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Abstract We consider the following nonlinear elliptic equations
∆u+ u

N/(N−2)
+ = 0 in Ω,

u = µ on ∂Ω (µ is an unknown constant),∫
∂Ω

(
−∂u
∂n

)
= M,

where u+ = max(u, 0), M is a prescribed constant, and Ω is a bounded and smooth domain in RN ,
N > 3. It is known that for M = M

(N)
∗ , Ω = BR(0), the above problem has a continuum of solutions.

The case when M > M
(N)
∗ is referred to as supercritical in the literature. We show that for M near

KM
(N)
∗ , K > 1, there exist solutions with multiple condensations in Ω. These concentration points are

non-degenerate critical points of a function related to the Green’s function.

Keywords: nonlinear elliptic equations; free boundary; singular perturbations; critical behaviour

AMS 2000 Mathematics subject classification: Primary 35B40; 35B45
Secondary 35J40

1. Introduction

Let Ω be a bounded domain in RN with a smooth boundary. Consider the following
nonlinear boundary-value problem,

∆u + g(u, x) = 0 on Ω,

u = µ on ∂Ω (µ is an unknown constant),∫
∂Ω

(
−∂u

∂n

)
= M,

(1.1)

where g(·, ·) > 0 on R1 ×Ω, and M > 0 is a prescribed constant.
Equation (1.1) arises in several applications. In particular, if g(t, x) = K(x)et, N = 2,

the solutions to problem (1.1) yield Riemannian metrics that are conformally equivalent
to the Euclidean metrics on Ω with a given Gaussian curvature K and a prescribed total
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curvature M/2 [21,39]. If g(t, x) = f(t−V (x)), where V (x) ∈ C0(Ω̄) is given and f(·) is
non-decreasing, then the solutions of (1.1) represent potentials of stationary distributions
of self-gravitating clusters. M stands for the total mass of the cluster (see [38]).

In this paper, we study a particular type of (1.1), namely,

−∆u = up+,

u = µ on ∂Ω (µ is an unknown constant),

−
∫
∂Ω

∂u

∂n
= M,

 (1.2)

where N > 3, 1 < p < 2∗ := (N + 2)/(N − 2) and u+ = max(u, 0).
The existence of solutions to (1.2) in the case of 1 6 p < N/(N − 2) = p∗ was first

established by Berestycki and Brezis [8] (Temam [31] studied the case p = 1). Wang [32]
extended this result to p∗ 6 p < 2∗ = (N + 2)/(N − 2) (for M small). Bandle and
Marcus [4] studied a priori estimates for (1.2) under assumptions similar to those in [8].
For more general g, see [39].

The exponent p∗ = N/(N − 2) turns out to be a natural critical exponent for (1.2).
Even though it has subcritical growth, it has critical behaviour. Wolansky [39] introduced
an energy functional to (1.2). It turns out that when M > M

(N)
∗ , the functional becomes

unbounded and non-compact and therefore it has loss of compactness similar to nonlinear
elliptic equations with critical Sobolev exponent 2∗, as studied in [1,2,5,11,29,30,35],
among others. When Ω = B1(0), one can find a continuum of solutions to (1.2). In fact,
let ψ(r) be the solution of

∂2

∂r2 ψ +
N − 1

r

∂

∂r
ψ + (ψ+)p

∗
= 0,

∂ψ

∂r
(0) = 0, ψ(0) = 1.

(1.3)

Let r0 > 0 be the smallest root such that ψ(r0) = 0. Set

M
(N)
∗ := ωN

∫ r0

0
sN−1ψp

∗
(s) ds, (1.4)

where ωN stands for the area of the unit sphere SN−1 ⊂ RN .
It can easily be shown that for any α > 1, the function

Uα(r) =

{
αN−2rN−2

0 ψ(αr0r), for 0 6 r 6 α−1,

ω−1
N M

(N)
∗ (r2−N − 1)− ω−1

N M
(N)
∗ (αN−2 − 1), for α−1 6 r 6 1,

(1.5)

is a solution of (1.2) for p = p∗, M = M
(N)
∗ .

In the general domain, the existence of solutions of (1.2) is related to the Green’s
function in Ω. Let G(x, y) be the Green’s function of −∆ in H1

0 (Ω), and let Γ (|x − y|)
be the singular part of G(x, y), i.e.

Γ (|x− y|) =
1

(N − 2)|SN−1| |x− y|N−2 ,
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where SN−1 is the unit sphere in RN . The regular part of G(x, y) is defined as H(x, y) =
Γ (|x− y|)−G(x, y). (The function H(x, x) is called the Robin function. For more prop-
erties of the Robin function, see [3].)

Wolansky [39] proved the following theorem.

Theorem A. Assume that there exists x0 ∈ Ω for which

H(x0, y) > H(x0, x0), ∀y ∈ Ω \ {x0}. (1.6)

Then, for any 0 < M < M
(N)
∗ (defined by (1.4)) there exists a solution uM of (1.2) for

p = p∗. Moreover, as M →M
(N)
∗ , µM → −∞.

A natural question is what happens when M > M
(N)
∗ ? As far as we know, there are

no existence results yet. The purpose of this paper is to answer this question.
Fix P = (P 1, . . . , PK) ∈ ΩK := Ω ×Ω × · · · ×Ω. Set

F (P ) = −
K∑
j=1

H(P j , P j) +
∑

l,m,l 6=m
G(P l, Pm). (1.7)

We then have the following theorem.

Theorem 1.1. Let K > 1, K ∈ N . Assume that P0 = (P 1
0 , . . . , PK

0 ) ∈ ΩK is a non-
degenerate critical point of F (P ). Let p = p∗. Then there exists an ε0 > 0 such that for
every ε ∈ (0, ε0), there exists a solution uM to (1.2) satisfying the following properties.

(i) uM |∂Ω = µM = −ε−2/(p−1) → −∞,

(ii) The set {uM > 0} contains exactly K connected domains.

(iii) M = KM
(N)
∗ + o((−µM )−1) is a continuous function of ε ∈ (0, ε0).

Remark 1.2. A more detailed description of the free boundary {uM > 0} can be
found in Theorem 1.4 below.

In fact, for any 1 < p < 2∗, p 6= p∗, we have the following theorem.

Theorem 1.3. Assume that P0 = (P 1
0 , . . . , PK

0 ) ∈ ΩK is a non-degenerate critical
point of F (P ). Let 1 < p < 2∗, p 6= p∗. Then there exist δ0, C0 > 0 such that for every
M ∈ (0, δ0) if p∗ < p < 2∗ and M ∈ (C0,+∞) if 1 < p < p∗, there exists a solution uM

to (1.2) satisfying the following properties, as M → 0 for p > p∗ or M → +∞ for p < p∗.

(i) The set {uM > 0} contains exactly K connected domains.

(ii) uM |∂Ω = µM → −∞.

(iii) M(−µM )(2p−N(p−1))/2 → µ0, where µ0 is a generic constant.
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Let us now introduce the main idea of the proofs. One of the key points is the fol-
lowing transformation of (1.2): let µ = −ε−2/(p−1) and u = |µ|v + µ, then we have that
equation (1.2) is equivalent to finding (v, ε) such that

ε2∆v + (v − 1)p
∗

+ = 0, v > 0 in Ω,

v = 0, on ∂Ω,

ε−2p/(p−1)
∫
Ω

(v − 1)p+ = M.

(1.8)

Note that in problem (1.8), M is fixed and ε > 0 is undetermined. To solve (1.8), we
first solve the following elliptic equation

ε2∆v + (v − 1)p+ = 0 in Ω,

v > 0, in Ω,

v = 0, on ∂Ω,

(1.9)

for ε small, and then we solve the following algebraic equation

M = ε−2p/(p−1)
∫
Ω

(v − 1)p+. (1.10)

Equation (1.9) can be regarded as a singular perturbation problem with a free bound-
ary. The boundary of the core

A := {v > 1}
is the free boundary for (1.9). Problem (1.9) arises in plasma physics [3, 12, 20]. The
corresponding problem in two dimensions has been studied in [3]; the case when p = 1
by Caffarelli and Friedman [12]. The higher-dimensional case has been studied by Flucher
and the author in [20]. For more information and background for (1.9), please see [20]
and the references cited therein. It was proved in [20] that as ε → 0 the least-energy
solution has one single local maximum xε ∈ Ω and H(xε, xε)→ minx∈Ω H(x, x). In this
paper, we shall study solutions with multiple condensations.

