
ENUMERATION OF NON-SEPARABLE 
PLANAR MAPS 

WILLIAM G. BROWN 

1. Introduction. In (2), Tutte has shown that the number, Bn, of rooted 
non-separable planar maps having n edges is [2(3n — 3)!]/[w! (2n — 1)!]. 
Rooting was accomplished by designating one edge as the root, orienting it, 
and distinguishing between its sides as left and right. We shall here compute 
the number, Bn>m, of rooted non-separable planar maps having n edges and 
such that the face to the left of the root is incident with exactly m edges, 
which maps will be said to be of type [n, m\. Following this we shall compute 
the number, TBntm, of rooted non-separable planar maps of type [n, m] which 
are invariant under automorphisms induced by a rotation of period r of the 
boundary of the face to the left of the root. It will then be possible to calculate 
the number, up to orientation-preserving isomorphisms, of non-separable planar 
maps having n edges, where rooting is accomplished by designating a face {dually, 
a vertex) as the root, and assigning to it an orientation. This is a first step towards 
enumerating the isomorphism classes of planar non-separable maps. 

2. We adopt the terminology of Tutte in (2); all maps referred to will be 
planar. The following lemma will be required in our construction. 

(2.1) LEMMA, V is a cut-vertex of a map M if and only if there is a face of M 
which is incident with v more than once. 

Proof. This is (6.1) of (2), q.v. 

(2.2) COROLLARY. Let M be a map in which an edge E is incident with two 
distinct faces, F\ and F%. Merging E with F\ and F2 produces a simply connected 
region F; thus the resulting dissection of the 2-sphere is a map, which we denote 
by M'. The set of cut-vertices of M' is the union of the set of cut-vertices of M 
and the set of vertices of singularity of the boundary of F in Mf. 

In our enumeration we shall not include the loop-map or link-map among 
the non-separable maps. Because of the latter exclusion the faces to the left 
and right of the root will be distinct, and will be designated as the external 
root-face (or simply the external face) and the internal root-face, respectively, 
of the map; edges in the boundary of the external face will be called external 
edges. Exclusion of the loop-map implies that every face is incident with more 
than one edge. 

We define, as formal power series 
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oo 

(2.3) Bn.(y) = £ Bn,mym, 

OO 

(2.4) B.m(x) = £ Bv,mxn, 

oo oo 

(2.5) B(x,y) = £ 2 i W y 
n = 2 w = 2 

oo oo 

= Z *"5,.Cv) = E B.n{x)ym. 
n«2 w=2 

It is clear that ^n>m = 0 for n < m. Hence Ew=2^«,m is a finite sum, and 
CO OO 

B(X, i) = L r s».m*B 

«=2 m=2 

is a well-defined power series. 

3. An equation for B(x, y). Let M be a non-separable map of type 
[n, m], with root-edge A directed from vertex p to vertex q. Let Ti and T2 

denote the boundaries of the external and internal root-faces, respectively. 
The orientation of A induces an orientation in the edges of Tx such that the 
number of edges directed towards and away from each vertex is one. Let M' 
be the map obtained from M by erasing A and merging the external and 
internal root-faces. By (2.2), the cut-vertices of M' are those vertices (ex­
cluding p and q) common to Ti and T2. Proceeding from q = a0 along Ti in 
the direction of the orientation, we label the cut-vertices (if any) of M', 
ai, a2, . . . , ak, and set p = ak+i (p = a\ if Mf is non-separable). Then the 
arcs not containing A which at and ai+i intercept in Ti and T2 either together 
constitute a simple closed curve (which, by the Jordan curve theorem, separates 
the 2-sphere into two residual simply connected domains), or coincide as a 
single link (i = 0, 1, . . . , k). In the former case, by erasing all edges of M 
in the residual region containing A to obtain the external face, and taking 
the oriented edge of Fi which emanates from af as root, we obtain a rooted 
non-separable map Mt. Schematically, M has the form shown in Figure 1, 
where any of the submaps Mt may be degenerate as a link-map (cf. 2, § 8). 
Thus M determines uniquely a sequence of k + 1 rooted non-separable maps, 
Mu of types [nit Mi] say (allowing links as type [1, 2]) with each of which 
is associated an index hh the number of edges which Mt contributes to the 
external face of M {i — 0, 1, . . . , k). The following conditions are necessary: 

[0 <*«<«« } « = 0,1, . . . ,*) , 

(3.1) { E hi = m - 1, 
I i=o 

k 

I ]T} nt = n — 1. 
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v«.< 

FIGURE 1. 

