] and
Arens and Calderón [1]. Bourbaki [11, I §4] presents an alternative approach. For
complete continuous inverse algebras, the holomorphic functional calculus is due to

Waelbroeck, who developed an early variant [44] and sketched the modern version
[46, 47]. A detailed account can be found in [4].

A property of the holomorphic functional calculus which is stressed by Wael-

broeck [47] and which we will use several times is its naturality with respect to homo-
morphisms ϕ : A → B between Mackey-complete commutative continuous inverse
algebras over C. For an n-tuple a ∈ An and a holomorphic germ f ∈ O(SpA(a)), this
means that ϕ( f [a]) = f [ϕ×n(a)]. (Note that the right-hand side is defined because

SpB

(
ϕ×n(a)

)
⊆ SpA(a).) Since the holomorphic functional calculus in the algebra C

is given by application of the function, a special case of naturality is the observation
that χ( f [a]) = f

(
χ×n(a)

)
holds for each χ ∈ ΓA.

Lemma 1.4 (Functional calculus in O(K) and in A(K)) Assume that A is either a

closed subalgebra of C(K) for some compact Hausdorff space K, or a closed subalgebra

of O(K) for some compact subset K of a second countable complex analytic manifold X.

Let a ∈ An, let U ⊆ C
n be an open neighbourhood of SpA(a), and let f ∈ O(U ). Then

f [a] = f ◦ a.

Proof In both cases, a|K is a continuous map from K into C
n. For each x ∈ K, the

evaluation homomorphism evx : A → C, g 7→ g(x) belongs to ΓA. Hence a(K) =

{ev×n
x (a) ; x ∈ K} ⊆ SpA(a), so that we can form f ◦ a.

Assume that A is a closed subalgebra of C(K) for some compact Hausdorff space K.
For any x ∈ K, naturality of the holomorphic functional calculus yields

f [a](x) = evx( f [a]) = f (ev×n
x (a)) = ( f ◦ a)(x).

(In particular, the composition f ◦ a is an element of A.)

Assume that A is a closed subalgebra of O(K) for some compact subset K of a
complex analytic manifold X. Naturality of the holomorphic functional calculus with

respect to the inclusion map ι : A →֒ O(K) means that ι( f [a]) = f [ι×n(a)], and it
implies that we may assume that A = O(K). First consider the case that K = {ζ},
a single point. Lemma 1.2 implies that ΓO(K) = {evζ}. Hence Sp

O(K)(a) = {a(ζ)},
and we may assume that U is an open polydisc in C

n. If f is a coordinate function,

the result is a fundamental property of the holomorphic functional calculus. Since
every element of O(U ) has a power series expansion around the centre of U which
converges on U , the coordinate functions generate a dense subalgebra of O(U ), and
the result extends to all f ∈ O(U ). In the case that K consists of more than one
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10 H. Biller

point, define a continuous homomorphism ϕζ : O(K) → O({ζ}) for each ζ ∈ K by
assigning to f ∈ O(K) its germ in ζ . By naturality,

ϕζ( f [a]) = f
[
ϕ×n

ζ (a)
]

= f ◦ (ϕ×n
ζ (a)) = ϕζ( f ◦ a).

Since f [a] and f ◦ a have the same germ at every ζ ∈ K, we conclude that they are
equal. (This argument was adapted from Waelbroeck [47, 5.2].)

2 Auto-Spectral Compacta

This section introduces the important concept of an auto-spectral compact subset of
a Stein manifold. The properties of these manifolds which are most relevant for our
purposes were briefly reviewed before Lemma 1.2.

Lemma 2.1 Let X be a Stein manifold, let K ⊆ X be compact, and let A be a closed

unital subalgebra of O(K) with OX(K) ⊆ A. Choose a closed (biholomorphic) embed-

ding ι : X →֒ C
n, and let ι̃ ∈ An be the germ of ι. Then SpA(ι̃) = ι(K) if and only if

every character of A is evaluation in a point of K.

Proof If ΓA consists of evaluations in points of K, then SpA(ι̃) = ι(K). Conversely,
assume that this equation holds, and choose χ ∈ ΓA. Choose an open neighbour-
hood U ⊆ C

n of ι(X) and a holomorphic map ρ : U → X such that ρ ◦ ι = idX . Let

ζ ∈ K be defined by ι(ζ) = χ×n(ι̃). Let f ∈ A. Then f̃ := f ◦ ρ ∈ O(ι(K)) =

O(SpA(ι̃)), and f̃ [ι̃] = f̃ ◦ ι = f by Lemma 1.4. Hence,

χ( f ) = χ
(

f̃ [ι̃]
)

= f̃
(
χ×n(ι̃)

)
= f̃ (ι(ζ)) = f (ζ),

by naturality of the holomorphic functional calculus. We conclude that χ is evalua-
tion in ζ ∈ K.

Note that we do not need the theory of Stein manifolds if we content ourselves with

the case that X = C
n and ι = idCn . The latter remark applies to large parts of the

present paper. Also note that in this case, the hypothesis OX(K) ⊆ A just means
that A contains the germs of the coordinate functions.

Definition 2.2 Let X be a Stein manifold, and choose a closed embedding ι : X →֒
C

n. A compact subset K ⊆ X is called auto-spectral if the following conditions are
satisfied, all of which are equivalent by Lemmas 1.2 and 2.1.

(i) Every character of O(K) is evaluation in a point of K.
(ii) Sp

O(K)(ι̃) = ι(K).
(iii) Every character of A(K) is evaluation in a point of K.
(iv) Sp

A(K)(ι|K) = ι(K).

Auto-spectral compact sets seem to have been introduced by Wells [48] under the
name of “holomorphically convex compact sets”. Some of their basic properties had
already been obtained by Rossi [37]. In view of a result due to Harvey and Wells [24,
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3.4], auto-spectral sets are what Grauert and Remmert [22, IV.1.1] call compact Stein
subsets.

It is easy to describe the effect of replacing O(K) by a closed subalgebra in the
preceding definition.

Lemma 2.3 Let X be a Stein manifold, let K ⊆ X be compact, and let A ⊆ O(K) be a

closed unital subalgebra with OX(K) ⊆ A. Then the following conditions are equivalent:

(i) Every character of A is evaluation in a point of K.

(ii) K is auto-spectral, and A = O(K).

(iii) K is auto-spectral, and A|K = A(K).

Proof Assume that condition (i) holds. Choose a closed embedding ι : X →֒ C
n,

an open neighbourhood U ⊆ C
n of ι(X), and a holomorphic retraction ρ : U → X

for ι. Then K is auto-spectral because

ι(K) ⊆ Sp
O(K)(ι̃) ⊆ SpA(ι̃) = ι(K).

For any f ∈ O(K), we can form the element ( f ◦ ρ)[ι̃] ∈ A, and Lemma 1.4 shows
that this element is equal to f . Thus we have proved condition (ii), which in turn

trivially implies condition (iii). Finally, condition (iii) implies (i) by Lemma 1.2.

Let X be a Stein manifold. For K ⊆ U ⊆ X with K compact and U open, Corol-
lary 4.5 will show that K is holomorphically convex in U if and only if K is auto-
spectral and OU (K) = O(K). In Proposition 5.4, we will see that a compact subset

K ⊆ X is a Stein compactum if and only if it is auto-spectral and the restrictions of
functions defined in Stein open neighbourhoods of K form a dense subset of A(K).

Auto-spectrality is a convexity condition in the sense of the following proposition
and its corollary.

Proposition 2.4 The intersection of any family of auto-spectral subsets of a Stein man-

ifold is again auto-spectral.

Proof Let (K j) j∈ J be a family of auto-spectral subsets of a Stein manifold X, and set
K :=

⋂
j∈ J K j . Choose a closed embedding ι : X →֒ C

n. For each j ∈ J, consider the
natural map from O(K j ) into O(K). This yields the middle inclusion in

ι(K) ⊆ Sp
O(K)(ι̃) ⊆ Sp

O(K j )
(ι̃) = ι(K j).

We conclude that Sp
O(K)(ι̃) = ι(K).

Corollary 2.5 Every compact subset K of a Stein manifold X is contained in a smallest

auto-spectral subset of X, the auto-spectral hull of K in X.
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Proof This follows from the preceding proposition, provided that K is contained in
an auto-spectral subset of X. Now Corollary 4.5 will yield that the holomorphically

convex hull of K in X is auto-spectral. (The argument is easier for the case that X =

C
n. Indeed, Remark 3.3 and Proposition 3.5 below imply that all convex compact

subsets of C
n are auto-spectral.)

Waelbroeck [47, 5.2] defined auto-spectral subsets of C
n under the name of “ana-

lytic compact sets”, and he essentially proved the following proposition about them.

As was recalled after Remark 1.3, Mackey-completeness is the weak completeness as-
sumption used in the construction of the holomorphic functional calculus.

