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Abstract. Let Sg be a closed orientable surface of genus g ≥ 2 and C a simple
closed nonseparating curve in F . Let tC denote a left-handed Dehn twist about C. A
fractional power of tC of exponent �//n is an h ∈ Mod(Sg) such that hn = t�C . Unlike a
root of a tC , a fractional power h can exchange the sides of C. We derive necessary
and sufficient conditions for the existence of both side-exchanging and side-preserving
fractional powers. We show in the side-preserving case that if gcd(�, n) = 1, then h will
be isotopic to the �th power of an nth root of tC and that n ≤ 2g + 1. In general, we
show that n ≤ 4g, and that side-preserving fractional powers of exponents 2g//2g + 2
and 2g//4g always exist. For a side-exchanging fractional power of exponent �//2n,
we show that 2n ≥ 2g + 2, and that side-exchanging fractional powers of exponent
2g + 2//4g + 2 and 4g + 1//4g + 2 always exist. We give a complete listing of certain
side-preserving and side-exchanging fractional powers on S5.

2010 Mathematics Subject Classification. 57M99, 57M60.

1. Introduction. Let Sg be a closed orientable surface of genus g ≥ 2 and C be a
simple closed nonseparating curve in Sg. Let tC denote a left-handed Dehn twist about
C and let Mod(Sg) denote the mapping class group of Sg.

A root of tC of degree n is an h ∈ Mod(Sg) such that hn = tC . In 2008, Margalit and
Schleimer [2] showed the existence of degree 2g + 1 roots of a Dehn twist tC on Sg+1 (for
g ≥ 1). In an earlier collaborative work with McCullough [3], we derived necessary and
sufficient conditions for the existence of a root of degree n. The geometric construction
of a root of degree n of tC on Sg started with the definition of Cn-action on Sg with fixed
points P and Q so that the rotation angles induced by the action around these points
differ by 2π/n. We then remove invariant disks around P and Q and attach an annulus
N, extending the restricted homeomorphism over N using a homeomorphism whose
nth power is a full twist of N. Using Thurston’s orbifold theory [7] (see also [6]) and
some elementary number theory, an equivalent algebraic theory of roots was developed
that completely captured this geometric construction. A natural question is whether
this theory can be extended to nth roots of �th powers of tC and whether such roots
could possess some additional properties. We will call such a root h a fractional power
of tC of exponent �//n.

DEFINITION 1.1. A fractional power of tC of exponent �//n is an h ∈ Mod(Sg) such
that hn = t�C .
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In particular, a root of tC of degree n is just a fractional power of exponent 1//n.
In this paper, we will describe the geometric construction of a fractional power of tC of
exponent �//n. While this construction is fairly straightforward, the main mathematics
of the paper is in the extension of the algebraic theory of roots to the case of fractional
powers so that it describes their geometric construction. This algebra along with a
simple calculus enables us to obtain several qualitative and quantitative results on
fractional powers, including their enumeration. The use of the notation �//n instead
of �/n is for the reason that fractional powers of exponent �//n, where � | n can exist,
while powers of exponent 1//(n/�) do not. For example, there always exists a fractional
power of tC of exponent 2g//4g in Mod(Sg+1) (see Remark 2.10), but we know from
[3] that a square root of tC cannot exist.

Let h be a fractional power of tC of exponent �//n. As in the case of a root of tC ,
h would also preserve C, which is apparent from the following argument. Since t�C =
ht�Ch−1 = t�h(C), h(C) is isotopic to C, and by isotopy, we may assume that h(C) = C.
We showed in [3] that no root of tC can exchange the two sides of C. However, an
intriguing fact about fractional powers of tC is that they can exchange the sides of C,
which motivates the following definition.

DEFINITION 1.2. A fractional power is side-exchanging if it interchanges the two
sides of C, and side-preserving, otherwise.

Since h is a root of degree n of t�C , tr
Ch is a root of degree n of t�+rn

C . We may assume
that � �= n. For if hn = tn

C , then h fixes C up to isotopy and commutes with tC . So
(ht−1

C )
n = 1 and h = ktC for some finite order homeomorphism k with k(C) = C. In

other words, h is a trivial modification of a 0//n-root that preserves C. Consequently,
we need only to understand the fractional powers of tC having 1 ≤ � < n, and we will
generally assume that � lies in this range.