Conversely, any ordered selection of k + 1 rooted non-separable maps of 
types [niy mi] (allowing links as type [1, 2]) with associated indices ht (i = 0, 
1, . . . , k) satisfying (3.1) determines a rooted non-separable map. Thus 

(3.2) Bn,m - ] L Irf 1 1 (Bnijmi + dnitiÔmit2)j 

where the second sum is taken over all ordered sets of positive integers 
(no, ni, ... , n]c; ra0, mi, . . . , mk\ ho, hi, . . . , h/c) satisfying conditions (3.1) for 
each k. (3.2) is equivalent to 

(3.3) B(x, y) = *y £ E B.m(x)b + V* + • • • + y""1} + xy\ . 
t = 0 V m=2 

Multiplying both sides of (3.3) by 

(i - y) • i - L B.m{x)b + y + • • • + Z""1] - xy\ 

we obtain 

(3.4) 0 - - y ) \ l - i B.m(x)[y + /-+...+ / - 1 ] - xy \ B(x, y) V 
f I Xy(l - y ) \ l l B.m(x)[y + / + . . . + y""1] + xy j" , 

i.e. 

https://doi.org/10.4153/CJM-1963-056-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1963-056-7


NON-SEPARABLE PLANAR MAPS 529 

(3.5) \ (1 - y)(l - x y ) - t , BM(x)\y - ym}\B(x,y) 

= xy \ £, B.m{x)[y - ym] + xy{\ - y)\ , 

which we can rewrite as 

{(1 - ; y ) ( l -xy) -yB(x,l) + B(x, y)}B(x, y) 

= xy{yB{x, 1) — B(x, y) + xy{\ — y)}, 

or, after rearrangement, 

(3.6) [B(x, y)]2 + [1 - y + xy2 - yB(x, l)]£(x, y) 

- xy2[B(x, 1) + x{\ - y)] = 0. 

This is analogous to equation (3.8) in (1). 
Thus far we have defined B (x, y) only as a formal power series, having 

made no hypothesis as to its representing an analytic function in some neigh­
bourhood. This accounts for the method used in (3.4) and (3.5) for * 'summing" 
geometric series. 

By comparing coefficients of powers of x in (3.6) we obtain 

' (1 - y)Bt.(y) = y\l - y), 

(3.7) 
(1 - y)Bz.(y) = -y'B.iy) + y252 . ( l) t 

(1 - y)Bn.(y) = - S B,.(y) Bn-S.{y) + y ^ 5,.(1) S - . . 0 0 
» - 2 

= 2 

-y2Bn^Xy) + : y 2 ^ - i . ( l ) (» > 3). 
Multiplying both sides of equations (3.7) by the infinite formal power series 
1 + y + y2 + • • • we see that the series BnXy), and hence B(x, y), are com­
pletely determined by (3.6). Thus the only solution-pair (a(x, y), T(X)) of the 
functional equation 

(3.8) [<T(X, y)Y + [1 — y + xy2 — yr(x)]a(x, y) — xy2[r{x) + x(l — y)] = 0 

in non-negative powers respectively of x and y, and x alone, satisfying the 
conditions 
(3.9) <r(x, 1) is well defined and equal to r(x), and 

(3.10) the smallest power of x appearing is x2, 

is (B(xy y), B(x, 1)). For any function r(x) which is analytic at x = 0 we can 
solve (3.8) as a quadratic equation in a(x, y) and obtain two solutions in 
terms of r(x). If one of these solutions satisfies (3.9) and 

(3.11) a(x, 0) = <Ty(x, 0) = 0 for all x, 

then the Taylor series expansion of cr(x, y) about (x, y) = (0, 0) will be 
B(x,y). 
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4. Solution of equation (3.6). Solving equations (3.7) for n < 8 we 
obtain 

B*.(y) = y\ 

BzXy) = y2 + y\ 
Bi.iy) = 2y2 + 3y3 + y*, 

Bt.iy) = 6y2 + 9y3 + 6y* + y\ 

Bt.iy) = 22y2 + 32y3 + 26;y4 + 10y5 + y6, 

-Bv.(y) = 91y2 + 1 2 9 / + 1 1 2 / + 6 0 / + 1 5 / + y\ 

from which we conjecture that 

(This statement is known, of course, to be true from (2); however, our argu­
ment does not require this fact.) As we shall see in (4.16), (4.1) can be ex­
pressed parametrically by 

(4.2) x = M(1 - u)\ 

(4.3) B(x, 1) = u2{\ - 2u), 

for u sufficiently small, in particular for u satisfying 

(4.4) \u\ < i 

For convenience we set 

(4.5) v = 1 — u, 

(4.6) z = vy. 

Substituting 

(4.7) r(x) = u2(l - 2u) 

in (3.8) we obtain 

(4.8) a2 + [1 - (1 + u + 2u2)z + uz2]a - u2z2[(l - u - u2) - vz] = 0, 

where a = a(x[u], y[u, z]). The discriminant of (4.8), considered as a quad­
ratic equation in a, is 

[1 - (1 + u + 2u2)z + uz2]2 + 4^V[(1 - u - u2) - vz] 

= (1 - 2z + z2)[l - 2M(1 + 2u)z + u2z2]. 