Proposition 2.6 Let A be a Mackey-complete commutative continuous inverse algebra

over C, let a ∈ An, and let K ⊆ C
n be an auto-spectral compact set. Then a continuous

homomorphism ϕ : O(K) → A with ϕ×n(ĩdCn ) = a exists if and only if Sp(a) ⊆ K.

If this is the case then ϕ is uniquely determined by the equation ϕ( f ) = f [a] for all

f ∈ O(K).

Proof Waelbroeck’s proof for Banach algebras [47, 5.2] essentially applies to the
present situation. If such a homomorphism ϕ exists, then

SpA(a) = SpA(ϕ×n(ĩdCn )) ⊆ Sp
O(K)(ĩdCn ) = K.

Moreover, all f ∈ O(K) satisfy ϕ( f ) = ϕ( f [ĩdCn ]) = f [ϕ×n(ĩdCn )] = f [a] by
Lemma 1.4 and naturality of the holomorphic functional calculus. Conversely, if

SpA(a) ⊆ K then ϕ : f 7→ f [a] is a continuous homomorphism from O(K) into A

which maps ĩdCn to a.

Corollary 2.7 (Uniqueness of the holomorphic functional calculus) Let A be a Mac-

key-complete commutative continuous inverse algebra over C, let a ∈ An, and let K ⊆
C

n be the auto-spectral hull of Sp(a) in C
n. Then f 7→ f [a] is the unique continuous

homomorphism from O(K) into A which maps ĩdCn to a.

Remark 2.8 The corollary is the uniqueness statement for the restriction of the
functional calculus to functions which are holomorphic on a neighbourhood of the
auto-spectral hull of the joint spectrum. By contrast, the full holomorphic calcu-
lus for holomorphic functions defined in a neighbourhood of the joint spectrum is

unique only under certain additional conditions. (One such condition can be found
in Bourbaki [11, I §4], another condition is due to Zame [50].)

In his original definition of the holomorphic functional calculus, Waelbroeck [44]
only developed it for functions which are holomorphic on a neighbourhood of the

rationally convex hull (see the following section) of what is now called the joint spec-
trum of an n-tuple. Since rationally convex compact subsets of C

n are auto-spectral,
Waelbroeck thus achieved uniqueness of his functional calculus.
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Proposition 2.9 (Gelfand spectrum and connected components) Let X be a second

countable complex analytic manifold, and let K ⊆ X be a compact subset. For each

closed subset L ⊆ K, let ρL : O(K) → O(L) be the restriction homomorphism. Then

ΓO(K) =

⋃

L∈comp(K)

{γ ◦ ρL ; γ ∈ ΓO(L)} ,

where comp(K) denotes the set of connected components of K, and the union is disjoint.

Proof The key tool for the proof is the set of idempotent elements of O(K). At each
point of K, the germ of an idempotent is either 1 or 0. Since an idempotent element
induces a continuous function on K, its support is an open and closed subset of K.
Conversely, for each open and closed subset L ⊆ K, there is a unique idempotent

eL ∈ O(K) with support L, which is constructed in the following way. Choose disjoint
open neighbourhoods U of L and V of K \ L in the ambient manifold X, and let
eL ∈ O(K) be the germ of the function which is 1 on U and 0 on V . Note that eL only

depends on L and not on the choice of the neighbourhoods U and V .

We first prove that the union in the proposition is disjoint. Let L1, L2 ⊆ K be
different connected components, and choose γ j ∈ ΓO(L j ) for j ∈ {1, 2}. In a com-
pact Hausdorff space, the connected component of a point p is the intersection of the

open and closed neighbourhoods of p (see Engelking [16, 6.1.23]). By compactness,
there is an open and closed subset L ⊆ K such that L1 ⊆ L and L2 ∩ L = ∅. Now
γ1(ρL1

(eL)) = 1 and γ2(ρL2
(eL)) = 0. We conclude that γ1 ◦ ρL1

6= γ2 ◦ ρL2
.

Let γ ∈ ΓO(K). We must find a connected component L ⊆ K and a character
γ ′ ∈ ΓO(L) such that γ = γ ′ ◦ ρL. Define

S := {L ′ ⊆ K ; L ′ is open and closed in K, and γ(eL ′) = 1} .

If L1, L2 ∈ S, then γ(eL1∩L2
) = γ(eL1

· eL2
) = 1, so that L1 ∩ L2 ∈ S. Hence S

is closed under finite intersections. Since ∅ 6∈ S, compactness of K implies that
the intersection L :=

⋂
S is not empty. If L ′ ⊆ K is open and closed, then either

L ′ ∈ S or K \ L ′ ∈ S. This entails that L is connected. The restriction homomor-
phism ρL maps O(K) onto O(L) because every neighbourhood of L contains an open
and closed subset of K.

We claim that the kernel of ρL is contained in the kernel of γ. Indeed, let f ∈ O(U )
for an open neighbourhood U ⊆ X of K such that the germ f̃ of f in K satisfies
ρL( f̃ ) = 0. Then f vanishes on a neighbourhood V of L. There is an open and closed
subset L ′ ⊆ K such that L ⊆ L ′ ⊆ V . Since γ(eL ′) = 1 and f̃ = (1 − eL ′) f̃ , we find

that γ( f̃ ) = 0. This proves the claim.

We conclude that there is an algebra homomorphism γ ′ : O(L) → C which satis-
fies γ = γ ′ ◦ ρL.

Corollary 2.10 A compact subset of a Stein manifold is auto-spectral if and only if

each of its connected components is auto-spectral.
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Proof If a compact subset K of a Stein manifold X has only auto-spectral connected
components, then Proposition 2.9 shows that K is auto-spectral. Conversely, let L ⊆
K be a connected component which is not auto-spectral. Choose a closed embedding
ι : X →֒ C

n. Then ι(L) is a proper subset of L ′ := Sp
A(L)(ι|L). Since A(L) does

not contain any non-trivial idempotent, the Šilov Idempotent Theorem (see Bonsall
and Duncan [9, 21.5]) implies that ΓA(L) and hence L ′ are connected. Hence L ′ is
not contained in ι(K). Since Sp

A(K)(ι|K ) contains L ′, it properly contains ι(K). We

conclude that K is not auto-spectral.

Zame [49, 3.4] gives a completely different proof of this corollary in terms of the
cohomology of coherent analytic sheaves.

3 Rational Convexity

We introduce the concept of a rationally convex compact subset of C
n. It will be easy

to prove that such a set is auto-spectral.

Definition 3.1 Let P(C
n) denote the algebra of complex-valued polynomial func-

tions on C
n. Define the rationally convex hull of a compact subset K ⊆ C

n as

K̂R(Cn) :=
⋂

p∈P(Cn)

p−1(p(K)).

A compact subset K ⊆ C
n is called rationally convex if K = K̂R(Cn).

Note that K 7→ K̂R(Cn) is a hull operation in the sense that it preserves inclusion, that
K ⊂ K̂R(Cn), and that K̂R(Cn) is its own rationally convex hull.

Example 3.2 Every compact subset of C is rationally convex (use the identity func-

tion).

Remark 3.3 Using linear polynomials, we find that an affine complex hyperplane
which does not meet K, does not meet K̂R(Cn). Since every affine real hyperplane is

the union of affine complex hyperplanes, this entails that K̂R(Cn) is contained in the
convex hull of K. In particular, K̂R(Cn) is compact, and every convex compact subset
of C

n is rationally convex.

Example 3.4 For n ≥ 2, the rationally convex hull of the unit sphere S ⊆ C
n is

the unit ball B ⊆ C
n. To prove this, recall that every element of O(S) extends to

an element of O(B) (see, for instance, Range [36, II.1.6]). Now suppose that ζ ∈

B \ ŜR(Cn). Then there is a polynomial p ∈ P(C
n) such that p(ζ) 6∈ p(S), and we

may assume that p(ζ) = 0. The germ of 1
p

in S is an element of O(S) which does not

extend to an element of O(B), which is a contradiction.
Note that the same extension phenomenon entails that S is not auto-spectral.

Proposition 3.5 Every rationally convex compact subset of C
n is auto-spectral.
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Proof Let K ⊆ C
n be a rationally convex compact subset. Choose λ ∈ C

n \ K.

We must show that λ 6∈ Sp
O(K)(ĩdCn ). There is a polynomial p ∈ P(C

n) such that
p(λ) = 0 6∈ p(K). Expanding p at λ, we find a representation

p(ζ) =

∑

k∈N0
n

ck(ζ1 − λ1)k1 · · · (ζn − λn)kn (ζ ∈ C
n)

with coefficients ck ∈ C
n, where c0 = 0. We rewrite this as

p(ζ) =

n∑

j=1

(ζ j − λ j)q j(ζ) (ζ ∈ C
n)

with suitable polynomials q j ∈ P(C
n). Set U := C

n\p−1({0}) and define f1, . . . , fn ∈
O(U ) by f j := −

q j

p
. Then all ζ ∈ U satisfy

1 =

n∑

j=1

(λ j − ζ j) f j(ζ).