The main result in both the side-preserving and side-exchanging cases will
be proved using Thurston’s orbifold theory. We know from [3] that any root of tC

is side preserving. Therefore, the theory of roots derived in [3] naturally extends to the
case of side-preserving fractional powers. As in the geometric construction of roots,
we define a Cn-action on Sg that has two distinguished fixed points P and Q. However,
the only difference is that the rotation angles at P and Q have to differ by 2π�/n, and
the twisting on annulus N is through an angle 2π�/n rather than 2π/n. The quotient
orbifold of the Cn-action has two distinguished cone points of order n. In Section 2, we
define an abstract tuple called an SP data set, which is an extension of the data set in [3].
An SP data set, in addition to holding the essential algebraic information required to
describe the quotient orbifold action, also holds information required that determines
the geometric construction a root. The main theorem in Section 2 (Theorem 2.3) asserts
that conjugacy classes of side-preserving fractional powers correspond to SP data sets.
An interesting consequence of this theorem is the following proposition.

PROPOSITION 2.4. Let h be a side-preserving fractional power of tC of exponent �//n
such that gcd(�, n) = 1. Then h = (h′)� for some root h′ of tC of degree n.

In other words, if gcd(�, n) = 1, then a fractional power is the �th power of a root
degree n. Among other direct applications of Theorem 2.3, is the following corollary.

COROLLARY 2.6. Suppose that h is a side-preserving fractional power of tC of exponent
�//n. Then
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(a) n is odd if � is odd.
(b) n ≤ 2g + 1 if gcd(�, n) = 1.

Corollary 2.6 gives an upper bound for n when � and n are relatively prime. In the
following corollary, we also derive a general upper and lower bound for n.

COROLLARY 2.8. Suppose that h is a side-preserving fractional power of
tC of exponent �//n whose conjugacy class is given by the SP data set D =
((�, n), g0, (a, b); (c1, n1), . . . , (cm, nm)). Then

2g + m
2g0 + m

≤ n ≤ 4g
4g0 + m

.

Finally, we give a complete classification in Mod(S5) (up to conjugacy) of side-
preserving fractional powers that arise from cyclic actions whose quotient orbifold
is topologically a sphere with three cone points. We shall define such fractional powers
as essential fractional powers.

A side-exchanging fractional power h of tC will have an exponent of the form
�//2n as it is obtained from a C2n action on Sg that has two distinguished fixed points
P and Q interchanged by a generator h′ of C2n. Since the actions at P and Q are
conjugate by h′, P and Q will have the same local turning angle and will descend to
a single cone point of order n in the quotient orbifold. As in the side-preserving case,
we define an SE data set to encode the algebraic information relating to the geometric
construction of a side-exchanging fractional power. The main theorem in Section 3
(Theorem 3.3) establishes that SE data sets correspond to conjugacy classes of side-
exchanging fractional powers. Since we know from [3] that side-exchanging (or even
degree) roots do not exist, side-exchanging fractional powers cannot be powers of roots.
However, it is a natural question to ask whether there exist side-exchanging fractional
powers that are powers of other (side-exchanging) fractional powers. It is immediately
apparent that a side-exchanging fractional power of exponent �//2n, where � is prime,
can never be such a fractional power. However, when � is composite, such a fractional
can exist if it satisfies the condition given in the following proposition. (This proposition
can be viewed as an analogue of Proposition 2.4 for the side-exchanging case.)

PROPOSITION 3.4. Let h be a side-exchanging fractional power of tC of exponent
�//2n such that � is composite integer with gcd(�, n) = 1. Let r be a divisor of �. Then
h = (h′)r for some side-exchanging fractional power h′ of tC of exponent �′//2n.

From a result of Wiman [8] (and later Harvey [1]), we know that 2n ≤ 4g + 2, and
in Remark 3.6, we provide an SE data set that represents the conjugacy class of a side-
exchanging fractional power of exponent 4g + 1//4g + 2 in Mod(Sg+1), for all g ≥ 1.
The existence of fractional powers of exponent 4g + 1//4g + 2 makes upper bounds
for 2n rather superfluous. However, in the following corollary, we derive a lower bound
for 2n.

COROLLARY 1.7. Suppose that h is an SE fractional power of tC of exponent
�//2n whose conjugacy class is given by the SE data set D = ((�, 2n), g0, a;
(k1, n1), . . . , (km, nm)). Then

(a) n is odd if � is odd, and
(b) 2n ≥ 2g+m

2g0+m−1
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We also show that a side-exchanging fractional power of exponent 2//2g + 2 always
exists. As in the side-preserving case, here too we give a complete classification of
essential fractional powers in Mod(S5).