By the binomial theorem, 

(4.9) [1 - 2«(1 + 2u)z + uV]1/2 = [(1 - uz)2 - 4*A]1/2 

1 o V ^ ( ^ — 2 ) ! 2*/-, N 1—2i * 

= 1 - uz - 2 2 ^ ^ ^ _ 1){ u (1 -uz) z. 
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This expansion is absolutely convergent for all u, z satisfying 

(1 - uz)2 - 4u2 \z\ > 0, 

in particular, for u, z satisfying (4.4) and 

(4.10) \z\ < 2, 

for then 

(1 - uz)2 - 4w2 |z| > 1 - 2uz + u2z2 - J > | - 2uz\ 

but 

\uz\ < J. 

The solutions of (4.8) are 

(4.11) <r(x,y) = | { - l + ( l + w + 2w2)s - ws2 

db(l - z)[l - 2«(1 + 2z*)s + M V ] 1 / 2 | . 

Setting y = 1, i.e. z = v, in (4.11) and selecting the positive sign, we obtain 

*(x, 1) = u2(l - 2u). 

This is true in particular for u satisfying (4.4), in which case it follows that 
(4.10) is also satisfied. In general, selecting the positive sign in (4.11), we 
obtain 

(4.12) <K*, J) = | { [ - 1 + (1 + M + 2u)z - uz- + (1 - z)(l - uz)} 

- 2) 2 - ,; (f _ ^ ; U (1 - UZ) Z j 

«2. M ,ï V V ( 2 < - 2 ) ! ( 2 < - 2 + 5)! 2 i + . t + s 

_ i •_„ t:(t- l)\sl(2t-2)\ 

( i - 2 ) !  
'2 £ , (j - m + 1)! (J - m)\ (2m - j - 2)! 

( J - 2 ) ! 

Z E 

ZÎ.X.TT 2,^+1 (j - »»)! (j - m - 1)! (2m - j ) ! 

= V V ( j - 2 ) ! m ( 3 m - 2 j - l ) , 

^ 2 h(j-tn+ 1)! (j - » ) ! (2m-j)\UV y 

for w, 3; sufficiently small, in particular for u satisfying (4.4) and y satisfying 

(4.13) \y\ < 16/7. 

We note that conditions (3.9) and (3.11) are fulfilled; hence the power series 
expansion of a(x, y) about the origin will indeed be B(x, y). 

Applying Lagrange's theorem (1, § 5; 4, p. 132) to 

u = xv~2 
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we obtain 

;* dl~l 

fei i\ du! (4.14) v- = (1 - « ) - = 1 + / £ f r ^ r ! d - Mr (2 i+ '+1 ,}u=o 

= t 2-, -i/o- , A l - x tor t > 0. 

Hence 

= V V V m(3w - 2j - 1) (2j - OT) (j - 2)! (3* + 2y - w - 1)1 i+( * 
^ ££, <To (j — w + 1)! (j — *»)! (2m — j)\i\ (2i + 2/ - m)! 

^ 2 ES. & (» - i)'- (2» - «)! (i - «)! 0' - « + !)'• (2« - j)\ 

i.e. 

(4-15^ * - = W=r^ix 

mlV2M> (3m - 2j - 1) (2j - m) (j - 2)1 (3n - j - m - 1)! 
è ï , (n - J)! (j - m)! (j - m + 1)! (2m - j)\ \n > m > Z). 

Also 

(4.16) B(x, 1) = ^2(1 - 2M) = x V 4 - 2 x V 6 

_ A 2 v (3*+ 3)! t _ 19 3 v (3*+ 5)! i 
" t i i! (2i + 4)! X 1ZX £ o i! (2i + 6)! X 

= 2 f ( 3 n - 3 ) ! . 
£ i « ! ( 2 « - 1 ) T 

as conjectured in (4.1). 

5. Isomorphisms. Let Mt
0, M^, Mt

2, respectively, denote the classes of 
vertices, edges, and faces of maps Mt (i = 1,2). An isomorphism f : Mi —> M2 

is denned to be a triple of one-to-one mappings, fj : A/V —> M2
j (j = 0, 1, 2) 

which preserve incidence relations. 

(5.1) LEMMA. Let f : M i —> M 2 ôe aw isomorphism between non-separable 
maps. Let p, q be the end-points of an edge A incident with a face F of Mh 

and suppose that the action of f on p, q, A, F is given. Then f is completely 
determined. 