This proves that the ideal of O(K) generated by the elements λ j − ζ j is all of O(K),

so that λ 6∈ Sp
O(K)(ĩdCn ).

4 Holomorphic Convexity

This section uses the envelope of holomorphy of an open subset U of a Stein manifold
in order to study the Gelfand spectrum of AU (K), the closure in C(K) of

{ f |K ; f ∈ O(U )} ,

for a compact subset K ⊆ U . In particular, we show that K is auto-spectral if it is
holomorphically convex in U , which is a fundamental concept in complex analysis.
More precisely, the holomorphically convex compact subsets of U are characterized

among the auto-spectral compact subsets of U by an approximation property.

Lemma 4.1 (Evaluation homomorphisms) Let X be a second countable complex an-

alytic manifold, and let K ⊆ X be a compact subset. Let ρ : O(X) → AX(K) be

the restriction map, and choose a point ζ ∈ X. Then the evaluation homomorphism

evζ : O(X) → C, : f 7→ f (ζ) has the form χ ◦ ρ for some character χ ∈ ΓAX (K) if and

only if | f (ζ)| ≤ ‖ f |K‖∞ holds for all f ∈ O(X).

The set of all these points,

K̂O(X) := {ζ ∈ X ; ∀ f ∈ O(X) : | f (ζ)| ≤ ‖ f |K‖∞} ,

is called the holomorphically convex hull of K in X. For each point ζ ∈ K̂O(X), there is

a unique character ẽvζ ∈ ΓAX (K) such that evζ = ẽvζ ◦ ρ. Moreover, the map

ζ 7−→ ẽvζ : K̂O(X) −→ ΓAX (K)

is continuous. For ζ ∈ K and f ∈ AX(K), we have ẽvζ( f ) = f (ζ).
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Proof If evζ = χ ◦ ρ for some χ ∈ ΓAX (K), then all f ∈ O(X) satisfy

| f (ζ)| = | evζ( f )| = l|χ( f |K )
∣∣ ≤ ‖ f |K‖∞.

Conversely, if | f (ζ)| ≤ ‖ f |K‖∞ holds for all f ∈ O(X), then evζ factors through ρ,
and the induced complex homomorphism of im(ρ) ⊆ AX(K) is continuous and
hence extends to a character of AX(K). This character is uniquely determined by evζ

because im(ρ) is a dense subalgebra of AX(K).

In order to prove that the map ζ 7→ ẽvζ : K̂O(X) → ΓAX (K) is continuous, we must
show that the map ζ 7→ ẽvζ( f ) is continuous for every f ∈ AX(K). It suffices to
take f from the dense subalgebra im(ρ). But if f ∈ O(X), then ẽvζ( f |K) = f (ζ)

depends continuously on ζ .

Choose ζ ∈ K. Then ẽvζ( f ) = f (ζ) holds if f ∈ im(ρ). By continuity, this
equation extends to all f ∈ AX(K).

The holomorphically convex hull K̂O(X) is an important concept in complex anal-
ysis. Note that it is a closed subset of X. If U ⊆ X is an open subset with K ⊆ U ,
then K̂O(U ) ⊆ K̂O(X). Moreover, if X is an open subset of C

n, then K̂O(X) is contained
in the convex hull of K, as one sees by using the functions ζ 7→ e〈ζ,α〉, where α ∈ C

n.

Example 4.2 (a) Let K ⊆ U ⊆ C with K compact and U open. Then K̂O(U )

is the union of K with those bounded connected components of C \ K which are
contained in U . Indeed, let K ′ be this union. The Maximum Modulus Theorem (see
Rudin [40, 10.24]) implies that K ′ ⊆ K̂O(U ). Conversely, let ζ ∈ U \ K ′, choose

disjoint open neighbourhoods V1 of K ′ and V2 of ζ in C, and let f ∈ O(V1 ∪ V2)
be the characteristic function of V2. Since C \ U meets every bounded connected
component of C \ (K ′ ∪ {ζ}), Runge’s Theorem [40, 13.6] yields a complex rational
function g with poles only in C\U such that | f (η)−g(η)| < 1

2
for every η ∈ K ′∪{ζ}.

Then g|U ∈ O(U ) satisfies |g(ζ)| > 1
2

> ‖g|K ′‖∞ ≥ ‖g|K‖∞, and we conclude that

ζ 6∈ K̂O(U ).

(b) In higher dimensions, holomorphically convex hulls need not be compact. For
the classic example, consider the compact unit polydisc D :=

{
ζ ∈ C

2 ; |ζ1|, |ζ2| ≤ 1
}

and let K := {ζ ∈ D ; ζ1 = 0 or |ζ2| = 1}. Then every holomorphic function de-
fined in an open neighbourhood of K extends to a holomorphic function on an open

neighbourhood of D (see, for example, Range [36, II.1.1]). In particular, the set K is
not auto-spectral.

For a connected open neighbourhood U ⊆ C
2 of K, we claim that K̂O(U ) = U ∩D.

Indeed, the left-hand side is contained in the right-hand side because D is convex.
The reverse inclusion follows from the Maximum Modulus Theorem (in its one vari-
able version, actually).

(c) Recall that the polynomially convex hull of a compact subset K ⊆ C
n is the

compact set {ζ ∈ C
n ; ∀ p ∈ P(C

n) : |p(ζ)| ≤ ‖p|K‖∞}. An open subset U ⊆ C
n is

called polynomially convex if it contains the polynomially convex hull of each of its
compact subsets. For such an open subset U , the polynomials are dense in O(U ) (see
Gunning and Rossi [23, I.F.9]).
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If K ⊆ U ⊆ C
n with K compact and U open and polynomially convex, then

K̂O(U ) is the polynomially convex hull of K. Indeed, assume that ζ ∈ U belongs to

the polynomially convex hull of K, choose f ∈ O(U ), and let ε > 0. Then there is a
polynomial p ∈ P(C

n) such that | f (ζ) − p(ζ)| < ε and ‖( f − p)|K‖∞ < ε, whence

| f (ζ)| < |p(ζ)| + ε ≤
∥∥ p|K

∥∥
∞

+ ε <
∥∥ f |K

∥∥
∞

+ 2ε.

Thus | f (ζ)| ≤ ‖ f |K‖∞, and we conclude that ζ ∈ K̂O(U ).
(d) Every compact subset K ⊆ R

n is a polynomially convex subset of C
n. Indeed,

by (c), it suffices to show that K is holomorphically convex in C
n. Let ζ ∈ C

n \ K.

If ζ ∈ R
n then ζ 6∈ K̂O(Cn) because the polynomials are dense in C(K ∪ {ζ}) by the

Stone–Weierstrass Theorem (see Hewitt and Stromberg [25, 7.34]). If Im ζ j < 0 for
some j ∈ {1, . . . , n}, then the entire function ξ 7→ eiξ j : C

n → C separates ζ from K

because |eiζ j | = eRe iζ j > 1. Similarly, if Im ζ j > 0, then one uses the entire function

ξ 7→ e−iξ j .

A complex analytic manifold is called holomorphically convex if for every com-
pact subset, the holomorphically convex hull is compact. For instance, the preceding
example shows that all open subsets of C and all polynomially convex open subsets

of C
n are holomorphically convex manifolds. Stein manifolds can be characterized

in terms of holomorphic convexity. Indeed, a second countable complex analytic
manifold X of complex dimension n is a Stein manifold if and only if it is holomor-
phically convex, the holomorphic functions separate the points of X, and for every

ζ ∈ X, one can find n holomorphic functions on X which form a coordinate system
at ζ . In fact, the last two conditions are equivalent if X is holomorphically convex
(Hörmander [26, 5.2.12] and Taylor [43, Exercise 11.13]). Moreover, in the presence
of the other conditions, holomorphic convexity of X is equivalent to the property that

every continuous homomorphism from O(X) into C is evaluation in a point of X.
These facts are proved in many monographs on complex analysis; see, for instance,
Hörmander [26, 5.1.3, 5.1.5, 5.3.9] and Gunning and Rossi [23, VII.C.5, VII.C.13].
Note that an open subset of C

n is a Stein manifold if and only if it is holomorphically

convex.
Let X be a Stein manifold. A Riemann domain over X is a pair (Y, π) consisting of a

second countable complex analytic manifold Y and an analytic local diffeomorphism
π : Y → X. Following Hörmander [26, 5.4.4], we also require that the holomorphic

functions on Y separate points. For example, any open subset of X will be considered
as a Riemann domain together with the inclusion map. A holomorphic extension of
a Riemann domain (Y, π) over X is a Riemann domain (Y ′, π ′) over X such that Y ′

contains Y as an open submanifold, we have π ′|Y = π, and every f ∈ O(Y ) has

a unique holomorphic extension f̂ ∈ O(Y ′). By the Open Mapping Theorem (see
Rudin [39, 2.12]), the restriction map O(Y ′) → O(Y ) is an isomorphism of Fréchet
spaces.