Our main result for (1.9) is the following theorem.

Theorem 1.4. Let 1 < p < (N + 2)/(N − 2)+, N > 3, and suppose that P0 is a
non-degenerate critical point of F (P ). Then for ε � 1, problem (1.9) admits a solution
uε such that uε has only K local maximum points P j

ε , j = 1, . . . , K, and P j
ε → P j

0 ,
j = 1, . . . , K, as ε → 0. The core Aε := {uε > 1} has exactly K connected components
and

K⋃
j=1

BR2ε(P
j
ε ) ⊂ Aε ⊂

K⋃
j=1

BR1ε(P
j
ε ) (1.11)

for some numbers R1 > R2 > 0, R1 = Rw + o(1), R2 = Rw + o(1), where Rw is a generic
constant defined in § 2.

Remark 1.5. When K = 1, Theorem 1.4 can be considered as a converse of Theorem 4
in [20].
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To prove Theorems 1.1 and 1.3, we need the following theorem.

Theorem 1.6. Let P0 be a non-degenerate critical point of F (P ) and uε be the
solution constructed by Theorem 1.4. Then, for ε small, uε is unique and we have

I(ε) := ε−2p/(p−1)
∫
Ω

(uε − 1)p+ = KIp + dwF (P 0)εN−2 + o(εN−2). (1.12)

is a continuous function of ε, where Ip > 0, dw are defined in § 5. In particular, when
p = p∗, Ip = M

(N)
∗ , dw = 0.

Theorems 1.1 and 1.3 follow directly from Theorem 1.6.

Remark 1.7. It is interesting to note that results similar to Theorem 1.4 appear
frequently in the study of problems arising from applied sciences and geometry. It turns
out that Green’s function is naturally associated with such phenomenon. For blow-up
problems involving the Sobolev critical exponent, see [1, 2, 11, 29, 30, 35] and the ref-
erences cited therein. For multiple concentrations in singular perturbation problems,
see [6,7,15–19,22,23,27,37] and the references cited therein. Our problem (1.9) can
be considered as a borderline case of singular perturbation problems. Most of the refer-
ences cited here deal with singular perturbation problems of the kind ε2∆u + f(u) = 0,
f ′(0) < 0. In our case, we have f ′(0) = 0, which is called the zero-mass case [9]. In
the zero-mass case, the decay of the ground state is of algebraic order and therefore
the traditional Sobolev space H2 does not work. Here we use a weighted Sobolev space
approach.

Remark 1.8. We remark that our results here in some sense are a generalization of
those in [5]. In [5], Baraket and Pacard considered the following problem:{

∆u + ρeu = 0, in Ω,

u = 0, on ∂Ω,
(1.13)

where Ω is a smooth bounded domain in R2.
They introduced a function F(P ) in R2 that is equal to our F (P ) in R2. Then they

proved that at any non-degenerate critical point P0 = (P 1
0 , . . . , PK

0 ) of F (P ), for ρ

small, there exists a solution uρ that blows up near P j
0 , j = 1, . . . , K. Moreover, it can

be shown that ρ
∫
Ω

euρ → 8πK. In some sense they established the results similar to
our Theorem 1.4 in the case N = 2. There they used a weighted Hölder space approach.
However, they did not show that the solution uρ is unique (though uniqueness is very
likely to be true), and thus they do not have results similar to our Theorem 1.1.

Remark 1.9. The non-degeneracy condition in Theorem 1.4 may be relaxed a little
bit. For example, if we have strictly local maximum point P0 or strictly local minimum
point of F (P ), we can use the method of minimization or maximization of the reduced
energy (similar to [18] or [19]) to obtain solutions of (1.9) with multiple condensations.
It seems hard to remove the non-degeneracy condition in Theorems 1.1 and 1.3. The
main difficulty is in showing that I(ε) is continuous in ε.
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Remark 1.10. An interesting question is whether there exists a solution to (1.8) when
M = KM

(N)
∗ . We learned from Chang that she and Lin have obtained some results for

this question in the case when N = 2 [14]. The higher-dimensional case is still open.

Remark 1.11. Although we have just studied a particular type of problem (1.1),
the results in this paper can certainly be generalized to deal with problem (1.1) with
g(u, x) = f(u − V (x)) for some f and V (x) ∈ C2. We shall not pursue this generality
here.

The organization of the paper is as follows. In § 2, we first introduce a projection and
study the properties of the projection. Then we introduce some Sobolev spaces and study
the properties of the linearized operator in these spaces. Section 3 contains the classical
Liapunov–Schmidt reduction process. Here we reduce our problem to a finite-dimensional
one. In § 4, we solve the finite-dimensional problem and prove Theorem 1.4. In § 5, we
show that the solutions constructed in § 4 are unique. In § 6, we return to the study of
(1.2) and prove Theorems 1.1 and 1.3. Finally we prove some technical lemmas in §§ 7
and 8.

Throughout this paper, the letters C, c, Ci and ci will denote various constants inde-
pendent of ε small. δ will always denote a small constant.

2. Preliminaries

In this section we introduce some notation and prove necessary estimates.
Let f(u) := (u − 1)p+ for 1 < p < (N + 2)/(N − 2). It is known that the following

problem in RN , 
∆w + (w − 1)p+ = 0, in RN ,

w > 0, w(0) = maxy∈RN w(y),

w(y)→ 0, as |y| → +∞,

(2.1)

has a unique ‘ground-state’ solution w. Moreover, we have the following lemma.

Lemma 2.1 (see §4 in [20]). w = w(r), w′(r) < 0 for r 6= 0 and

w(r) =
kw

(N − 2)|SN−1|r
2−N

for r > Rw, where kw > 0, Rw > 0.

Next fix any P ∈ Ω. We project ‘w’ into H1
0 (Ω) by defining wε,P to be the unique

solution of ε2∆wε,P +
(

w

(
x− P

ε

)
− 1
)p
+

= 0, in Ω,

wε,P = 0, on ∂Ω.

(2.2)

Note that wε,P is C2 in P . Then we have the following lemma by Lemma 2.1.
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Lemma 2.2.

wε,P (x) = w

(
x− P

ε

)
− εN−2kwH(x, P ), if d(P, ∂Ω) > Rwε, (2.3)

and

wε,P (x) = kwεN−2G(x, P ), for |x− P | > Rwε, d(P, ∂Ω) > Rwε. (2.4)

Let P = (P 1, . . . , PK) ∈ ΩK and P0 be a critical point of F (P ). From now on, we
will always assume that

P ∈ Bδ(P0)

for some δ > 0 small.
We denote P j

i to be the ith component of P j , j = 1, . . . , K.
Define

wj(x) = w

(
x− P j

ε

)
, wε,P =

K∑
j=1

wε,P j ,

∂ji =
∂

∂P j
i

, j = 1, . . . , K, i = 1, . . . , N,

Ωε,P j := {y | εy + P j ∈ Ω}.
Set

Fj(P , x) =
∑
l 6=j

G(x, P l)−H(x, P j). (2.5)

Then it is easy to see that

F (P ) =
K∑
j=1

Fj(P , P j).

We have the following error estimates.