Proof. By (2.1), as Mt is non-separable, the boundary of every face is a 
simple polygon (i = 1,2). Thus / maps edges and vertices of the boundary 
of F onto edges and vertices of the boundary of f2(F). This mapping of the 
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boundary of F is clearly determined by the action of / on A and its end-
points. Let G be any face adjacent to F along an edge B. Its image is deter­
mined as the face 9^f2(F) incident with f1 (B) in M2. Further, the images of 
the edge B and its end-points in the boundary of G are known. By the con­
nectedness of the graph of Mi, f is determined. 

Let Mi, M2 be rooted non-separable maps. An isomorphism / : Mi —> M2 

will be called a boundary isomorphism if it carries the external face of Mi 
onto the external face of M2. A boundary isomorphism will be said to be 
orientation-preserving or -reversing according to its action on the orientation 
induced in the boundary of the external face by the root. 

An isomorphism of a map onto itself will be called an automorphism. It 
follows immediately that 

(5.2) LEMMA. An orientation-preserving boundary automorphism induces a 
rotation of the boundary-graph of the external face. 

(5.3) COROLLARY. An orientation-preserving boundary automorphism is com­
pletely determined by a rotation of the boundary-polygon of the external face. 

(5.4) COROLLARY. The orientation-preserving boundary automorphisms of a 
non-separable map M of type [n, m] form a group, dt[M], isomorphic to a 
subgroup of the rotation group of the m-gon ; thus 9? [M] is a cyclic group whose 
order divides m. 

For any set-theoretic mapping <j> \A—*A, 4>r will represent the mapping 
which associates with each element a of A the ordered set 

(5.5) 4>ra = {a, <t>a, <j>2a, . . . , <l>T~la) {r = 1, 2, . . .). 

6. Rooted non-separable maps of type [n, m;r]. A rooted non-separable 
map M of type [n, m] is said to be of type [n, m; r] if r divides the order of 
9?[ilf]; thus r\m. We define rBn,m to be the number of rooted non-separable 
maps of type [n, m; r\. The corresponding generating functions are 

(6.1) rBnXy) = É rBn,mym, 

CD 

[O.Z) r£j %m\X) = / j rJJnf1nX , 
w=2 

CO OO 

(6.3) rB(x,y) = £ 1 rBn,mxnyn 

CO OO 

= E x\Bn.(y) = £ TB.m{x)ym. 
71=2 w = 2 

We have seen in § 4 that B (x, y) defines an analytic function for (x, y) in the 
rectangle defined by (4.13) and 

(6.4) - 7 2 / 8 3 < x < 9 2 / 8 3 . 
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Hence rB(x, y), being majorized by B(x} y), defines a function analyt ic in the 
same rectangle. 

A rooted non-separable m a p M of type [n, m\ r] will be said to be of type 
[n, m\ r]* if the order of dt[M] is exactly r. Let TB*t7n be the number of rooted 
maps of type [n, m; r ]*. Then 

oo 

l,t>.0) r&n,m = : / J rk&n,m 
k=l 

and hence, by the Môbius Inversion Theorem (3, p. 36), 
oo 

(6.6) TBn>m = ^ 3 M(&) krBntmj 
k=l 

where /x is the Môbius function. Clearly the number , up to orientat ion-pre­
serving isomorphisms, of rooted non-separable maps of type [n, m\ r]* is 
(r/m) rBt,m- Hence, the number , up to orientation-preserving isomorphisms, 
of rooted non-separable maps of type [n, m] is 

oo oo oo 

(6.7) Ln,m = X) (r/m) rBn,m = (1/w) ^ X) M ^ ^ f ^ n , » 
r=l T=1 k=l 

= (i/«») E E **(*) • UA) A . » 
s|m A:l s 

where </> is the Euler function (3, p. 27). Thus , if we define a face-rooted (vertex-
rooted) non-separable m a p of type [n, m] to be a non-separable m a p containing 
n edges, in which one face (vertex) of valency m is designated as the root and 
assigned an orientation, then the number of such maps up to isomorphisms 
which preserve the root and its orientat ion is LWfTO. 

7. A n e q u a t i o n for rB(x, y). Clearly iB(x, y) = B(x, y). 
Assume now t h a t r > 1, and let M be a rooted non-separable m a p of type 

[rij w ; r] with root-edge A directed from vertex p to vertex q. Let Fi, F2 

respectively denote the external and internal root-faces, and Ti, T2 their 
respective boundary-polygons. We shall represent the sets of vertices and 
edges in I \ respectively by IV , I V (i = 1, 2). Let / be the generator of 
9î[ÂT] which induces a rotat ion through w = m/r edges of Ti in the direction 
of the orientation of A. (We shall suppress the superscripts j of the mappings 
f> (j = 0, 1, 2).) 

We shall show in what follows t h a t M corresponds to a combination of 
rooted maps chosen from six different classes; and, conversely, t h a t any 
combination of rooted maps from these classes chosen subject to restrictions 
to be determined corresponds uniquely to a m a p of type [n, m\r\. T h e re­
strictions will be of two types : 

(a) specifying the number of maps to be chosen from each class; 
(b) requiring t ha t the total number of edges in the maps chosen be equal 
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to n, and that the total number of edges in these maps which correspond to 
external edges of M be equal to m. 