An envelope of holomorphy of a Riemann domain (Y, π) over X is a holomorphic

extension (E, ε) of (Y, π) which is as large as possible, in the sense of the following
universal property: if (Y ′, π ′) is a holomorphic extension of (Y, π), then there is a
unique analytic map ϕ : Y ′ → E such that ϕ|Y = idY . Note that ε ◦ ϕ = π ′ be-
cause both restrict to π, and that ϕ∗ : O(E) → O(Y ′) is an isomorphism. Since the
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holomorphic functions on Y ′ separate points, the map ϕ is injective, and hence an
open embedding by the Open Mapping Theorem (see Range [36, I.1.21]). If (E ′, ε ′)

is another envelope of holomorphy of (Y, π), the universal property yields a unique
analytic diffeomorphism ϕ : E → E ′ such that ϕ|Y = idY . According to a classic
result (see Rossi [38], and Hörmander [26, 5.4.3, 5.4.5] or Gunning and Rossi [23,
I.G.11] for the case X = C

n), every Riemann domain (Y, π) over a Stein manifold X

has an envelope of holomorphy (E, ε). Since (E, ε) is unique up to a natural ana-
lytic diffeomorphism, one usually speaks of the envelope of holomorphy of (Y, π).
The envelope of holomorphy can also be characterized as the unique holomorphic
extension which is a Stein manifold (see Hörmander [26, 5.4.2, 5.4.3]).

Proposition 4.3 Let X be a Stein manifold, let (Y, π) be a Riemann domain over X

with envelope of holomorphy (E, ε), and let K ⊆ Y be a compact subset. Then AY (K) =

AE(K), and the map ϕ : K̂O(E) → ΓAY (K), ζ 7→ ẽvζ is a homeomorphism. The equation

K̂O(Y ) = K̂O(E) holds if and only if K̂O(Y ) is compact.

The fact that ϕ is a homeomorphism was first observed by Rossi [37, 2.3], cf. Gunning
and Rossi [23, VII.A.7].

Proof The definition of a holomorphic extension implies that AY (K) = AE(K).

The assertion that ϕ is a homeomorphism follows from the fact that E is a Stein
manifold. Indeed, K̂O(E) is compact because E is holomorphically convex, and ϕ is
bijective because every continuous homomorphism from O(E) into C is evaluation in

a unique point of E. Hence ϕ is a continuous bijection between compact Hausdorff
spaces and therefore a homeomorphism.

If K̂O(Y ) = K̂O(E), then K̂O(Y ) is compact. Conversely, assume compactness of
K̂O(Y ). Since K̂O(Y ) = Y ∩ K̂O(E), this implies that ϕ(K̂O(Y )) is an open and closed
subset of ΓAY (K). By the Šilov Idempotent Theorem (see, for instance, Bonsall and

Duncan [9, 21.5]), the characteristic function of ϕ(K̂O(Y )) in ΓAY (K) is the Gelfand
transform of an idempotent e ∈ AY (K). If ζ ∈ K, then e(ζ) = ẽvζ(e) = 1. Hence,

e = 1, and ϕ(K̂O(Y )) = ΓAY (K). We conclude that K̂O(Y ) = K̂O(E).

Corollary 4.4 (Spectrum of AU (K)) Let X be a Stein manifold, and let K ⊆ U ⊆ X

with K compact and U open. Choose a closed embedding ι : X →֒ C
n. Then the follow-

ing conditions are equivalent:

(i) Sp
AU (K)(ι|K ) ⊆ ι(U );

(ii) ΓAU (K) = {ẽvζ ; ζ ∈ K̂O(U )};

(iii) K̂O(U ) is compact;

(iv) Sp
AU (K)(ι|K ) = ιl(K̂O(U )).

Proof Let (E, ε) be the envelope of holomorphy of (U , idU ). Let ζ ∈ K̂O(E). Ac-
cording to Lemma 4.1, the evaluation homomorphism evζ : O(E) → C induces a
character ẽvζ of AE(K) = AU (K). Since ε|U = idU , we find that

ι(ε(ζ)) = ev×n
ζ (ι ◦ ε) = ẽv

×n
ζ (ι ◦ ε|K ) = ẽv

×n
ζ (ι|K ).

https://doi.org/10.4153/CJM-2007-001-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2007-001-2


Holomorphic Generation of Continuous Inverse Algebras 19

Proposition 4.3 implies that Sp
AU (K)(ι|K) = ι(ε(K̂O(E))).

By the same proposition, condition (ii) is equivalent to the equation K̂O(U ) =

K̂O(E), which is equivalent to (iii). If K̂O(U ) = K̂O(E), then

Sp
AU (K)(ι|K ) = ι(ε(K̂O(E))) = ι(K̂O(U )),

which is (iv). Condition (iv) implies (i). Since

ι(K̂O(U )) = ι(U ∩ K̂O(E)) ⊆ ι(ε(K̂O(E))) = Sp
AU (K)(ι|K )

and K̂O(U ) is closed in U , condition (i) implies (iii).

Corollary 4.5 (Auto-spectrality and holomorphic convexity) Let U be a Riemann

domain over a Stein manifold, and let K ⊆ U be compact. Then the following conditions

are equivalent:

(i) K is holomorphically convex in U , i.e., K̂O(U ) = K.

(ii) K is auto-spectral, and OU (K) = O(K).

(iii) K is auto-spectral, and AU (K) = A(K).

Proof Since U is an open subset of its envelope of holomorphy which is a Stein
manifold, Lemma 1.2 and Corollary 4.4 show that condition (i) holds if and only

if ΓOU (K) consists of evaluations in points of K. By Lemma 2.3, this is equivalent to
both (ii) and (iii).

Corollary 4.6 (Auto-spectrality and polynomial convexity) A compact subset K ⊆
C

n is polynomially convex if and only if it is auto-spectral and the polynomials are dense

in A(K) or, equivalently, in O(K).

Proof The polynomially convex hull of a compact subset K ⊆ C
n equals K̂O(Cn) by

Example 4.2, and the polynomials are dense in ACn (K) and in OCn (K). Therefore, the

assertions follow from Corollary 4.5.

5 Stein Compacta

Every compact subset of a Stein manifold which is holomorphically convex with

respect to some open neighbourhood is a Stein compactum, and every Stein com-
pactum is auto-spectral. In addition to the proofs of these facts, this section contains
several examples. One of them, which is due to Björk [7], is an auto-spectral subset
of C

2 which is not a Stein compactum.

Let X be a second countable complex analytic manifold such that O(X) separates

points. For a compact subset K ⊆ X, let USt(K) be the set of Stein open neighbour-
hoods of K. (Note that an open subset of X is a Stein manifold if and only if it is
holomorphically convex.) A Stein compactum in X is a compact subset K ⊆ X such
that USt(K) is a neighbourhood basis of K.

https://doi.org/10.4153/CJM-2007-001-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2007-001-2


20 H. Biller

Example 5.1 (a) Let X be a second countable complex analytic manifold such
that O(X) separates points. Then any compact subset K ⊆ X such that K̂O(X) = K is a

Stein compactum. Indeed, K has a neighbourhood basis consisting of open analytic
polyhedra, and every such neighbourhood is holomorphically convex and hence a
Stein manifold. The proofs given by Range [36, II.3.9, II.3.10] for subsets of C

n carry
over to the present situation.

(b) Every compact subset of C is a Stein compactum by Example 4.2. However, not
every compact subset of C has an open neighbourhood in which it is holomorphically

convex. As an example, consider the compact set

([0, 1] + {0, i}) ∪ i[0, 1] ∪
⋃

n∈N

( 1

n
+ i[0, 1]

)
.

Example 5.1 implies that every compact subset of a Stein manifold X has a rel-
atively compact holomorphically convex open neighbourhood. Since the intersec-
tion of two holomorphically convex open subsets of X is holomorphically convex, a
compact subset of X is a Stein compactum if and only if it is an intersection of holo-

morphically convex open sets. In particular, the intersection of any family of Stein
compacta in X is again a Stein compactum. Therefore, every compact subset K ⊆ X

is contained in a smallest Stein compactum which we denote by K̂St. This compactum
can also be described as K̂St =

⋂
USt(K).

For a compact subset K of a Stein manifold, recall that OSt(K) was defined as the
closure in O(K) of the algebra of germs of holomorphic functions defined in some

member of USt(K). The closure of the image of OSt(K) under the restriction map
O(K) → A(K) is the Banach algebra ASt(K).