Lemma 2.3. For ε sufficiently small, we have

support(ε2∆wε,P + (wε,P − 1)p+) ⊂
K⋃
j=1

BR0ε(P
j),

where R0 = Rw + o(1) > 0. Moreover,

ε2∆wε,P + (wε,P − 1)p+ = p(w − 1)p−1
+ εN−2kwFj(P , P j) + O(εN−1), (2.6)

for x ∈ BR0ε(P
j), and

ε2∆wε,P (x) + (wε,P − 1)p+(x)

= fε,P j (|y|) + p(w(y)− 1)p−1
+ kw

×
N∑
k=1

∂

∂xk
Fj(P , x)|x=P j ε

N−1yk + O(εN ), x ∈ BR0ε(P
j), (2.7)

where εy + P j = x, fε,P j is a radial function and is supported in BR0(0).
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Proof. Observe that by Lemma 2.2, for x ∈ B2Rwε(P
j),

wε,P (x) =
K∑
j=1

wε,P j (x) = w

(
x− P j

ε

)
+ εN−2kwFj(P , x).

Equations (2.6) and (2.7) follow from direct computations. �

Next we introduce some Sobolev spaces.
We first define weighted Sobolev space in RN . For 1 < t <∞, a non-negative integer l

and a real number β, the weighted Sobolev space W t
l,β(R

N ) is defined to be the completion
of C∞0 (RN ) under the norm:

l∑
|α|=0

‖〈x〉β+|α|∂αu‖Lt(RN ), (2.8)

where 〈x〉 = (1 + |x|2)1/2. If β = 0 = l, then W t
l,β(R

N ) is just the usual Lt(RN ) space.
When l = 0, we write W t

0,β(R
N ) as Ltβ(R

N ). The properties of these Sobolev spaces can
be found in [13,24,25,28].

For any bounded open set U , we can define W t
l,β(U) to be the space W l,t(U) equipped

with the norm:
l∑

|α|=0

‖〈x〉β+|α|∂αu‖Lt(U). (2.9)

Similarly we can define Ltβ(U).
Let t′ denote, as always, the conjugate of t:

1
t

+
1
t′

= 1.

We now turn to the linear operator

L := ∆ + p(w − 1)p−1
+ : W t

2,β(R
N )→ Ltβ+2(R

N ).

We then have the following lemma.

Lemma 2.4. If
1− N

t
< β <

N

t′
− 1,

then

Kernel(L) ∩W t
2,β(R

N ) = X0 := span
{

∂w

∂yi

∣∣∣∣ i = 1, . . . , N

}
.

Proof. By direct computations, ∣∣∣∣ ∂w

∂yi

∣∣∣∣ 6 C|y|1−N

for |y| > Rw. Hence X0 ⊂ kernel(L) ∩W t
2,β(R

N ), since β < (N/t′)− 1. The rest follows
from the same proof of Proposition 2.1 in [33], Lemma 4.2 in [32], or Lemma 6 in [20]. �
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Observe that when β > 1−(N/t), uv ∈ L1(RN ) if u ∈ Ltβ , v ∈ X0. Hence if 1−(N/t) <

β < (N/t′)− 1, we can decompose W t
2,β(R

N ) as follows

W t
2,β(R

N ) = X0 ⊕X⊥0 ,

where

X⊥0 =
{

u ∈W t
2,β(R

N )
∣∣∣∣ ∫
RN

uv dx = 0, ∀v ∈ X0

}
.

Let us denote

Y0 :=
{

∂w

∂yi
, i = 1, . . . , N

}
⊂ Ltβ+2(R

N )

and

Y ⊥0 =
{

u ∈ Lt2+β(R
N )
∣∣∣∣ ∫
RN

uv = 0, ∀v ∈ Y0

}
.

Then we have the following proposition.

Proposition 2.5. Suppose that N > 3 and 1− (N/t) < β < (N/t′)− 1, then

L−1 : Y ⊥0 → X⊥0 (2.10)

exists and is bounded.

Proof. See Proposition 2.3 in [33]. �

Proposition 2.5 will have a natural analogue in Ω. We shall discuss this in the rest of
this section. Before that, we introduce some notation and some technical lemmas.

Set

Xt,β
ε,P = ∩Kj=1W

t
2,β(Ωε,P j ) ∩W 1,2

0 (Ω),

and

Y t,β
ε,P = ∩Kj=1L

t
β(Ωε,P j ).

In Xt,β
ε,P , we define its norm as

‖u‖t,2,β =
2∑

|α|=0

(
ε−N

∫
Ω

|(σP (x))β+|α|∂αu|t
)1/t

, (2.11)

where

σP (x) :=
K

min
j=1

(
1 +

∣∣∣∣x− P j

ε

∣∣∣∣2)1/2.
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Similarly in Y t,2+β
ε,P we define the norm as

‖u‖t,0,2+β =
(

ε−N
∫
Ω

|(σP (x))2+βu|t
)1/t

.

From now on, we drop the indexes ε, P in Xt,β
ε,P , Y t,2+β

ε,P if there is no confusion.
We then have the following technical lemma whose proof will be given in Appendix B.

Lemma 2.6. Suppose that 0 < β < (N/t′)− 1. Let Φ satisfy the following equation:{
ε2∆Φ + f = 0, in Ω,

Φ = 0, on ∂Ω.
(2.12)

Then we have
‖Φ‖t,2,β 6 C‖f‖t,0,2+β .

Remark 2.7. If K = 1, we just need 1− (N/t) < β < (N/t′)− 1. If K > 1, β > 0 is
needed for technical reasons.

Set
Lε,P = ε2∆ + p(wε,P − 1)p−1

+ . (2.13)

From now on, we restrict the exponents t, β such that

N

N − 1
< t < N, 0 < β <

N

t′
− 1. (2.14)

We now study the linear operator Lε,P in Xt,β and prove an analogue of Proposi-
tion 2.5.

Set

Kε,P = span{∂jiwε,P | 1 6 j 6 K, 1 6 i 6 N} ⊂ Xt,β ,

Cε,P = span{∂jiwε,P | 1 6 j 6 K, 1 6 i 6 N} ⊂ Y t,2+β ,

K⊥ε,P =
{

u ∈ Xt,β

∣∣∣∣ ∫
Ω

u∂jiwε,P = 0, 1 6 j 6 K, 1 6 i 6 N

}
,

C⊥ε,P =
{

u ∈ Y t,2+β
∣∣∣∣ ∫

Ω

u∂jiwε,P = 0, 1 6 j 6 K, 1 6 i 6 N

}
.

Let Πε,P and Π⊥ε,P be the projections of Y t,2+β into Cε,P and C⊥ε,P , respectively.
The following is the main estimate we need in order to apply the Liapunov–Schmidt

reduction method.

Proposition 2.8. Let 0 < β < (N/t′)− 1 and (N/(N − 1)) < t < N . Then for ε� 1
and P ∈ Bδ(P0), the operator defined by

L̃ε,P := Π⊥ε,P ◦ Lε,P : K⊥ε,P → C⊥ε,P (2.15)

is one-to-one and surjective (and hence invertible). Moreover,

‖L̃ε,PΦ‖t,0,2+β > C‖Φ‖t,2,β , ∀Φ ∈ K⊥ε,P . (2.16)
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Proof. The proof is similar to Proposition 3.1 in [18] or Proposition 3.1 in [36]. For
the sake of completeness, we give a sketch of the proof of injectivity. The surjectivity
follows easily from injectivity.

We just need to prove (2.16). Suppose that (2.16) is not true. Then there exists εk → 0,
Pk → P ∈ B̄δ(P0), Φk ∈ K⊥ε,Pk such that

L̃ε,PkΦk = fk, ‖fk‖t,0,2+β → 0,

Φk ∈ K⊥ε,Pk , ‖Φk‖t,2,β = 1.

Let
hk = −p(wε,Pk − 1)p−1

+ Φk, fk,1 = fk + Πε,Pk ◦ Lε,Pk(Φk).

Then Φk satisfies {
ε2∆Φk = hk + fk,1, in Ω,

Φk = 0, on ∂Ω.
(2.17)

Note that

ε−N
∫
Ω

Lεk,Pk(Φk)∂
j
iwεk,Pk = ε−Nk

∫
Ω

[p(wεk,Pk − 1)p−1
+ ∂jiwεk,Pk − p(wj − 1)p−1

+ ∂jiwj ]Φk

= O(εN−2
k ).