Thus, subject to each set of specifications of type (a), any partition of n 
and m consistent with restrictions (b) will yield a unique map of type [n, m;r]. 
Each set of specifications of type (a) will therefore correspond to a term in a 
sum of generating functions which will be set equal to TB (x, y) ; each term in 
this sum will be the product of generating functions corresponding to each 
of the classes from which maps may be chosen, according to the particular 
set of specifications (a) ; the variable y will enter into these generating func­
tions according as the corresponding maps contribute to Ti. 

Representative elements of the six classes are: 
Class I. A single edge in Ti, corresponding to the generating function xy. 
Class II. An element obtained by erasing the root from a non-separable 

rooted map, and including its remaining external edges as external edges of 
M. The corresponding generating function is B(x, y)/xy. 

Class III. An element similar to those of Class II, but not contributing to 
Ti, corresponding to the generating function B(x, l)/x. 

Class IV. An element consisting of a rooted non-separable map of type 
[n, m; r] (allowing the link-map as type [1, 2; 2]) but contributing no edges 
to Ti. It corresponds to the generating function rB(x, 1) + xôr>2. 

Class V. An element consisting of a non-separable rooted map of type 
[n, m; r] (allowing the link-map as type [1, 2; 2]) and contributing hr external 
edges to Ti, where m = rw, 0 < h < w. The generating function for this class is 

CO 

£ 3.»,(*)[1 + yT + y2' + ... + yih-1)r] + x5r,2 

oo 

= (1 - yT1 £ rB.nr(x)(l - yhT) + x8r,2 
h=l 

= (1 - yr)~l[rB(x, 1) - rB(x, y)} + xdr,2 

for y sufficiently small. 
Class VI. An element consisting of a rooted non-separable map of type 

[n, m] which contributes to I \ h of its external edges, beginning at the origin­
ating vertex of the root and proceeding along the boundary of its external 
face in the direction of the orientation induced by the root, and in which a 
vertex is chosen from among those m — h — 1 which remain in the boundary 
but which are not incident with any edge selected for inclusion in Ti 
(0 < h < m — 1). The corresponding generating function is 

oo 

2 : B.m(x)[(m - 2)y + ( » - 3)y* + . . . + (l)/""2] 

= £ S.„(*)[(» - 2)y(l - y)'1 + (yn - y2)(l - y)^] 
ra=2 

= y(l - y)~\Bv{x, 1) - 2B(x, 1)] + (1 - yY\B{x, y) - y2B(x, 1)] 

for y sufficiently small. 
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Elements of Classes I, II, III, and VI will never appear alone in our decom­
position, but always as a set of r identical copies; thus each edge in the repre­
sentative element will correspond to r edges in M, and the relevant generating 
functions will be obtained by replacing x, y in the generating functions for 
their classes respectively by xr, yT. 

Consider now the ''dissection" M' of the 2-sphere obtained from M by 
merging the edges of frA with Fi and the faces of frF2 to form a single region 
F; cf. (5.5). M' must fall into one of the following categories: 

(1) F is not simply connected, i.e. M' is not a map; 
(2) M' is a map, but may have cut-vertices. 
Case (1). Suppose F is not simply connected. If the elements of j\F2 were 

all distinct, Mr would be a map, by (2.2); thus two, and hence all, of the 
elements of frF2 coincide. Proceeding from a = aQ along Ti in the direction 
of the orientation, let us label the vertices common to Ti, T2 as ai, a2, . . . , 
ak+i = fp. We see that M is a combination of r identical copies of one element 
from each of Classes I and II (allowing the element from Class II to be 
degenerate, as a vertex-map); thus the generating function corresponding to 
this case is xryrJ(xT, yr), where 

(7.1) J { x > y ) = ^ + h 

Case (2). Suppose now that M' is a map. By (2.2) the cut-vertices of M' 
are the elements of the two sets 

9 = vertices, excluding those oîfrp,frg, common in M to Ti and the boundary-
graph of some element of frF2; 

A = vertices not in 0 common to the boundaries of two or more faces of frF2. 

In M, beginning at a = a0 and proceeding along Ti in the direction of the 
orientation, we denote successive cut-vertices (if any) of M' between faces 
F\ and F2 by ai, a2, . . . , ajt where a,j is the last such vertex before//?; similarly, 
proceeding from fp = bo along I \ in the opposite direction, we denote suc­
cessive cut-vertices between faces Fi and fF2 by b\y b2, . . . , bky where bk is 
the last such vertex before q. These two sequences may coincide at most in 
their last vertices a5 and bk (j > 0, k > 0). Each sequence determines an 
r-tuple of identical elements of Class II (which may be degenerate); thus the 
factor xryr[J(xr, yr)]2 will appear in the final expression for the generating 
function in this case. 