Although one would intuitively expect the occurrence of side-exchanging
fractional powers to be more restrictive, the data obtained using GAP software [4, 5]
seem to suggest that, in general, side-exchanging fractional powers achieve more
exponents than side-preserving powers. However, side-exchanging fractional powers
(in general) are much fewer in number than side-preserving fractional powers. Table 1
in Section 4 lists the occurrences of essential fractional powers of tC in Mod(Sg+1) and
their exponents for genera g in the range 20 ≤ g + 1 ≤ 30.

2. Side-preserving fractional powers. In this section, we will derive necessary and
sufficient conditions for the existence of a side-preserving fractional power of exponent
�//n and some additional applications. In fact, the main result of [3] can be extended
to describe the side-preserving fractional powers of tC . Adapting the main definition
from that paper, we define an SP data set of exponent �//n.

DEFINITION 2.1. An SP data set of exponent �//n is a tuple of the form
((�, n), g0, (a, b); (k1, n1), . . . , (km, nm)) where:

(i) �, n, g0, and the ni are integers such that n > 1, g0 ≥ 0, each ni > 1, and each ni

divides n,
(ii) a and b are residues modulo n with gcd(a, n) = gcd(b, n) = 1, and each ki is a

residue modulo ni with gcd(ki, ni) = 1,
(iii) a + b ≡ �ab mod n, and

(iv) a + b +
m∑

i=1

n
ni

ki ≡ 0 mod n.

The integer g defined by

g = g0n + 1
2

m∑
i=1

n
ni

(ni − 1) (2.1)

is called the genus of the data set.
Two SP data sets are considered to be the same if they differ by interchanging a

and b or by reordering of the pairs (k1, n1), . . . , (km, nm). If m = 0 in Definition 2.1,
then condition (iv) would give b ≡ −a mod n, which when substituted in (iii) would
imply that � ≡ 0 mod n. So we may assume that m ≥ 1.

REMARK 2.2. When g0 = 0 and m = 1, equation (2.1) takes the form

2g = n
(

1 − 1
n1

)
.

Since n1 ≤ n, we have that

2g ≤ n
(

1 − 1
n

)
= n − 1,

that is, n ≥ 2g + 1.
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The proof of Theorem 1.1 in [3] adapts easily, as we will explain, to give the
following.

THEOREM 2.3. For a given n > 1, 1 ≤ � < n, and g ≥ 1, SP data sets of genus g and
exponent �//n correspond to the conjugacy classes in Mod(Sg+1) of the side-preserving
fractional powers of tC of exponent �//n. Consequently, tC has a side-preserving fractional
power of exponent �//n if and only if there exists an SP data set of genus g and exponent
�//n.

Proof. The first part of the proof of Theorem 1.1 of [3] analysed the case when h
is a side-preserving fractional power of tC , obtaining a Cn-action on a closed surface
Sg with two fixed points P and Q (and possibly other with nontrivial stabilizers).
The analysis here proceeds in exactly the same way to the point when the rotation
angles at P and Q are analysed. The condition that a + b ≡ ab mod n was shown to
be equivalent to the fact that the rotation angles at the two ends of the annulus N
in Sg+1 differ by 2π/n, so that on N, h must be have left-handed twisting of 2π/n.
An analogous argument shows that the condition a + b ≡ �ab mod n is equivalent to
h having left-handed twisting through 2π�/n, so that hn = t�C . Thus, an SP data set
of exponent �//n produces a fractional power of exponent �//n. The next part of the
proof of Theorem 1.1 showed that side-exchanging roots of tC do not exist, which is
irrelevant to us since we are assuming that h is side-preserving. Finally, the converse is
a matter of reversing the argument. The arguments for proving that a h′ conjugate to h
would also yield the same SP data set and the converse are analogous to the arguments
in the proof of Theorem 1.1. �

Theorem 2.3 allows us to perceive the conjugacy classes of side-preserving
fractional powers of tC on Sg+1 simply as SP data sets. So for a given g ≥ 1, we can
explicitly compute the various possible exponents of side-preserving fractional powers
of in Mod(Sg+1) using the algebraic conditions on SP data sets. In the following
proposition, we will show that a fractional power of tC of exponent �//n is the �th of a
nth root when � and n are relatively prime.

PROPOSITION 2.4. Suppose that h is a side-preserving fractional power of tC of
exponent �//n with gcd(�, n) = 1. Then h = (h′)� for some root h′ of tC of degree n.