Hence
‖Πεk,Pk ◦ Lεk,Pk(Φk)‖t,0,2+β = O(εN−2

k ) = o(1)

and
‖fk,1‖t,0,2+β = o(1).

Let
Φjk(y) = Φk(εy + P j

k )χ(x− P j
k ), j = 1, . . . , K,

where χ(x) = 1 for |x| 6 1
2δ and χ(x) = 0 for |x| > δ.

Without loss of generality, we may assume that j = 1. Then Φ1
k satisfies

∆Φ1
k + p

(
wε,P 1

k
+

K∑
j=2

wε,P jk
− 1
)p−1

+
Φ1
k = f̃k, in Ωε,P 1 ,

Φ1
k = 0, on ∂Ωε,P 1 ,

(2.18)

where f̃k = χfk,1 − 2ε2∇xχ∇xΦk − ε2∆χΦk. Note that

|ε2∇xχ∇xΦk| 6 ε|∇yΦk|, |ε2∆χΦk| 6 ε2|Φk|.
Hence we have

‖f̃k‖Ltβ+2(Ωε,P1 ) 6 C‖fk,1‖t,0,2+β + C‖Φk‖t,2,β 6 C.

Applying Lemma 2.6, we have

‖Φ1
k‖W t

2,β(Ωε,P1 ) 6 C. (2.19)
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Let Φ1
k → Φ0 weakly in W t

2,β(R
N ), Φ1

k

strong−−−−→ Φ0 in Ltβ(R
N ). Then Φ0 satisfies

∆Φ0 + p(w − 1)p−1
+ Φ0 = 0, Φ0 ∈W t

2,β(R
N ).

By Lemma 2.4,

Φ0 ∈ Kernel(L) = span
{

∂w

∂yi

∣∣∣∣ i = 1, . . . , N

}
.

However,

0 = ε1−N
∫
Ω

Φk
∂wε,P 1

∂P 1
i

→ −
∫
RN

Φ0
∂w

∂yi
= 0, i = 1, . . . , N.

(Here we have used the fact that (∂w/∂yi) ∈ Lt
′
−β(R

N ) for β > 0 > 1 − (N/t).) Hence,
Φ0 ≡ 0 and ‖Φ1

k‖Ltβ(U) → 0 for any compact set U .
In conclusion, we have obtained that

‖Φk‖Ltβ(U) → 0

for any bounded set U ⊂ Ωε,P j , j = 1, . . . , K.
Going back to the equation for Φk, we now have

‖hk‖t,2+β 6 C
K∑
j=1

‖(wε,Pk − 1)p−1
+ Φjk‖Lt2+β(Ωε,Pj )

6 C
K∑
j=1

‖(wε,Pk − 1)p−1
+ Φjk‖Lt2+β(B2Rw(0)(0)) → 0.

By Lemma 2.6,
‖Φk‖t,2,β = o(1),

which is a contradiction to our assumption that ‖Φk‖t,2,β = 1. �

3. Liapunov–Schmidt reduction

In this section we use the classical Liapunov–Schmidt reduction method to reduce prob-
lem (1.9) to a finite-dimensional problem. Similar procedures can be found in [18], [19],
[36] and [34], among others.

Recall that (N/(N − 1)) < t < N , 0 < β < (N/t′)− 1. Let

Sε(u) := ε2∆u + (u− 1)p+. (3.1)

We first solve the following equation

Sε(u) = 0, u ∈ Xt,β
ε,P (3.2)

Setting u = wε,P + Φ and substituting into Sε(u), we have

Sε(u) = Sε(wε,P ) + Lε,P (Φ) + Nε,P (Φ), (3.3)
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where

Lε,P = S′ε(wε,P ) = ε2∆ + p(wε,P − 1)p−1
+ ,

Nε,P (Φ) := S(wε,P + Φ)− S(wε,P )− Lε,P (Φ)

= (wε,P + Φ− 1)p+ − (wε,P − 1)p+ − p(wε,P − 1)p−1
+ Φ.

Set
Bη = {u ∈ Xt,β

ε,P | ‖u‖t,2,β < η}.
We then have the following lemma.

Lemma 3.1. For ε and η sufficiently small, we have

(1) ‖Nε,P (Φ)‖t,0,2+β 6 C‖Φ‖1+σ
t,2,β , ∀Φ ∈ Bη;

(2) ‖Nε,P (Φ1)−Nε,P (Φ2)‖t,0,2+β 6 Cησ‖Φ1 − Φ2‖t,2,β , ∀Φ1 ∈ Bη, Φ2 ∈ Bη,

(3) ‖S(wε,P )‖t,0,2+β 6 CεN−2,

where σ = min(1, p− 1).

Proof. Item (3) follows from Lemma 2.3.
For (1), we note that for t > (N/(N − 1)) > 1

2N , β > 0, we have, by the Sobolev
embedding theorem,

|Φ|L∞(Ω) 6 C‖Φ‖t,2,β 6 Cη.

We can choose η so small that
|Φ|L∞(Ω) < 1

2 .

Hence we obtain

support(wε,P + Φ− 1)p+ ⊂
K⋃
j=1

BR′0ε(P
j), (3.4)

where R′0 > 0 is a fixed number.
For each j = 1, . . . , K, x ∈ BR′0ε(P

j), we have

|Nε,P (Φ)(x)| 6 C|Φ(x)|1+σ 6 C‖Φ‖1+σ
t,2,β .

Because of (3.4), we have

‖Nε,P (Φ)‖t,0,2+β 6 C‖Φ‖1+σ
t,2,β .

We can prove (2) in a similar way. �

We are now ready to prove the following main result in this section.

Proposition 3.2. For ε and δ sufficiently small and P ∈ Bδ(P0), the following problem

Π⊥ε,P ◦ Sε(wε,P + Φ) = 0, Φ ∈ K⊥ε,P (3.5)

has a unique solution:
Φ := Φε,P ∈ Bε(1−δ)(N−2) .
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Proof. We write (3.5) in the following form:

0 = Π⊥ε,P ◦ (Sε(wε,P ) + Lε,P (Φ) + Nε,P (Φ))

= Π⊥ε,P ◦ Lε,P (Φ) + Π⊥ε,P ◦ Sε(wε,P ) + Π⊥ε,P ◦Nε,P (Φ).

Therefore, (3.5) is equivalent to

Φ = Gε(Φ) := −L̃−1
ε,P ◦ (Π⊥ε,P ◦ Sε(wε,P ) + Π⊥ε,P ◦Nε,P (Φ)).

By Proposition 2.8 and parts (1) and (3) of Lemma 3.1, we have, for Φ ∈ Bη, where
η = ε(1−δ)(N−2),

‖Gε(Φ)‖t,2,β 6 C‖Sε(wε,P )‖t,0,2+β + C‖Nε(Φ)‖t,0,2+β

6 CεN−2 + Cε(1+σ)(1−δ)(N−2) < 1
2η.

Moreover, by Lemma 3.1 (2),

‖Gε(Φ1)−Gε(Φ1)‖t,2,β 6 Cησ‖Φ1 − Φ2‖t,2,β < 1
2‖Φ1 − Φ2‖t,2,β .

Thus Gε is a contraction map from Bη to Bη.
By the contraction mapping principle (see [18], Proposition 6.5 in [34] and Lemma 3.3

in [36] for a similar approach), Proposition 3.2 can be easily proved. We omit the technical
details. �

We next expand Φε,P in terms of εN−2. To this end, we set Φ0
ε,P to be defined as

follows

Φ0
ε,P (x) = kw

K∑
j=1

Fj(P , P j)Φ0

(
x− P j

ε

)
, (3.6)

where Φ0 is the unique solution of the following problem{
∆φ0 + p(w − 1)p−1

+ Φ0 + p(w − 1)p−1
+ = 0, in RN ,

Φ0(y) = Φ0(|y|), Φ0(|y|)→ 0, as |y| → +∞.
(3.7)

It is easy to see that Φ0(|y|) = C0|y|2−N for |y| > Rw, where C0 is a constant.
Remarkably, we can write Φ0 explicitly.