Proposition 5.2 For a compact subset K of a Stein manifold X, the restriction homo-

morphism ρ : A(K̂St) → ASt(K), f 7→ f |K is an isomorphism.

Proof Set A := { f |K̂St
; f ∈ O(K̂St)} ⊆ C(K̂St). We claim that all f ∈ A satisfy

‖ f ‖∞ = ‖ f |K‖∞. It is clear that the left-hand side is greater than or equal to the

right-hand side. Conversely, choose U ∈ USt(K), and note that K̂St ⊆ K̂O(U ) because
the right-hand side is a Stein compactum which contains K. If f ∈ O(U ), then

‖ f |K̂St
‖∞ ≤ ‖ f |K̂O(U )

‖∞ ≤ ‖ f |K‖∞

by the definition of K̂O(U ). This proves the claim. Hence the restriction ρ|A : A →
ASt(K) is a dense isometric embedding, and ρ is the completion of ρ|A.

Corollary 5.3 Let K ⊆ C
n be a compact subset. Then for every ζ ∈ K̂St, evaluation

in ζ induces a unique character ẽvζ : ASt(K) → C.

Proposition 5.4 (Auto-spectrality and Stein compacta) Let X be a Stein manifold,

and let K ⊆ X be compact. Choose a closed embedding ι : X →֒ C
n.

(i) We have ΓASt(K) = {ẽvζ ; ζ ∈ K̂St} and Sp
ASt(K)(ι|K ) = ι(K̂St).
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(ii) The set K is a Stein compactum if and only if it is auto-spectral and satisfies

ASt(K) = A(K) or, equivalently, OSt(K) = O(K).

The fact that Stein compacta are auto-spectral is due to Rossi [37, 2.12].

Proof If U ∈ USt(K), then ι(K) ⊆ Sp
A(K)(ι|K ) ⊆ Sp

AU (K)(ι|K ) = ι(K̂O(U )), where
the last equation follows from Corollary 4.4. Now assume that K is a Stein com-
pactum. Then OSt(K) = O(K) and ASt(K) = A(K) hold by definition. Moreover,
K =

⋂
U∈USt(K) K̂O(U ), which implies that ι(K) = Sp

A(K)(ι|K). Thus K is auto-

spectral.

Since K̂St is auto-spectral, statement (i) now follows immediately from Proposi-
tion 5.2.

Conversely, assume that K is auto-spectral. If OSt(K) = O(K), then ASt(K) =

A(K). Assume that the latter equation holds. Then

ι(K) = Sp
A(K)(ι|K ) = Sp

ASt(K)(ι|K ) = ι(K̂St)

by statement (i). We conclude that K = K̂St, which means that K is a Stein com-

pactum.

Example 5.5 Define D and K as in Example 4.2(b). The arguments in that example
show that D ⊆ Sp

A(K)(idK) and that K̂St = D. Hence, Sp
A(K)(idK) = D.

Remark 5.6 A subset S ⊆ C
n is called a Reinhardt subset (with centre 0) if for all

ζ ∈ S and all η ∈ C
n with |η1| = · · · = |ηn| = 1, the point (η1ζ1, . . . , ηnζn) also

belongs to S. If this even holds for all η ∈ C
n with |η1|, . . . , |ηn| ≤ 1, then S is called

a complete Reinhardt subset (with centre 0).

For such subsets, there is a particularly easy characterization of holomorphic con-
vexity. Let U ⊆ C

n be an open connected Reinhardt subset with 0 ∈ U . Then U is
holomorphically convex if and only if it is complete and logarithmically convex, which

means that the subset

{(t1, . . . , tn) ∈ R
n ; (et1 , . . . , etn ) ∈ U}

of R
n is convex (see, for instance, Hörmander [26, 2.5.5, 2.5.8]). If U is not holomor-

phically convex, this shows that there is a unique smallest holomorphically convex
open Reinhardt subset V ⊆ C

n such that U ⊆ V . Every holomorphic function on U

has a unique holomorphic extension to V (see Hörmander [26, 2.4.6]). In other
words, the domain V is a realization of the envelope of holomorphy of U .

Let K ⊆ C
n be a compact connected Reinhardt subset with 0 ∈ K. By the above

discussion, K̂St is the smallest complete logarithmically convex Reinhardt subset of C
n

which contains K, and every f ∈ O(K) extends uniquely to an element of O(K̂St).

In particular, K is a Stein compactum if and only if it is a complete Reinhardt set
and logarithmically convex. Moreover, this holds if and only if K is auto-spectral
(cf. Björk [7, 4.4]). Indeed, if ζ ∈ K̂St \K, then evaluation in ζ is a character of O(K̂St)
and hence of O(K).
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Similar facts can be shown for Reinhardt sets which do not contain their centre.
In particular, a compact connected Reinhardt subset of C

n is a Stein compactum if

and only if it is auto-spectral.

For 0 ≤ r1 ≤ R1 and 0 ≤ r2 ≤ R2, we define a compact Reinhardt subset of C
2 by

K(r1, r2; R1, R2) :=
{
ζ ∈ C

2 ; r1 ≤ |ζ1| ≤ R1, r2 ≤ |ζ2| ≤ R2

}
.

For instance, the set K from Example 4.2(b) can concisely be written as K(0, 0; 0, 1)∪
K(0, 1; 1, 1). Using the functions ζ 7→ ζ j and ζ 7→ ζ−1

j for j ∈ {1, 2}, we find that
each K(r1, r2; R1, R2) is holomorphically convex in any sufficiently small open neigh-

bourhood. In particular, K(r1, r2; R1, R2) is a Stein compactum. We will now use
these sets in order to illustrate two important phenomena. The first of the following
two examples is essentially due to Björk [7].

Example 5.7 The compact subset

K := K(0, 0; 0, 1)︸ ︷︷ ︸
=:K0

∪
⋃

n∈N

K(2−n, 1 − 2−n; 2−n+1, 1 − 2−n)︸ ︷︷ ︸
=:Kn

⊆ C
2

is auto-spectral by Corollary 2.10, but it is not a Stein compactum. Indeed, let

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

Example 5.7

U ⊆ C
2 be a holomorphically convex open neighbourhood of K. Then the con-

nected component U0 of 0 in U contains K0 ∪
⋃

n>N Kn for some N ∈ N. Hence U0
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contains
⋃

n>N K(0, 0; 2−n+1, 1 − 2−n). But then U0 must also contain KN . Descend-
ing inductively, we find that U must contain

K(0, 0; 0, 1) ∪
⋃

n∈N

K(0, 0; 2−n+1, 1 − 2−n),

and K̂St is the logarithmically convex hull of this compact Reinhardt set.

From a similar example, Björk [7] deduces a compact connected auto-spectral
subset of C

3 which is not a Stein compactum.

Example 5.8 This example will show that the auto-spectral hull of a compact sub-

set of C
m cannot be computed by repeatedly assigning K 7→ Sp

O(K)(ĩdCm ). (Since

this assignment preserves inclusion, the spectrum Sp
O(K)(ĩdCm ) is contained in the

auto-spectral hull of K.) Define

K0 := K(0, 0; 0, 2) ∪ K(1, 1; 1, 1) ∪ K
(

1,
1

2
; 2,

1

2

)

∪
⋃

n∈N

K
( n − 1

n
,

n + 1

n
;

n

n + 1
,

n + 1

n

)
.

For n ∈ N, set Kn := Sp
O(Kn−1)(ĩdC2 ). Using Proposition 2.9 and Remark 5.6, one

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

Example 5.8

inductively computes that

Kn = K0 ∪ {ζ ∈ C
2 ; |ζ1| ≤

n

n + 1
, |ζ2| ≤ 2, |ζ1 · ζ2| ≤ 1}.
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Hence the sets Kn form a strictly increasing sequence. In particular, assigning

Sp
O(K)(ĩdCm ) to a compact set K ⊆ C

m is not a hull operation. The union
⋃

n∈N
Kn is

not closed. Its closure is the set

K∞ := K0 ∪
{
ζ ∈ C

2 ; |ζ1| ≤ 1, |ζ2| ≤ 2, |ζ1 · ζ2| ≤ 1
}

.

It is still not auto-spectral. The auto-spectral hull of K0 is

{
ζ ∈ C

2 ; |ζ1| ≤ 2, |ζ2| ≤ 2, |ζ1 · ζ2| ≤ 1
}

.

It coincides with Sp
O(K∞)(ĩdC2 ).

Note that not every holomorphic function defined in an open neighbourhood

of K0 extends to a holomorphically convex open neighbourhood. An example is
provided by any non-constant locally constant function defined in a neighbourhood
of K0. A compact connected set for which this phenomenon occurs can be derived
from Range [36, Exercise II.3.13].

6 Meromorphic Convexity

In this section, we relate holomorphic convexity and Stein compacta to the concept

of rational convexity which has been introduced in Section 3.