Case (2a). Suppose A = 0. Then the remainder of the map, after exclusion 
of the portions enumerated above, is of Class V, and the generating function 
for this sub-case is 

xryr[J(xr, yr)Y{ (1 - yT'lBix, 1) - rB(x, y)] + xbr,2}. 

Case (2b). Suppose A ^ 0 . Proceeding along T2 in M from aj in the direction 
of the orientation of A, we denote successive vertices of T2° r\fT2° by 
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Cu c2y . . • , c^ If Ci ?£ ajf then the region bounded by the arcs (not containing 
A) djCi, bkch and ajbk respectively in the boundaries of F2y fF2, and Fi corre­
sponds to an element of Class VI. The vertices ch c2, . . . , ct determine an 
element of Class III which may be degenerate. If C\ = ah the element of 
Class VI is degenerate, while the element of Class III may not be degenerate. 
The remainder of M, all cut-vertices having been accounted for, corresponds 
to an element of Class IV, which may be degenerate. Thus the generating 
function for this sub-case is 

xTyT[J(xr, yr)]*[rB(x, 1) + xôTi2 + l][C(xr, yT)J{x\ 1) - 1], 

where 

(7.2) C(x, y) = y{\ - y)-i[By(x, 1) - 2B(x, 1)] 
+ (1 - y)-*[B{xy y) - y*B(x, 1)] + 1. 

It follows that 

(7.3) rB(x, y) = xryr[J(xr, yT)Y{[rB(x} 1) + xôr,2 + l]C(xr, yr)J(xr, 1) 

+ (1 - yT)-lbT rB(x, 1) - rB(x, y)] - 1} + xryrJ(xr, yr), 

i.e. 

(7.4) {l + xy( i - yyVW, yT)Y\ M*, y) 
= xryr[J(xr, yr)]2{[rB(x, 1) + xôTt2 + l]C(xr, yT)J(xT, 1) 

+ (1 - yTV rB(x, 1) - 1} + xryrJ(xr, yr) 

for y sufficiently small. 
Cases (1), (2a), and (2b) are represented for r = 3 in Figures 2, 3, and 4 

respectively. 

8. Solution of equation (7.4). We begin by reducing (7.4) to a more 
convenient form. For ease of computation, we set 

(8.1) K(x, y) = 1 - (1 + u + 2u2)z + uz\ 

(8.2) L(x, y) = - t t V [ ( l - u - u2) - vz], 

(8.3) D(x, y) = (1 - z)[l - 2u(l + 2u)z + «V] 1 / J . 

We temporarily drop the arguments from B(x,y), C(x,y), D(x,y), J(x,y), 
K(x,y), L(x,y), and set 

(8.4) Bx = B(x, 1), 

(8.5) Byl = By(x, 1). 

Then (3.6) and (4.11) (with positive sign) yield 

(8.6) B2 = -KB - L, 

(8.7) B = H-K + D). 
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FIGURE 2. 

FIGURE 3. 
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FIGURE 4. 

Hence 

(8.8) J2xy{\ - 3/)-1 + 1 = [xy{\ - y)}~l[B2 + 2uvBz + (u2v2z + uvz - uz2)] 

= [xy(l - y)]-l[(2uvz - K)B + (uVz2 + uvz - uz2 - L)] 

= [2x;y(l - y)]~1[-(2uvz - K)K + (2uvz - K)D 

+ 2{u2v2z2 + uvz - uz2 - L)] by (8.6) and (8.7) 

= [2xy(l - y))~l[D2 + (2uvz - K)D] 

= D(l ~ J)'1 J-

Now 

(8.9) -y2Bi - K + xy = - (1 - y)[l - u(l - u - u2)y], 

(8.10) -y2B1 - L/xy = uy(l - y)(l - u - u2). 

Hence 

JC = [xyiX ~ y)2]-HB2 + \y(l - y)(Byl - 2BX) - y2Bx + (1 - y)2 + xy]B 

+ xy[y(l - y)(Byl - 2BX) - y2B, + (1 - y)2]} 

= [xy{\ - y)2]-l{[y{\ - y)(Byl - 250 + (1 - y)2 ~ y2Bi -K + xy]B 

+ xy[y(l - y)(Byl - 2B,) + (1 - y)2 - y2B1 - L/xy]} by (8.6) 
= [*(1 - 3;)]~1[(^ + xy)(Byl - 2B1 - 1 + u - u2 - u*) + x] 

by (8.9) and (8.10). 
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From (4.11) we find that 