Lemma 3.3. Let Φ0 be the unique solution of (3.7). We then have

Φ0 = −w − 1
2 (p− 1)rw′(r).

Thus
C0 =

kw
(N − 2)|SN−1| (

1
2 (p− 1)(N − 2)− 1).

Proof. By invariance of the equation ∆u + up = 0, it is easy to see that −((w− 1) +
1
2 (p−1)r(w−1)′) satisfies ∆u+p(w−1)p−1

+ u = 0 in BRw(0). Hence −w− 1
2 (p−1)rw′(r)

satisfies equation (3.7). By uniqueness, Φ0 = −w − 1
2 (p − 1)rw′(r). The formula for C0

follows from Lemma 2.1. �
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Let

Φ̃0
ε,P (x) := kw

K∑
j=1

Fj(P , P j)
(

Φ0

(
x− P j

ε

)
− C0(N − 2)|SN−1|εN−2H(x, P j)

)
, (3.8)

be the projection of Φε,P (x) into H1
0 (Ω). Note that

Φ0
ε,P (x) = Φ̃0

ε,P (x) + O(εN−2).

We have the following lemma.

Lemma 3.4. Let Φε,P be defined by Proposition 3.2. Then

‖Φε,P − εN−2Φ̃0
ε,P ‖t,2,β = O(εN−2+δ0), (3.9)

where Φ̃0
ε,P is defined by (3.8) and δ0 > 0 is a positive constant.

Proof. We first note that, by (2.6),

Sε(wε,P ) = pkw(w(y)− 1)p−1
+ Fj(P , P j)εN−2 + O(εN−1)

for x ∈ BR0ε(P
j). Thus

Π⊥ε,P ◦ Sε(wε,P (x)) = pkw(w − 1)p−1
+ Fj(P , P j)εN−2 + O(εN−1) (3.10)

for x ∈ BR0ε(P
j). Note also that

‖Π⊥ε,P ◦Nε(Φε,P )‖t,0,2+β = O(ε(1+σ)(1−δ)(N−2)) = O(εN−2+δ0).

On the other hand, Φ0
ε,P ⊥ X0, (3.9) can be proved by using equation (3.5). Please see

the proof of Lemma A 1 in Appendix A for similar proofs. �

4. The reduced problem: proof of Theorem 1.4

By Proposition 3.2, there exists a unique Φε,P such that

Sε(wε,P + Φε,P ) ∈ Cε,P , Φε,P ∈ K⊥ε,P .

In other words, we have

Sε(wε,P + Φε,P ) =
∑
k,l

βlk(P )∂lkwε,P

for some constants βlk(P ), k = 1, . . . , N , l = 1, . . . , K. (Here the summation is for
k = 1, . . . , N , l = 1, . . . , K.)

Set

W l
ε,k(P ) := ε−N

∫
Ω

Sε(wε,P + Φε,P )∂lkwε,P , k = 1, . . . , N, l = 1, . . . , K. (4.1)

Therefore, to solve (3.2), it is enough to find out a zero of W l
ε,k(P ). We need to compute

W l
ε,k(P ). We have the following lemma.
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Lemma 4.1. For ε� 1, it holds that

W j
ε,i(P ) = cwεN−2∂ji F (P ) + O(εN−2+δ0), i = 1, . . . , N, j = 1, . . . , K, (4.2)

where cw 6= 0 is a generic constant given by

cw = −kw
1
2

∫
RN

(w − 1)p+. (4.3)

Proof of Lemma 4.1. Note that for i = 1, . . . , N , j = 1, . . . , K,

∂jiwε,P = ∂jiwε,P j ,

W j
ε,i = ε−N

∫
Ω

Sε(wε,P + Φε,P )∂jiwε,P j

=
∫
Ωε,Pj

Sε(wε,P )∂jiwε,P j +
∫
Ωε,Pj

Lε,P (Φε,P )∂jiwε,P j +
∫
Ωε,Pj

Nε(Φε,P )∂jiwε,P j

= J1 + J2 + J3,

where the Ji, i = 1, 2, 3, are defined at the last equality.
We first estimate J2 and J3. Note that

J2 =
∫
Ωε,Pj

p[(wε,P + Φε,P − 1)p−1
+ ∂jiwε,P j − (wj − 1)p−1

+ ∂jiwj ]Φε,P

= O(εN−2+δ0)

by Lemmas 2.3 and 3.4, and

J3 =
∫
Ωε,Pj

Nε(Φε,P )∂jiwε,P j = O(εN−2+δ0).

It remains to estimate J1. By Lemma 3.4 and the fact that

∂jiwε,P j = ∂jiw

(
x− P j

ε

)
− εN−2kw∂jiH(x, P j),

we have

J1 =
∫
Ωε,Pj

Sε(wε,P )∂jiwε,P j

=
∫
Ωε,Pj

Sε(wε,P )∂jiwj + O(ε2(N−2))

= kw

N∑
k=1

∂

∂xk
Fj(P , x)|x=P j ε

N−2
∫
RN

∂w

∂yi
ykp(w − 1)p−1

+ dy + O(εN−2+δ0)

= kw
∂

∂xi
Fj(P , x)|x=P j ε

N−2
∫
RN

∂w

∂yi
yip(w − 1)p−1

+ dy + O(εN−2+δ0)

= cwεN−2∂ji F (P ) + O(εN−2+δ0)
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since ∫
RN

∂w

∂yi
yip(w − 1)p−1

+ =
∫
RN

∂(w − 1)p+
∂yi

yi = −
∫
RN

(w − 1)p+,

and
∂

∂xi
Fj(P , x)|x=P j = 1

2∂ji F (P ).

�

Finally we prove Theorem 1.4.

Proof of Theorem 1.4. By Proposition 3.2 we have

Sε(wε,P + Φε,P ) =
∑
k,l

βlk(P )∂lkwε,P .

By Lemma 4.1 we have

βlk(P ) = (1 + o(1))ε2W l
ε,k(P ) = εN (cw∂lkF (P ) + o(1)).

Since P0 is a non-degenerate critical point of F (P ), by Brouwer’s fixed point theorem,
there exists a Pε such that

βlk(Pε) = 0, k = 1, . . . , N, l = 1, . . . , K.

In other words, we have that uε = wε,P + Φε,P ∈ Xt,β satisfies

ε2∆uε + (uε − 1)p+ = 0, in Ω,

and uε = 0 on ∂Ω. By the standard regularity theorem, we have uε ∈ C2(Ω) ∩ C0(Ω̄).
It remains to check that uε > 0 in Ω. By the Maximum Principle, it is enough to show

that u−ε ≡ 0. Multiplying the equation by u−ε and integrating by parts we have

ε2
∫
Ω

|∇u−ε |2 =
∫
Ω

u−ε (uε − 1)p+ = 0,

which implies that u−ε ≡ 0.
By following the same arguments as in Steps 13 and 14 in [20], we have that uε has

exactly K local maximum points P j
ε and, moreover, P j

ε → P j
0 , j = 1, . . . , K. Furthermore,

the set Aε = {uε > 1} consists of exactly K components and (1.11) holds for R1 > R2,
where R1 = Rw + o(1), R2 = Rw + o(1). �

5. Uniqueness of uε

Let uε be the solution constructed in § 4. In this section, we prove the uniqueness of uε.
Let wε,P , Kε,P , Cε,P , K⊥ε,P , C⊥ε,P and Sε(u) be as defined in § 2.
For any u, v ∈ H1

0 (Ω), we define

〈u, v〉ε = ε−N
∫
Ω

(ε2∇u · ∇v), ‖u‖ε = 〈u, v〉1/2ε .
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For any u ∈ H1
0 (Ω), we define the energy functional associated with (1.8) as

Jε(u) = ε−N
[

1
2ε2
∫
Ω

|∇u|2 −
∫
Ω

F (u)
]
, (5.1)

where F (u) =
∫ u

0 f(s) ds.
Fix any P ∈ ΩK . We define

Kε(P ) = Jε(wε,P + Φε,P ), (5.2)

where Φε,P is the unique solution given by Proposition 3.2.
Let P0 be a non-degenerate critical point of F (P ). Set

Λ = Bδ(P ) ⊂ ΩK .