Proof. Describe the conjugacy class of h by an SP data set

D = ((�, n), g0, (a, b); (k1, n1), . . . , (km, nm)),

with a + b ≡ �ab mod n. Consider the tuple D′ obtained by replacing � with 1, and
multiplying the values a, b, and k1, . . ., km by �. Since gcd(�, n) = 1, D′ satisfies
condition (ii) of an SP data set. Moreover, the fact that �a + �b ≡ �a �b mod n would
imply that D′ also satisfies condition (iii) of an SP data set. In other words, D′ represents
a side-preserving fractional power h′ of degree 1//n, that is, h′ is a root of tC of degree
n.

Recall the proof of Theorem 1.1 of [3]. The numerical data corresponding to h
described an orbifold O = Sg/Cn and an orbifold covering Sg → O corresponding to
the kernel of a homomorphism πorb

1 (O) → Cn. The restriction h0 of h to a subsurface
of Sg was extended to an annulus N, giving h on Sg+1. The h′ above is obtained
from the same orbifold O as h is, but using a restriction of h′

0 of a different covering
transformation of Sg. Both have order n, so h0 equals some power of h′

0. On N,
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hn = t�C = (h′)�n, so that power is the �th power (this can also be checked directly by
examining the rotation angles of h and h′ about the points P and Q in F). �

We now give an example to illustrate Proposition 2.4.

EXAMPLE 2.5. The SP data set D = ((2, 9), 0, (1, 1); (7, 9)), which represents the
conjugacy class of a side-preserving fractional power of tC of exponent 2//9 in Mod(S5),
is the second power of a ninth root of tC , whose conjugacy class is given by the data
set D′ = ((1, 9), 0, (2, 2); (5, 9)). This is evident by multiplying a = 1, b = 1, and c = 7
of D by 2 modulo 9, and then replacing � = 2 with 1, to obtain D′.

An immediate application of Theorem 2.3 is the following corollary, where we
derive an upper bound for n when gcd(�, n) = 1.

COROLLARY 2.6. Suppose that h is a side-preserving fractional power of tC of degree
�//n. Then

(a) n is odd if � is odd.
(b) n ≤ 2g + 1 if gcd(�, n) = 1.

Proof. For a data set describing h, we have a + b ≡ �ab mod n. If n is even, then
� must be even since a and b are relatively prime to n. This proves part (a). For (b),
suppose for contradiction that n > 2g + 1. From equation (2.1), we have that

1 >
2g + 1

n
= 1

n
+ 2g0 +

m∑
i=1

(
1 − 1

ni

)
.

This would imply that g0 = 0 and m = 1, and consequently n1 < n. Putting d =
n/n1, condition (iv) of Definition 2.1 gives a + b ≡ 0 mod d. Since gcd(�, n) = 1 and d
divides n, this contradicts condition (iii) of Definition 2.1. �

REMARK 2.7. Interestingly, the largest possible � for which there exists a side-
preserving fractional power of exponent �//2g + 1 is 2g. In fact, the SP data sets D1 =
((2g, 2g + 1), 0, (1, g); (g, 2g + 1)) and D2 = ((2g, 2g + 1), 0, (2g − 1, 2g − 1); (4, 2g +
1)) represent conjugacy classes of side-preserving fractional powers of tC of exponent
2g//2g + 1 in Mod(Sg+1).

In the following corollary, we will derive an upper bound and a lower bound for n.

COROLLARY 2.8. Suppose that h is a side-preserving fractional power of
tC of exponent �//n whose conjugacy class is given by the SP data set D =
((�, n), g0, (a, b); (c1, n1), . . . , (cm, nm)). Then

2g + m
2g0 + m

≤ n ≤ 4g
4g0 + m

.

Proof. To show that n ≥ 2g+m
2g0+m , we use equation (2.1) from the definition of an SP

data set. On rewriting the equation, we get

2g
n

= 2g0 +
m∑

i=1

(
1 − 1

ni

)
. (2.2)
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Since each xi ≤ n, we have that

2g
n

≤ 2g0 + m − m
n

,

from which we obtain the required inequality.
For the latter inequality, we use the fact that ni ≥ 2 in equation (2.2) above to

obtain

2g
n

≥ 2g0 + m
2

,

which upon simplification gives the inequality. �

The following corollary follows almost immediately from Corollary 2.8.

COROLLARY 2.9. Suppose that h is a side-preserving fractional power of tC of exponent
�//n given by the SP data set D = ((�, n), g0, (a, b); (c1, n1), . . . , (cm, nm)). Then

(a) n ≤ 4g,
(b) n < g, whenever g0 ≥ 1, and
(c) m = 1, whenever n > 2g.