(8.11) Byl = u2v(2 - 3u - 3w2)(l - u - u2)~K 

Hence 

(8.12) JC = -v2y[(l - y)(l - u - u2)]~U + (1 - y)~\ 

Substituting in (7.4) where u, z are now redefined by 

(8.13) xr = uv\ 

(8.14) z = vf 

(v remains equal to 1 - M), we obtain 

(1 - yr)-lD(xr, yT)J(xr, f) TB(x, y) 

= J(xr, yr)[(l - yr)-l{[-xrJrB(xr, f) + u(l - u - u2)} 
X [rB(x, 1) + x5r,2 + l]yr + [-l+yr +yr

 rB(x, l)][B(xr, yr)+xryr]} + xryr], 

which reduces to 

(8.15) D(x\ yr) rB(x, y) = u(l - u - u2)yr
 rB(x, 1) 

+ [-B(xr, yr) + uyr(l - u - u2) - xry2r] 
+ xy2bT>2[-B(x2, y2) + u{\ - u - u2) - x2y2] 

for u, y sufficiently small. 
Unlike (3.6), this equation can be solved directly, without the need for a 

preliminary conjecture. Setting yT = 1/v in (8.15) we find that the left side 
vanishes, and we obtain after reduction 

(8.16) rB(x, 1) = w(l - u - u2)-1 + xôrt2u(l +u)(l - u - u2)~\ 

which, substituted in (8.15), yields 

D(xr
y yr) rB(x, y) = [-B{xr, yr) + uyr(l - u2) - uv2y2T] 

+ xy2ôrt2[ — B(x2
1 y2) + u — uv2y2] 

= h{[-D(x\f) + (1 - *)(1 +uz)] 

+ xy2bT,2[-D{x2, y2) + (1 — a) (1 + 2« — uz)]}. 

Hence, for u, y sufficiently small, 

(8.17) rB(x, y) = J[{(1 + uz)[l - 2«(1 + 2u)z + u2z2]~1/2 - 1} 
+ xy2ÔTt2{(l + 2u - uz)[l - 2u(l + 2u)z + u2z2]-1/2-l}]. 

By the binomial theorem, 

(8.18) [1 - 2w(l + 2u)z + uV}-1/2 = É ~ T 4 - (uz)\l - uz)-28'1 

s=0 5! 5! 

= y y (S+JV- „*+y 
h hs\s\(j-s)\u z-
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Hence 

(8.19) (1 + uz)[l - 2u(l + 2u)z + uz] 2 2-1-1/2 

OO CO 

= 2 ^ z j { ; + j ~ \ } , ! « s + v - 1 
t=o ^ *!s! 0 - 5 ) ! 

= 2Z Z Z j(2s + j) (5 + j ~ 1)! ( 3 '+ 2s +j ~ 1)! 
> - l 5! 5! ( j - s)!i! (2i + 2 5 + i ) ! 

X xrU+i+t)yrl by (4.14) 

Also 

(8.20) 

- - m , n ^ 2 , ) j(2k -j) (k - 1)! ( 3 w - k - j - l)\xTwyri 

' £ i £, él (k - j)\ (k - j)\ (2j -k)\(w- k)\ (2w -j)\-

2 2-1-1/2 (1 + 2u - uz)[l - 2M(1 + 2u)z + uz] 

_ 9 V V C 7 + D ( ^ + J - l ) ! 7 / + v 
- ' & h s\ (s - 1)! (j - s + 1)]U 

„ V V V (i + 1) (2s+j) (s + j - 1)! (3* + 25 + j - 1)! 
^ *-- *-- s\ (s-l)\(j - s + 1)!*! (2» + 25 + j)\ 

by (4.14) 

_. z _ 
•/=() s = l i=0 

X x'^^ V 
oo oo min(w,2j-f l ) 

= 2E Z Z 
(j + 1) (2fe -j)(k- 1)! (3w - ife - j - 1)! 

(i - j ) ! (k-j-l)\ (2j -k + l)\(w-k)\(2w- j)\ 

Hence ,Bn,m = 0 everywhere, except in the following cases: 

wr ir 

• x y . 

(8.21) 

r-Brw,rj 

2 ^ 2 M J + 1 , 2 ; 

(2w - j) 

j 

_ » 2 ' > (2k-j) (k- l)\(3w-k i - IV 1)1 
k-j (k - j)\ (k - j)\ (2j - k)\ (w - k)\ 

(2w-j+l)\ 
min(w,2j—l) 

x Z 
k=j 

(2k -j+l)(k- 1)! (3w- fe - j ) l  
( & - j + 1)!(* - j ) ! ( 2 / - * - 1)! (ze; — Jfe)! 

(w>j; w,j = 1,2, . . . ; r = 2 , 3 , . . . ) . 