Definition 6.1 Let X be a second countable complex analytic manifold, and let K ⊆
X be a compact subset. The meromorphically convex hull of K in X is defined as

K̂M(X) :=
⋂

f∈O(X)

f −1
(

f (K)
)
.

Note that every open subset U ⊆ X with K ⊆ U satisfies K̂M(U ) ⊆ K̂M(X).

Remark 6.2 Let D( f (K)) denote the smallest closed disc around 0 in C which con-
tains f (K). Then the holomorphically convex hull of K in X can be expressed as
K̂O(X) =

⋂
f∈O(X) f −1

(
D( f (K))

)
. This observation proves that K̂M(X) ⊆ K̂O(X).

Lemma 6.3 Let X be a second countable complex analytic manifold, let K ⊆ X be a

compact subset, and let ζ0 ∈ K̂M(X). Then all f , g ∈ O(X) with 0 6∈ g(K) satisfy

∣∣∣
f (ζ0)

g(ζ0)

∣∣∣ ≤
∥∥∥

f

g

∣∣∣∣
K

∥∥∥
∞

.

Proof The holomorphic function

h : X −→ C, ζ 7−→ f (ζ0) · g(ζ) − f (ζ) · g(ζ0)

vanishes in ζ0. Hence there is an element ζ ∈ K such that h(ζ) = 0. This equation is

equivalent to f (ζ0)
g(ζ0)

=
f (ζ)
g(ζ)

.
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The lemma shows that to some extent, the definition of meromorphic convex-
ity fits into the general concept of convexity with respect to a fixed set of functions.

However, a meromorphic function need not be the quotient of two global holomor-
phic functions. In order to understand the situation, we briefly recall the definition
of a meromorphic function on a complex analytic manifold X. For each ζ ∈ X,
let Mζ be the field of fractions of the domain Oζ := O({ζ}). In the disjoint union

M :=
⋃

ζ∈X Mζ , consider the subsets { fζ/gζ ; ζ ∈ U}, where U ⊆ X is a connected
open subset, f , g ∈ O(U ), fζ and gζ are the germs at ζ ∈ U , and g is not the zero
function on U . These subsets are the basis of a topology which turns M with the
natural projection onto X into a sheaf, the sheaf of germs of meromorphic functions.

A meromorphic function on an open subset U ⊆ X is a section of M over U . Note
that a meromorphic function on X need not give rise to a continuous function from X

into the Riemann sphere C∪{∞}. This problem already occurs for the meromorphic
function on C

2 given by ζ 7→ ζ1/ζ2.

Since Oζ ⊆ Mζ , we may define the singular set of a meromorphic function m

on X as the subset S(m) := {ζ ∈ X ; m(ζ) 6∈ Oζ}. This is a closed subvariety of X

(see Gunning and Rossi [23, VIII.B.4]), and the restriction of m to R(m) := X \
S(m) is a holomorphic function. A singular point ζ0 ∈ S(m) is called a pole of m if
limζ→ζ0, ζ∈R(m) m(ζ) = ∞. The singular points which are not poles are called points

of indeterminacy of m.

Lemma 6.4 Let X be a second countable complex analytic manifold such that O(X)
separates points, let K ⊆ X be compact, and choose ζ ∈ X. Then the implications

(i) ⇒ (ii) ⇒ (iii) ⇒ (iv) hold among the following statements.

(i) There exists f ∈ O(X) such that f (ζ) 6∈ f (K), i.e., ζ 6∈ K̂M(X).

(ii) There exists a meromorphic function m on X such that K ∪ {ζ} ⊆ R(m) and

|m(ζ)| > ‖m|K‖∞.

(iii) There exists a meromorphic function m on X such that K ⊆ R(m) and ζ is a pole

of m.

(iv) There exists a meromorphic function m on X such that K ⊆ R(m) and ζ ∈ S(m).

If X is a Stein manifold and H2(X; Z) = 0, then the four statements are equivalent.

Proof Assume that f ∈ O(X) satisfies f (ζ) 6∈ f (K). After adding a suitable con-
stant to f , we may assume that 0 < | f (ζ)| < | f (η)| holds for every η ∈ K.
Then m := 1/ f is a meromorphic function on X with K ∪ {ζ} ⊆ R(m) and

|m(ζ)| > ‖m|K‖∞.

Assume that m is a meromorphic function on X with these properties. We may
assume that every connected component of X meets K ∪ {ζ}. The meromorphic

function m − m(ζ) neither has zeros nor singularities in a neighbourhood of K. If m

is not locally constant at ζ , then (m − m(ζ))−1 is a meromorphic function on X

with the properties stipulated in statement (iii). If m is locally constant at ζ , then the
connected component of ζ in X does not meet K. Since O(X) separates points, it is

easy to construct a meromorphic function on X which is regular in a neighbourhood
of K and has a pole at ζ .

The implication (iii) ⇒ (iv) is trivial.
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Assume that X is a Stein manifold and that m is a meromorphic function on X

such that K ⊆ R(m) and ζ ∈ S(m). Then there are f , g ∈ O(X) such that m = f /g

[23, VIII.B.10], and g(ζ) = 0 because ζ ∈ S(m). Assume, moreover, that H2(X; Z) =

0. Then we may choose the holomorphic functions f and g such that the germs fζ
and gζ are relatively prime for each ζ ∈ X (Gunning and Rossi [23, VIII.B.3 and 13]).
Then S(m) is exactly the set of zeros of g. In particular, 0 6∈ g(K) because K ⊆ R(m).

Thus under these additional assumptions, statement (iv) implies (i).

The preceding lemma shows that there is no obvious choice of the definition of
meromorphic convexity on a general complex analytic manifold. Our definition is

the strongest and also the easiest.
Our distinction of poles and points of indeterminacy follows Range [36, VI, §4].

Rossi [37] calls S(m) the poleset of m. Rossi’s paper is an important source for the
present section, in particular for Lemmas 6.6, 6.7, and 6.11. However, some of Rossi’s

arguments seem to disregard the possible presence of points of indeterminacy, so that
it seemed worthwhile to adapt his proofs. This also yields an extension of Rossi’s
results beyond the framework of Stein manifolds.

Remark 6.5 Let U ⊆ C
n be open and polynomially convex, and let K ⊆ U be

compact. Then K̂M(U ) coincides with the rationally convex hull of K, i.e.,

K̂M(U ) =

⋂

p∈P(Cn)

p−1
(

p(K)
)
.

Indeed, the forward inclusion is trivial, and the reverse inclusion follows easily from
the fact that the polynomials are dense in O(U ), which was mentioned in Exam-

ple 4.2.

For a meromorphically convex compact subset of a complex analytic manifold, a
simple compactness argument yields what might be called a neighbourhood basis of

meromorphic polyhedra.

Lemma 6.6 (Meromorphic polyhedra) Let X be a second countable complex analytic

manifold, let K ⊆ X be a meromorphically convex compact subset, and let U ⊆ X be

a relatively compact open neighbourhood of K. Then there is a finite set F ⊆ O(X) of

holomorphic functions on X such that

K ⊆ {ζ ∈ U ; ∀ f ∈ F : | f (ζ)| > 1}

and {ζ ∈ U ; ∀ f ∈ F : | f (ζ)| ≥ 1} is compact.

Proof For each boundary point ζ ∈ ∂U , there is a holomorphic function fζ ∈ O(X)
such that fζ(ζ) = 0 and fζ(K) ⊆ {η ∈ C ; |η| ≥ 2}. Set Uζ := {η ∈ X ; | f (η)| < 1}.
Since these open sets cover the compact boundary ∂U , there is a finite subset F ′ ⊆
∂U such that

∂U ⊆
⋃

ζ∈F ′

Uζ .
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Set F := { fζ ; ζ ∈ F ′}. Then K ⊆ {ζ ∈ U ; ∀ f ∈ F : | f (ζ)| > 1}, and

{ζ ∈ U ; ∀ f ∈ F : | f (ζ)| ≥ 1} = U \
⋃

ζ∈F ′

Uζ

is compact.

Lemma 6.7 (Meromorphically convex compacta are Stein) Let X be a second count-

able complex analytic manifold such that O(X) separates points, and let K ⊆ X be

compact subset which is meromorphically convex in X. Then K is a Stein compactum.

Proof Let U ⊆ X be a relatively compact open neighbourhood of K. Choose a
finite subset F ⊆ O(X) as in Lemma 6.6. Define an open neighbourhood of K by
V := U \

⋃
f∈F f −1({0}). If f ∈ F then f −1|V ∈ O(V ). The holomorphically

convex hull of K in V satisfies

K̂O(V ) ⊆
{
ζ ∈ V ; ∀ f ∈ F : | f (ζ)−1| ≤

∥∥ f −1|K
∥∥
∞

}

⊆
{
ζ ∈ V ; ∀ f ∈ F : | f (ζ)−1| ≤ 1

}

= {ζ ∈ U ; ∀ f ∈ F : | f (ζ)| ≥ 1} .