Let Kε(P ) be defined by (5.2). Then we have the following lemma.

Lemma 5.1. uε = wε,P +Φε,P is a solution of (1.9) if and only if P is a critical point
of Kε(P ) in Λ.

Proof. The proof is similar to Proposition 3.5 in [18]. �

Let uε be a single-condensation solution with the unique local maximum Pε → P0. By
Lemma 5.1, we have uε = wε,Qε + Φε,Qε for some Qε ∈ Λ, Φε,Qε ∈ K⊥ε,Qε , and Qε is a
critical point of Kε(P ) in Λ.

By Lemma 5.1, to prove the uniqueness of uε, we just need to show that Kε(P ) has
only one critical point in Λ.

Let us define

K̃ε(P ) = K

(
1
2

∫
RN
|∇w|2 −

∫
RN

F (w)
)
− cwF (P )εN−2. (5.3)

It is easy to see that K̃ε(P ) has only one critical point, P0, in Λ if δ is small.
We now compute ∇Kε(P ). First we have the following lemma.

Lemma 5.2. For P ∈ Λ, we have

∇Kε(P ) = ∇K̃ε(P ) + o(εN−2). (5.4)

Proof. Observe that

∂jiKε(P ) = 〈wε,P + Φε,P , ∂ji (wε,P + Φε,P )〉ε − ε−N
∫
Ω

(wε,P + Φε,P )p∂ji (wε,P + Φε,P )

= ε−N
∫
Ω

Sε(wε,P + Φε,P )∂ji (wε,P + Φε,P )

=
∑
k,l

βlk(P )
∫
Ωε

∂lkwε,P ∂ji (wε,P + Φε,P )

= ∂ji K̃ε(P ) + o(εN−2),

by Lemma 4.1. �
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The following lemma shows that a critical point of Kε is non-degenerate.

Lemma 5.3. Let Qε be a critical point of Kε(P ) over Λ. Then we have

∂ji ∂
l
kKε(P )|P=Qε = ∂ji ∂

l
kK̃ε(P )|P=Qε + o(εN−2). (5.5)

The proof of Lemma 5.3 is very complicated and is thus left to Appendix A. Let us
now use it to prove the uniqueness of uε.

The proof of the uniqueness of uε is completed by the following lemma.

Lemma 5.4. There exists a unique critical point of Kε(P ) over Λ.

Proof. As we already know by Theorem 1.4 and Lemma 5.1, Kε(P ) has a critical
point Qε and any other critical point of Kε(P ) is in Λ.

We now show that Qε is unique.
First, by Lemma 5.3, there are only a finite number of critical points of Kε(P ) in Λ.

Let Qi
ε ∈ Λ, i = 1, . . . , kε, be the critical points, where kε is the number of critical points.

At each critical point Qi
ε, we have, by Lemmas 5.3 and 5.2,

deg(∇Kε, Bδi(Q
i
ε), 0) = (−1)di ,

where δi > 0 are small constants so that Bδi(Q
i
ε)(⊂ Λ) contains only one critical point

(i.e. Qi
ε) of ∇Kε(P ). Here di is the Morse index of F (P ) at Qi

ε. By Lemma 5.3, di = d,
where d is the Morse index of F (P ) at P0.

Hence by the additivity of the degree we have

deg(∇Kε, Λ, 0) =
kε∑
j=1

(−1)dj = kε(−1)d. (5.6)

On the other hand, since K̃ε(P ) has only one critical point in Λ and by Lemma 5.2,
∇Kε(P ) = ∇K̃ε(P ) + o(εN−2), by a continuity argument (note that ∇Kε(P ) 6= 0 and
∇K̃ε(P ) 6= 0 on ∂Λ), we obtain

deg(∇Kε, Λ, 0) = deg(∇K̃ε, Λ, 0) = (−1)d. (5.7)

Comparing (5.6) and (5.7), we obtain kε = 1. �

6. Proofs of Theorems 1.1 and 1.3

In this section, we prove Theorems 1.1 and 1.3. By Theorem 1.4, for each ε < ε0 suf-
ficiently small, there exists a unique solution uε with K local maximum points P j

ε ,
j = 1, . . . , K, and P j

ε → P j
0 as ε → 0. To prove Theorems 1.1 and 1.3, it is enough

to study the following equation:

I(ε) := ε−2p/(p−1)
∫
Ω

(uε − 1)p+ = M. (6.1)

First we have the following lemma.
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Lemma 6.1. I(ε) is a continuous function for ε ∈ (0, ε0).

Proof. This follows from the uniqueness of uε. In fact let ε ∈ (0, ε0) and εk → ε as k →
+∞. Since uεk is uniformly bounded for εk ∈ (0, ε0), we can assume that uεk → ũε, where
ũε satisfies (1.9). Moreover, the set Aεk = {uεk > 1} approaches the set Aε = {ũε > 1}.
Therefore, we see that uε has exactly K local maximum points P ε

j with P ε
j = P 0

j + o(1).
(We remark here that any local maximum point of uε is non-degenerate (see [20]).) By
uniqueness of uε, we have ũε = uε and thus limεk→ε I(εk) = I(ε). �

We now compute I(ε).

Lemma 6.2. For ε sufficiently small, we have∫
Ω

(uε − 1)p+ = εN
[
K

∫
RN

(w − 1)p+ + εN−2dwF (P 0) + o(εN−2)
]
, (6.2)

where dw = (1
2 (p− 1)(N − 2)− 1)kw is a generic constant.

Remark 6.3. Combining Lemma 6.1 and Lemma 6.4, Theorem 1.4 is proved by taking
Ip := K

∫
RN

(w − 1)p+.

Remark 6.4. Note that when p = p∗, dw = 0.

Proof. Note that
uε = wε,Qε + Φε,Qε

and ∫
Ω

(uε − 1)p+ =
K∑
j=1

∫
B2R0ε(Q

j
ε)

(uε − 1)p+ (6.3)

for some R0 > 0. We just need to compute∫
B2R0ε(Q

j
ε)

(uε − 1)p+, j = 1, . . . , K.

We now compute the case when j = 1. The others are similar. We obtain∫
B2R0ε(Q

1
ε)

(uε − 1)p+

= εN
∫
B2R0 (0)

(uε(Q1
ε + εy)− 1)p+

= εN
∫
B2Rw (0)

(wε,Qε + Φε,Qε − 1)p+

= εN
[∫

B2R0 (0)
(w(y) + kwεN−2F1(Qε, Q

1
ε) + Φε,Qε − 1)p+ + O(εN−1)

]
= εN

[∫
RN

(w − 1)p+ + pkw

∫
RN

(w − 1)p−1
+ εN−2F1(Qε, Q

1
ε)

+ p

∫
RN

(w − 1)p−1
+ Φε,Qε + O(εN−1)

]
. (6.4)
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By Lemma 3.4, for y ∈ B2R0(0), we have

Φε,Qε = kwεN−2F1(Qε, Q
1
ε)Φ0

(
x−Q1

ε

ε

)
+ o(εN−2), (6.5)

where Φ0 is the solution of (3.7).
Thus

p

∫
RN

(w − 1)p−1
+ Φε,Qε = pεN−2

∫
RN

(w − 1)p−1
+ F1(Qε, Q

1
ε)kwΦ0(y) + o(εN−2). (6.6)

Substituting (6.6) into (6.4) and noting that Qε → P0, we obtain∫
B2R0ε(Q

1
ε)

(uε − 1)p+

= εN
[∫

RN
(w − 1)p+ + p

∫
RN

(w − 1)p−1
+ kwF1(P0, P

1
0 )εN−2

+ p

∫
RN−1

(w − 1)p−1
+ Φ0kwF1(P0, P

1
0 )εN−2 + o(εN−2)

]
= εN

[∫
RN

(w − 1)p+ + p

∫
RN

(w − 1)p−1
+ (Φ0 + 1)kwF1(P0, P

1
0 )εN−2 + o(εN−2)

]
.