We note that the value of rBrw,rj is independent of r (r > 1). For small 
w,j, the values of TBTW,TJ and 2^2^+1,2; can be found respectively in Tables I 
and II. By means of formula (6.7), the numbers Lra>w have been computed 
for n < 8, m < 8, and are listed in Table III. The non-separable face-rooted 
maps of type [n, m] (for n < 6) are shown in Figure 5. 
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TABLE I 

rBrw.rj 

1 2 3 4 5 6 2_jj T&rw,rj 

1 1 1 
2 2 1 3 
3 6 6 1 13 
4 24 26 12 1 63 
5 110 120 75 20 1 326 
6 546 594 416 174 30 1 1761 

TABLE II 

2x3210+1, >/ 

\ i 
1 2 3 4 5 6 ZLj 2^2«H-l,2; 

1 1 1 
2 2 2 4 
3 7 8 3 18 
4 30 34 21 4 89 
5 143 160 114 44 5 466 
6 728 806 609 308 80 6 2537 

TABLE III 

-L'n,m 

2 3 4 5 6 7 2^,m J^n,m 

2 1 1 
3 1 1 2 
4 2 1 1 4 
5 4 3 2 1 10 
6 14 12 8 2 1 37 
7 49 43 30 12 3 1 138 

We also compute directly from (8.16) the coefficients of rB{x, 1) (r > 1). 

(8.22) rS(x, 1) = M Î T ^ I - « V 1 ) " 1 + x5 r , 2 [ - l + v~\\ - n't"1)"1] 

Z 2p+1 — (p+1) 
U V 

p=0 

CO CO 

+ *5r,2 " 1 + 23 W" ^ 2p - (P+D 

p = 0 

(5ft+ 3) ( 3 5 - f t - 1)! 
S s=5+i (5 - 1 - 2ft)! (25 + ft + 1)! 

+ 8 , r _ r + V V (5ft+D (35-ft)! w ~ | 
+ 5r'2L * + £fc .^(5-2ft)!(25 + ft+l)!X J ' 
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by (4.14). Hence 

B(xl)=f UTm (fr + 3 ) ( 3 5 - j > - l ) ! „ 

, . v ' y (5/> + 1) (35 - p)\ w 
^ ùr>2 £ i ^o (s - 2/>)! (25 + p + 1)!* 

= (xr + 3x2r + 13x3r + 63x4r + 326x5r + 1761x6r + . . .) 

+ Ôr,2(x
3 + 4x6 + 18x7 + 89x9 + 466xu + 2537x13 + . . . ) • 

9. Asymptotic behaviour of Y,mLn,m. By well-known properties of the 
binomial coefficients, 

, q n ' V / 2 1 (5P + 3) (35 - p - 1)! _ " ^ 5p + 3 / 3 5 - ^ \ 
k ; ~ 0 ( s - l - 2 / > ) ! ( 2 5 + /> + l)! £{ 3s- p\2s + p+lj 

u s - i ) / 2 i 5 ( 5 _ 1 ) + 6 / 3 5 \ [ ( ^ ' 2 1 / 35 \ 

^ èo 65 - (5 - 1) \2s + p+ 1/ et, \25 + p + 1/ 
[(«-«/2] / , 

Hence, by Stirling's formula, 

V ^o W ^ 2 \25 

V1 n ^ i ± I f3A A _£l3S(3j)!!^/2!(2jr)A/l_ _ 1 ̂ 27V . /35 
è l **"•" < 2 W ~ 2 ë-s-2V+TÎ/2)(25)2i+ïî/2,2x ~ 4 V 4 / T ^r ' 

i.e. 

(9.2) g A,r, < | (Ç)"" / | /g if „ s 0 (mod r). 

Similarly it can be shown that 

(9 

Hence 

•3) É ,BnM < | ( f )" '2 | / | ( | ) 8 ' 2 if „ s 1 (mod 2). 

ÉSA,SÊKf)Vl(fr+l(f)V!(i) 
3/2 

^ixirviir But, also by Stirling's formula, 
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(9.4) 7 J J^n,m 
2(3w - 3)! 

»! (2w - 1)! 

2e-(3re-3)(3rc - 3)3ra-(6/2)(2,r)1/2 

- n - ( 2 n - l ) n+( l /2 ) / e " - • "» J ( 2 w - l )" - l l / ! f , 2T 

7 (37 

5/2 e [1 ~ (!/»)] 3n-(5/2) 2 / 2 7 >  

9 \ 4 7 ( 3 T T ) 1 / 2 [ 1 - ( l /2^)] 2 n- ( 1 / 2 y 

9 \ 4 

Since (27/4)1/2 < (27/4), 

2 / 2 7 \ - 5 /2 /Q N- l /2 
n 

2(3x)-

\ r=2 m=2 / / \ m=2 / -
lim = 0. 

In this sense, almost all non-separable rooted maps M possess no orientation-
preserving automorphisms other than the identity, i.e. 9?[if] = / . It follows 
that 

(9.5) 
n n 
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