The right-hand side is a compact subset of V , whence K̂O(V ) is compact. Example 5.1
shows that K̂O(V ) is a Stein compactum.

Since the relatively compact open neighbourhood U ⊆ X of K can be chosen
arbitrarily small, the set K is an intersection of Stein compacta and hence a Stein
compactum.

Remark 6.8 Hörmander and Wermer [27] constructed a smoothly embedded disc
in C

2 which is a Stein compactum, but not rationally convex (cf. Forstnerič [18]).

Proposition 6.9 Let X be a second countable complex analytic manifold such that

O(X) separates points. Then a compact subset K ⊆ X is a Stein compactum if and only

if K has arbitrarily small open neighbourhoods U ⊆ X such that K̂M(U ) is compact.

Proof A Stein compactum K ⊆ X has arbitrarily small holomorphically convex
open neighbourhoods, and for each such neighbourhood U ⊆ X, the set K̂M(U ) is a
closed subset of K̂O(U ) and hence compact. Conversely, if K ⊆ X is a compact subset
with arbitrarily small open neighbourhoods U ⊆ X such that K̂M(U ) is compact, then

the preceding lemma shows that K is an intersection of Stein compacta and hence a
Stein compactum.
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Proposition 6.10 (Meromorphically convex manifolds are Stein) Let U be an open

subset of a Stein manifold X. Then U is holomorphically convex, i.e., a Stein manifold,

if and only if K̂M(U ) is compact for every compact subset K ⊆ U .

It is conceivable that this also holds for more general complex analytic manifolds U .

Proof If U is holomorphically convex, then K̂M(U ) ⊆ K̂O(U ) is compact for each

compact subset K ⊆ U .

Conversely, assume that every compact subset of U has compact meromorphi-
cally convex hull in U . We claim that U is Hartogs pseudoconvex. The meaning
of this claim is as follows. Let d be the complex dimension of U . Extending the
notation introduced before Example 5.7 to subsets of C

d in the obvious way, define

K ⊆ C
d by K := K(0; 0, . . . , 0, 0, 1) ∪ K(0, . . . , 0, 0, 1; 0, . . . , 0, 1, 1), and K̂ ⊆ C

d by
K̂ := K(0; 0, . . . , 0, 1, 1). Let ϕ be a biholomorphic embedding of a neighbourhood
of K̂ in C

d into X such that L := ϕ(K) ⊆ U . What we claim is that L̂ := ϕ(K̂)
is also contained in U . The key to the proof of this claim is Hartogs’ result that ev-

ery holomorphic function defined in a neighbourhood of L extends holomorphically
to a neighbourhood of L̂ (see Range [36, II.2.2]). Pick ζ ∈ L̂ ∩ U . We claim that
ζ ∈ L̂M(U ). Otherwise, there exists f ∈ O(U ) such that f (ζ) = 0 6∈ f (L). Then 1/ f

is a holomorphic function near L which does not extend to L̂. This contradiction

shows that L̂ ∩U ⊆ L̂M(U ). Hence L̂ ∩U = L̂ ∩ L̂M(U ) is open and closed in L̂. Since
this set is not empty and L̂ is connected, this proves our claim that L̂ ⊆ U , i.e., that U

is Hartogs pseudoconvex.

Each Hartogs pseudoconvex open subset of C
n is holomorphically convex (see

Range [36, II.5.8 and VI.1.17]). In the case that X = C
n, we have thus completed the

proof of the proposition.

In the case that X is a general Stein manifold, choose a closed embedding ι : X →֒
C

n, an open neighbourhood V ⊆ C
n of ι(X), and a holomorphic retraction ρ : V →

X for ι. By shrinking V , we may assume that V is holomorphically convex (see

Siu [42]). Set W := ρ−1(U ) ⊆ V , and choose a compact subset K ⊆ W . We
claim that K̂M(W ) is compact. We have K̂M(W ) ⊆ K̂O(W ) ⊆ K̂O(V ), and the latter set
is compact. Thus it suffices to show that K̂M(W ) is closed in V . Set L := ρ(K), and
choose ζ ∈ W \ρ−1(L̂M(U )). Then there exists f ∈ O(U ) such that f (ρ(ζ)) 6∈ f (L) =

f (ρ(K)). Using f ◦ ρ ∈ O(W ), we find that ζ 6∈ K̂M(W ). Thus K̂M(W ) ⊆ ρ−1(L̂M(U )),
and the latter set is closed in V . Since K̂M(W ) is closed in W , we conclude that it is
closed in V and, hence, indeed compact.

The first part of the proof now shows that W is holomorphically convex, whence
the same holds for U = ι−1(W ).

In the case that X = C
n, Proposition 6.10 also follows from Lemma 6.7 and the

Behnke–Stein Exhaustion Theorem [2]. A similar result is contained in the same

paper by Behnke and Stein.

To end this section, we characterize meromorphic convexity in terms of approx-
imation by meromorphic functions. This result is analogous to our characteriza-
tions of holomorphically convex compacta in Corollary 4.5 and of Stein compacta in
Proposition 5.4.
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If X is a complex analytic manifold and K ⊆ X compact, define an algebra of
meromorphic functions on X by

MK (X) = { f /g ; f , g ∈ O(X), 0 6∈ g(K)} .

Lemma 6.11 (Meromorphic approximation,[37, 3.4]) Let X be a second countable

complex analytic manifold such that O(X) separates points, and let K ⊆ X be a mero-

morphically convex compact subset. Then the subalgebra

MK(X)|K = { f |K ; f ∈ MK (X)}

is dense in A(K).

Proof Let U ⊆ X be an open neighbourhood of K, let f ∈ O(U ), and let ε > 0. We
must construct an element g ∈ MK (X) such that all ζ ∈ K satisfy | f (ζ) − g(ζ)| < ε.
We may assume that U has compact closure in X, and also that U is a Stein manifold,
by Lemma 6.7. Choose F = { f1, . . . , fm} ⊆ O(X) as in Lemma 6.6, and choose a

closed biholomorphic embedding ι : U → C
n. The map

h : U −→ C
m+n, ζ 7−→

(
f1(ζ), . . . , fm(ζ), ι1(ζ), . . . , ιn(ζ)

)

is a closed biholomorphic embedding. Set

Y := {ζ ∈ C
m+n ; |ζ1| > 1, . . . , |ζm| > 1}

and

V := h−1(Y ) =
{
ζ ∈ U ; ∀ j ∈ {1, . . . , m} : | f j(ζ)| > 1

}
.

Then Y is a Stein manifold, V is an open neighbourhood of K, and h(V ) = Y ∩ h(U )
is a closed submanifold of Y . Every holomorphic function on h(V ) has a holo-

morphic extension to Y [23, VIII.A.18]. Hence there exists k ∈ O(Y ) such that
k ◦ h|V = f |V . By Laurent extension [36, II.1.4], there is a Laurent polynomial
p ∈ C[ζ1, ζ

−1
1 , . . . , ζm, ζ−1

m , ζm+1, . . . , ζm+nr] such that all ζ ∈ h(K) satisfy |k(ζ) −
p(ζ)| < ε. In other words, all ζ ∈ K satisfy | f (ζ) − p(h(ζ))| < ε. Since none of
the f j has a zero in K, the composition g := p ◦ h is an element of MK (X), and it has
the desired approximation property.

Proposition 6.12 (Auto-spectrality and meromorphic convexity) Let X be a second

countable complex analytic manifold such that O(X) separates points, and let K ⊆ X be

compact. Then the following conditions are equivalent:

(i) K is meromorphically convex in X, i.e., K̂M(X) = K.

(ii) K is auto-spectral, and the subalgebra of germs of elements of MX(K) in K is dense

in O(K).

(iii) K is auto-spectral, and MX(K)|K is dense in A(K).
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Proof If condition (i) holds, then K is auto-spectral by Lemma 6.7 and Proposi-
tion 5.4, so that statement (iii) follows from Lemma 6.11. By Lemmas 1.2 and 2.3,

statements (ii) and (iii) are equivalent to each other and to the condition that the
Gelfand spectrum of A := MX(K)|K consists of the evaluations in points of K. It
remains to show that this implies condition (i).

Let ζ ∈ K̂M(X). No element of MK(X) has a singularity at ζ , so that evaluation

in ζ is a homomorphism from MK(X) onto C. By Lemma 6.3, every f ∈ MK (X)
satisfies | f (ζ)| ≤ ‖ f |K‖∞. Hence evaluation in ζ induces a character of A. Thus,
if ΓA consists of the evaluations in points of K, then K is meromorphically convex
in X.