From the equation for Φ0,

p

∫
RN

(w − 1)p−1
+ (Φ0 + 1) = −

∫
∂BRw (0)

∂Φ0

∂ν

= −C0(2−N)|∂B1(0)| = dw,

where Φ0(r) = C0/rN−2 for r > Rw. By Lemma 3.3,

C0 =
kw

(N − 2)|SN−1| (
1
2 (p− 1)(N − 2)− 1).

Hence∫
B2R0ε(Q

1
ε)

(uε − 1)p+ = εN
[∫

RN
(w − 1)p+ + dwF1(P0, P

1
0 )εN−2 + o(εN−2)

]
.

Combining the estimates of∫
B2R0ε(Q

j
ε)

(uε − 1)p+, j = 1, . . . , K,

equation (6.2) is thus proved. �

Finally we can prove Theorems 1.1 and 1.3.
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Proof of Theorems 1.1 and 1.3. Consider the equation

I(ε) = M. (6.7)

By Lemma 6.1,

I(ε) = εN−(2p/(p−1))
[
K

∫
RN

(w − 1)p+ + dwF (P 0)εN−2 + o(εN−2)
]
.

It is not hard to see that

M
(N)
∗ =

∫
RN

(w − 1)p
∗

+ .

Set
uM = ε−2/(p−1)(uε − 1). (6.8)

Let us now prove that uM satisfy the properties of Theorems 1.1 and 1.3.
Properties (i), (ii) and (iii) of Theorem 1.1 follow directly from those of uε and

Lemma 6.2.
To prove Theorem 1.3, we note that the relation between M and ε is given by

M = εN−(2p/(p−1))
{

K

∫
RN

(w − 1)p+ + O(εN−2)
}

.

Since −µM = ε−2/(p−1), we obtain

M(−µM )(2p−N(p−1))/2 = Mε(2p/(p−1))−N = K

∫
RN

(w − 1)p+ + o(1),

which proves property (iii) of Theorem 1.3 with µ0 = K
∫
RN

(w − 1)p+. Properties (i)
and (ii) of Theorem 1.3 follow from the properties of uε. �

Appendix A. Proof of Lemma 5.3

In this appendix, we prove the technical lemma (Lemma 5.3). The key is to expand Φε,P
and ∂lkΦε,P .

Recall that Φ̃0
ε,P is defined by (3.8). We first need the following lemma.

Lemma A 1. Let Φ̃ε,P be defined by (3.8). We then have that Φε,P is C1 in P .
Moreover, we have

Φε,P = εN−2Φ̃0
ε,P + o(εN−2) (A 1)

and

∂jiΦε,P = εN−2∂ji Φ̃
0
ε,P + O(εN−2). (A 2)
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Proof. Equation (A 1) has been proved in Lemma 3.4. To prove (A 2), we note that

Φ̃0
ε,P = Φ0

ε,P + O(εN−2).

Put
Ψε := ∂jiΦε,P − εN−2∂ji Φ̃

0
ε,P , (A 3)

and we decompose Ψε into two parts

Ψε =
∑
k,l

α̃jlik∂
l
kwε,P + Ψ⊥ε , Ψ⊥ε ∈ K⊥ε,P ,

where α̃jlik are some constants.
We will show that

α̃jlik = O(εN−1) (A 4)

and
‖Ψ⊥ε ‖t,2,β = O(εN−2). (A 5)

We first note that, since Φε,P ⊥ Kε,P ,

ε−N
∫
Ω

∂Φε,P

∂P j
i

∂wε,P
∂P l

k

= −ε−N
∫
Ω

Φε,P
∂2wε,P

∂P j
i ∂P l

k

.

Hence,∑
k,l

α̃jlikε
−N
∫
Ω

∂wε,P
∂P l

k

∂wε,P
∂P l′

k′

= −εN−2ε−N
∫
Ω

Φε,P ∂ji ∂
l′
k′wε,P + ε−N

∫
Ω

εN−2Φ0
ε,P ∂ji ∂

l′
k′wε,P + O(εN−3)

= O(εN−3).

Since

ε−N
∫
Ω

∂wε,P
∂P l

k

∂wε,P
∂P l′

k′
= ε−2(Γ + o(1))δkk′δll′ ,

where Γ > 0, we obtain α̃jlik = O(εN−1), which proves (A 4).
Next we observe that

Sε(wε,P + Φε,P ) =
∑
ij

βji (P )
∂wε,P

∂P j
i

,

where βji (P ) ∈ C1.
Differentiating the above equation by ∂/∂P j

i , we have

S′ε(wε,P + Φε,P )
(

∂wε,P

∂P j
i

+
∂Φε,P

∂P j
i

)
−
∑
k,l

βlk(P )
∂2wε,P

∂P j
i ∂P l

k

∈ Cε,P .
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At a critical point P = Qε of Kε(P ), we must have

βlk(Qε) = 0, k = 1, . . . , N, l = 1, . . . , K.

Hence, at P = Qε,

S′ε(wε,P + Φε,P )(Ψ⊥ε,P ) + S′ε(wε,P + Φε,P )
(

∂(wε,P + εN−2Φ0
ε,P )

∂P j
i

+
∑
k,l

α̃jlik
∂wε,P
∂P l

k

)
∈ Cε,P .

We now need to compute

Eε := S′ε(wε,P + Φε,P )
(

∂(wε,P + εN−2Φ0
ε,P )

∂P j
i

∣∣∣∣
P=Qε

)
.

By using Lemma 3.4, a simple computation shows that

Eε = ∂ji |P=QεSε(wε,P + εN−2Φ0
ε,P )

= O(εN−2).

On the other hand, by the same proof as that of Proposition 2.5, it is easy to see that

Π⊥ε,P ◦ S′ε(wε,P + Φε,P ) : K⊥ε,P → C⊥ε,P
is invertible for ε sufficiently small. Hence (since Ψ⊥ε,P ∈ K⊥ε,P ),

‖Ψ⊥ε,P ‖t,2,β 6 C‖Π⊥ε,P ◦ Eε‖t,2+β + O(εN−2)

6 CεN−2.

Equation (A 2) is thus proved. �

By using Lemma A 1, we obtain the following proof.

Proof of Lemma 5.3. In order to have a unified approach that works for all dimen-
sions N > 3, we need to modify wε,P . We introduce the following notation:

w̄ε,P j = wε,P j + kwFj(P , P j)
(

Φ0

(
x− P j

ε

)
− C0(N − 2)|SN−1|εN−2H(x, P j)

)
,

w̄ε,P =
K∑
j=1

w̄ε,P j ,

w̄ε,P + Φ̄ε,P = wε,P + Φε,P .

Then, by Lemma A 1, we have

Φ̄ε,P = O(εN−2+δ0), ∂lkΦ̄ε,P = O(εN−2). (A 6)
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Thus we obtain

∂2Kε(P )
∂P j

i ∂P l
k

∣∣∣∣
P=Qε

= 〈∂ji (w̄ε,P + Φ̄ε,P ), ∂lk(w̄ε,P + Φ̄ε,P )〉ε|P=Qε

+ 〈w̄ε,P + Φ̄ε,P , ∂ji ∂
l
k(w̄ε,P + Φ̄ε,P )〉ε|P=Qε

− ε−N
∫
Ω

p(w̄ε,Qε + Φ̄ε,Qε − 1)p−1
+ ∂ji (w̄ε,P + Φ̄ε,P )|P=Qε∂

l
k(w̄ε,P + Φ̄ε,P )|P=Qε

− ε−N
∫
Ω

(w̄ε,Qε + Φ̄ε,Qε − 1)p+∂lk∂
j
i (w̄ε,P + Φ̄ε,P )|P=Qε

(since P = Qε is a critical point)

= 〈∂ji (w̄ε,P + Φ̄ε,P ), ∂lk(w̄ε,P + Φ̄ε,P )〉ε|P=Qε

− ε−N
∫
Ω

p(w̄ε,Qε + Φ̄ε,Qε − 1)p−1
+ ∂ji (w̄ε,P + Φ̄ε,P )|P=Qε∂

l
k(w̄ε,P + Φ̄ε,P )|P=Qε

= 〈∂lk(w̄ε,P ), ∂ji (w̄ε,P )〉ε|P=Qε

− ε−N
∫
Ω

p(w̄ε,Qε + Φ̄ε,Qε − 1)p−1
+ ∂ji (w̄ε,P )|P=Qε∂

l
k(w̄ε,P )|P=Qε

+ 〈∂lk(w̄ε,P ), ∂ji (Φ̄ε,P )〉ε|P=Qε

− ε−N
∫
Ω

p(w̄ε,Qε + Φ̄ε,Qε − 1)p−1
+ ∂ji (Φ̄ε,P )|P=Qε∂

l
k(w̄ε,P )|P=Qε

+ 〈∂lk(Φ̄ε,P ), ∂ji (w̄ε,P )〉ε|P=Qε

− ε−N
∫
Ω

p(w̄ε,Qε + Φ̄ε,Qε − 1)p−1
+ ∂ji (w̄ε,P )|P=Qε∂

l
k(Φ̄ε,P )|P=Qε

+ 〈∂lk(Φ̄ε,P ), ∂ji (Φ̄ε,P )〉ε|P=Qε

− ε−N
∫
Ω

p(w̄ε,Qε + Φ̄ε,Qε − 1)p−1
+ ∂ji (Φ̄ε,P )|P=Qε∂

l
k(Φ̄ε,P )|P=Qε

= I1 + I2 + I3 + I4,

where Ii, i = 1, 2, 3, 4, are defined in the last equality.
By (A 6),

I4 = o(εN−2),

I2 =
∫
Ωε,Pj

S′ε(wε,Qε)(∂
j
i |P=Qεw̄ε,P )(∂lk|P=QεΦ̄ε,P )

= o(εN−2).

Similarly, we have
I3 = o(εN−2).
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It remains to compute I1. The computation of I1 is as follows

I1 =
∫
Ωε

S′ε(w̄ε,Qε)∂
j
i |P=Qεw̄ε,P ∂lk|P=Qεw̄ε,P

=
∫
Ωε

∂ji [Sε(w̄ε,P )∂lkw̄ε,P ]|P=Qε

= ∂ji ∂
l
kJε(w̄ε,P )|P=Qε .

Note that
Jε(w̄ε,P ) = KI(w)− cwF (P )εN−2 + o(εN−2).

We now need to show that the above equality is true in C2 for P . Although intuitively it
should be true, the proofs are quite complicated, due to the fact that when we differentiate
P j we are also differentiating x, since the variables involved are (x − P j)/ε. The key is
to separate these two differentiations. To this end, we introduce

Dj
i :=

∂

∂P j
i

+
∂

∂xi
. (A 7)

We then have

I1 =
∫
Ωε,Pj

Dj
i [Sε(w̄ε,P )∂lkw̄ε,P ]|P=Qε + o(εN−2).

Note that

Dj
i g

( |x− P j |
ε

)
= 0

for any radial function g.
So

Sε(w̄ε,P ) = (w̄ε,P − 1)p+ −
K∑
s=1

(ws − 1)p+ − pkw

K∑
s=1

(ws − 1)p−1
+ Fs(P , P s)(Φ0 + 1)

= εN−2pkw

K∑
s=1

(ws − 1)p−1
+ (Fs(P , x)− Fs(P , P s))(Φ0 + 1) + o(εN−2).

Thus

Dj
i [Sε(w̄ε,P )∂lkw̄ε,P ]

= Dj
i

(
εN−2pkw

K∑
s=1

(ws − 1)p−1
+ (Fj(P , x)− Fj(P , P s)

)
(Φ0 + 1)∂lkwl) + o(εN−2)

= εN−2pkw

K∑
s=1

(ws − 1)p−1
+ Dj

i (Fs(P , x)− Fs(P , P s))(Φ0 + 1)∂lkwl + o(εN−2).
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Hence

I1 = εN−2pkw

∫
Ω
ε,Pl

(w − 1)p−1
+ ∂lk∂

j
i F (P )yk

∂w

∂yk
(Φ0 + 1) + o(εN−2)

= −cwεN−2∂lk∂
j
i F (P )|P=Qε + o(εN−2).

Lemma 5.3 is thus proved. �

Appendix B. Proof of Lemma 2.6

In this appendix, we prove the regularity result Lemma 2.6. Recall that 0 < β <

(N/t′)− 1.
We first prove the case when K = 1. In this case, we rescale the domain Ω and the

functions as follows:

x = εy + P 1, Φ̃(y) = Φ(εy + P 1), f̃(y) = f(εy + P 1).

Then Φ̃ satisfies
∆Φ̃ + f̃ = 0, in Ωε,P 1 .

We extend Φ̃ and f̃ to RN by putting 0 outside Ωε,P 1 .
Note that the Laplace operator ∆ is an isomorphism from W t

2,β(R
N ) to Lt2+β(R

N ).
See [13], [24], [25] and [28]. Thus we have

‖Φ‖t,0,β 6 ‖Φ̃‖Ltβ(RN ) 6 C‖f̃‖Lt2+β(RN ) 6 C‖f‖t,2+β . (B 1)

On the other hand, let
Φ̄ = Φ̃(y)χ(x− P 1),

where χ(x) = 1 for |x| 6 δ and χ(x) = 0 for |x| > 2δ.
Then it is easy to see that Φ̄ satisfies

∆yΦ̄ + χf̃ + 2∇yχ∇Φ̃ + ∆yχΦ̃ = 0, Φ̄ ∈W t
2,β(R

N ).

Hence

‖Φ̄‖W t
2,β(RN ) 6 C‖f‖t,2+β + C‖∇yχ∇Φ̃‖t,2+β

6 C‖f‖t,2+β + δ‖Φ‖t,2,β
for any small δ. Here we have used the interpolation inequality.

But outside Bδ(P 1), we have

‖Φ‖W t
2,β(Ω\Bδ(P 1)) 6 C‖f‖t,2+β .

Thus
‖Φ‖t,2,β 6 C‖f‖t,2+β + δ‖Φ‖t,2+β .

Lemma 2.6 is thus proved for the case K = 1.
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Next we prove the case when K = 2. The other cases K > 2 can be proved similarly.
We divide the domain into two parts: Ω1

⋃
Ω2 = Ω and Ω1 ∩ Ω2 = φ. We choose χ1

and χ2 such that χ1(x) = 1 for x ∈ Bδ(P 1) and χ1(x) = 0 for ∈ Ω\Bδ(P 2). Similarly,
we require that χ2(x) = 1 for x ∈ Bδ(P 2) and χ2(x) = 0 for ∈ Ω\Bδ(P 1). Moreover, we
can assume that χ1(x) + χ2(x) = 1 for x ∈ Ω.

Let Φi, i = 1, 2, be the unique solution of

ε2∆Φi + χi(x)f = 0, in Ω, Φi ∈ H1
0 (Ω).

Then we have
Φ(x) = Φ1 + Φ2

and
‖Φj‖W t

2,β(Ωε,Pj ) 6 C‖f‖t,2+β , j = 1, 2.

Since β > 0,

(σP (x))β 6
(

1 +
|x− P j |

ε

)β
,

‖Φj‖t,2,β 6 ‖Φ‖W t
2,β(Ωε,Pj ), j = 1, 2.

So we have
‖Φ‖t,2,β 6 C‖Φ1‖t,2,β + C‖Φ2‖t,2,β 6 C‖f‖t,2+β .

Lemma 2.6 is thus proved. �
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