Corollary 6.13 (Auto-spectrality and rational convexity) A compact subset K ⊆ C
n

is rationally convex if and only if it is auto-spectral and the algebra of rational functions

on C
n without singularities in K is dense in A(K) or, equivalently, in O(K).

Proof The rationally convex hull of a compact subset K ⊆ C
n equals K̂M(Cn) by

Remark 6.5. A rational function can be written as a quotient of relatively prime
polynomials, and then the singular set equals the set of zeros of the denominator.

Therefore, every rational function on C
n without singularities in K is an element

of MX(K). Since the polynomials are dense in ACn (K) and in OCn (K), every element
of MK(C

n) can be approximated by rational functions without singularities in K,
both in the topology of A(K) and in the topology of O(K). Therefore, the assertions

follow from Proposition 6.12.

Remark 6.14 The strategy of proof for Lemma 6.6 and Proposition 6.12 can im-
mediately be applied in the context of holomorphic convexity, yielding the following
results.

Let K be a compact subset of a second countable complex analytic manifold X.

(a) Assume that K̂O(X) = K, and let U ⊆ X be a relatively compact open neighbour-
hood of K. Then there is a finite subset F ⊆ O(X) such that

{ζ ∈ U ; ∀ f ∈ F: | f (ζ)| ≤ 1}

is a compact neighbourhood of K.
(b) The equation K̂O(X) = K holds if and only if K is auto-spectral and satisfies

AX(K) = A(K) or, equivalently, OX(K) = O(K).

Thus Corollary 4.5 is generalized from Riemann domains over Stein manifolds
to complex analytic manifolds in which the holomorphic functions separate points.
However, Proposition 4.3 contains additional insights, and its proof is more elemen-
tary, at least in the case of Riemann domains over C

n.

7 Holomorphic Generation

The final section relates our previous results to Mackey-complete complex commuta-
tive continuous inverse algebras A which are generated by n-tuples a ∈ An in the sense
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of the holomorphic functional calculus. In this situation, the joint spectrum Sp(a)
is an auto-spectral set, and the algebra A is “sandwiched” between O(Sp(a)) and

A(Sp(a)). The joint spectrum of the n-tuple a also shows whether a generates the
algebra A in a stronger sense. (Recall that Mackey-completeness is just the weak
completeness assumption used in the construction of the holomorphic functional
calculus.)

Lemma 7.1 Let A be a Mackey-complete commutative continuous inverse algebra over

C, let a ∈ An, and set K := SpA(a). Let θ : O(K) → A, f 7→ f [a] be the functional cal-

culus homomorphism, and let γ : A → C(ΓA), x 7→ x̂ be the Gelfand homomorphism.

Then the composition γ ◦ θ : O(K) → C(ΓA) equals the homomorphism â∗ induced by

the continuous surjection

â : ΓA −→ K, χ 7−→
(
χ(a1), . . . , χ(an)

)
.

Proof The statement follows from a short calculation by means of naturality of the
holomorphic functional calculus. Indeed, if f ∈ O(K) and χ ∈ ΓA, then

(
(γ ◦ θ)( f )

)
(χ) =

(
γ( f [a])

)
(χ) = χ( f [a])

= f
(
χ×n(a)

)
= f

(
â(χ)

)
= ( f ◦ â)(χ) =

(
â∗( f )

)
(χ).

The preceding observation is particularly interesting in the case that â is a home-
omorphism. In this case, we can use â to identify ΓA and K and think of â∗ as the

restriction map from O(K) into C(K).

Theorem 7.2 (Holomorphically generated algebras) Let A be a Mackey-complete

commutative continuous inverse algebra over C, let a ∈ An, and set K := SpA(a) and

θ : O(K) → A, f 7→ f [a]. Assume that θ has dense image. (In this situation, we say

that the n-tuple a generates the algebra A holomorphically.) Then

â : ΓA −→ K, χ 7−→
(
χ(a1), . . . , χ(an)

)

is a homeomorphism. Let γ : A → C(K), x 7→ x̂ ◦ â−1 be the homomorphism induced

by â and the Gelfand homomorphism. Then im(γ) = A(K), and the composition

O(K)
θ

−→ A
γ

−→ A(K)
ι

−→ C(K),

where ι is the inclusion, equals the restriction homomorphism f 7→ f |K . The induced

maps

ΓC(K)
ι∗
−→ ΓA(K)

γ∗

−→ ΓA
θ∗
−→ ΓO(K)

are homeomorphisms. In particular, the joint spectrum K is an auto-spectral compact

subset of C
n.
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Proof By definition, the map â is a continuous surjection. As both ΓA and K are
compact Hausdorff spaces, it suffices to show that â is injective. If χ ∈ ΓA and

f ∈ O(K), then χ( f [a]) = f (â(χ)) by naturality of the holomorphic functional
calculus. Therefore, â(χ) uniquely determines χ|im(θ) and hence χ.

Choose f ∈ O(K). If χ ∈ ΓA, then θ( f )̂(χ) = χ( f [a]) = f (â(χ)). Thus, if
ζ ∈ K, then γ(θ( f ))(ζ) = θ( f )̂(â−1(ζ)) = f (ζ). This proves that γ ◦ θ : O(K) →
C(K) is the restriction homomorphism. Since θ has dense image, we conclude that
A(K) = im(γ ◦ θ) = im(γ), so that we may consider γ as a map into A(K).

Lemma 1.2 shows that (γ ◦ θ)∗ = θ∗ ◦ γ∗ is a homeomorphism. Since θ∗ is
injective and γ∗ is surjective, we find that both θ∗ and γ∗ are homeomorphisms. The

map (ι ◦ γ)∗ = γ∗ ◦ ι∗ is a homeomorphism by construction.

Since every character of the algebra C(K) is evaluation in a point of K, the same

holds for the algebras A(K) and O(K). We conclude that K is auto-spectral.

Remark 7.3 Let K ⊆ C
n be an auto-spectral compact set. Then O(K) is holomor-

phically generated by the n-tuple ĩdCn , and Sp
O(K)

(
ĩdCn

)
= K. The analogous state-

ment holds for the Banach algebra A(K). Thus the auto-spectral compact subsets
of C

n are exactly the joint spectra of holomorphically generating n-tuples in Mackey-
complete commutative continuous inverse algebras (or in commutative Banach alge-
bras).

An n-tuple a in a commutative continuous inverse algebra A may generate the al-
gebra not only holomorphically, but in a stronger sense. For instance, the algebra A

may be the topological closure of the subalgebra generated by a. Such a situation
yields certain additional necessary conditions on the spectrum of a, which are also

sufficient if the n-tuple a is assumed to be holomorphically generating. Several situ-
ations of this kind are studied in the following corollary.

Corollary 7.4 (Holomorphic generation by subalgebras) Let A be a Mackey-com-

plete commutative continuous inverse algebra over C which is generated holomorphically

by a ∈ An. Set K := SpA(a).

(i) For a unital subalgebra B ⊆ O(K) which contains the germs of the coordinate

functions, the following are equivalent:

(a) { f [a] ; f ∈ B} is dense in A;

(b) B is dense in O(K);

(c) B|K is dense in A(K).

(ii) Let U ⊆ C
n be an open neighbourhood of K. Then the subalgebra

{ f [a] ; f ∈ O(U )}

is dense in A if and only if K is holomorphically convex in U .

(iii) The unital subalgebra generated by {a1, . . . , an} is dense in A if and only if K is

polynomially convex.

(iv) The subalgebra { f [a] ; f ∈ OSt(K)} is dense in A if and only if K is a Stein com-

pactum.
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(v) Let U ⊆ C
n be an open neighbourhood of K. Then the subalgebra of elements of

the form ( f /g)[a], where f , g ∈ O(U ) and 0 6∈ g(K), is dense in A if and only if K

is meromorphically convex in U .

(vi) The subalgebra of elements of the form f [a], where f is a rational function on C
n

without singularities in K, is dense in A if and only if K is rationally convex.

The forward implication in assertion (iii), which is classic at least in the case of com-
mutative Banach algebras (see Bonsall and Duncan [9, 19.11]), was one piece of mo-
tivation for the present paper.

Proof First note that K is auto-spectral by Theorem 7.2. For the proof of asser-

tion (i), Theorem 7.2 also yields that condition (a) implies (c), which implies (b) by
Lemma 2.3. The definitions show that (b) implies (a).

To prove assertions (ii) to (vi), choose the subalgebra B ⊆ O(K) in part (i) suitably
and use, respectively, Corollary 4.5, Corollary 4.6, Proposition 5.4, Proposition 6.12,
and Corollary 6.13.
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[18] F. Forstnerič, A smooth holomorphically convex disc in C
2 that is not locally polynomially convex.

Proc. Amer. Math. Soc. 116(1992), no. 2, 411–415.

[19] T. W. Gamelin, Uniform algebras. Prentice-Hall, Englewood Cliffs, NJ, 1969.
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33(1954), 147–186.
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