REMARK 2.10. The upper bound for n in Corollary 2.9 is realizable since there
always exist side-preserving fractional powers of exponent �//4g. For example, the data
sets D1 = ((2g, 4g), 0, (1, 2g − 1); (1, 2)) and D2 = ((2g, 4g), 0, (2g + 1, 4g − 1); (1, 2))
represent conjugacy classes of side-preserving fractional powers of tC of exponent
2g//4g in Mod(Sg+1).

Geometrically, data sets with g0 = 0 and m = 1 represent conjugacy classes of
essential fractional powers. From Remark 2.2, we know that n ≥ 2g + 1, whenever
g0 = 0 and m = 1. We now list all such SP data sets that represent conjugacy classes of
side-preserving fractional powers of exponent �//n in Mod(S5).
Exponent 1//9:

(i) D1 = ((1, 9), 0, (2, 2); (5, 9)).
(ii) D2 = ((1, 9), 0, (5, 8); (5, 9)).

Exponent 2//9:

(i) D1 = ((2, 9), 0, (1, 1); (7, 9)).
(ii) D2 = ((2, 9), 0, (4, 7); (7, 9)).
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Exponent 4//9:
(i) D1 = ((4, 9), 0, (2, 8); (8, 9)).

(ii) D2 = ((4, 9), 0, (5, 5); (8, 9)).
Exponent 5//9:

(i) D1 = ((5, 9), 0, (1, 7); (1, 9)).
(ii) D2 = ((5, 9), 0, (4, 4); (1, 9)).

Exponent 7//9:
(i) D1 = ((7, 9), 0, (2, 5); (2, 9)).

(ii) D2 = ((7, 9), 0, (8, 8); (2, 9)).
Exponent 8//9:

(i) D1 = ((8, 9), 0, (1, 4); (4, 9)).
(ii) D2 = ((8, 9), 0, (7, 7); (4, 9)).

Exponent 2//10:
(i) D1 = ((2, 10), 0, (1, 1); (4, 5)).

(ii) D2 = ((2, 10), 0, (7, 9); (2, 5)).
Exponent 4//10:

(i) D1 = ((4, 10), 0, (1, 7); (1, 5)).
(ii) D2 = ((4, 10), 0, (3, 3); (2, 5)).

Exponent 6//10:
(i) D1 = ((6, 10), 0, (3, 9); (4, 5)).

(ii) D2 = ((6, 10), 0, (7, 7); (3, 5)).
Exponent 8//10:

(i) D1 = ((8, 10), 0, (1, 3); (3, 5)).
(ii) D2 = ((8, 10), 0, (9, 9); (1, 5)).

Exponent 4//12:
(i) D1 = ((4, 12), 0, (5, 11); (2, 3)).

Exponent 8//12:
(i) D1 = ((8, 12), 0, (1, 7); (1, 3)).

Exponent 8//16:
(i) D1 = ((8, 16), 0, (1, 7); (1, 2)).

(ii) D2 = ((8, 16), 0, (3, 5); (1, 2)).
(iii) D3 = ((8, 16), 0, (9, 15); (1, 2)).
(iv) D4 = ((8, 16), 0, (11, 13); (1, 2)).

In the above classification, it may be noted that the side-preserving fractional powers
of exponent �//9, for � = 2, 4, 5, 7 and 8 are all powers of the fractional powers of
exponent 1//9, that is, the ninth roots of tC on S5. Moreover, the highest value that �

takes is 2g = 8. These computations were made using the help of software [5] written
in the GAP programming language.

3. Side-exchanging fractional powers. In this section, we shall derive equivalent
conditions for the existence of side-exchanging fractional powers of tC on Sg+1. The
geometric construction of side-exchanging fractional powers differs from that of side-
preserving powers, as they are obtained from C2n-action on Sg with two distinguished
fixed points that correspond to a unique cone point of order n in the quotient orbifold.
Therefore, we need to analyse a slightly different kind of orbifold in this case, which
motivates the following definition of an SE data set.
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DEFINITION 3.1. An SE data set of exponent �//2n is a tuple ((�, 2n), g0, a; (k1, n1)-
, . . . , (km, nm)) where:

(i) �, n, g0, and the ni are integers such that � ≥ 2, n ≥ 2, g0 ≥ 0, each ni > 1, and
each ni divides 2n,

(ii) a is a residue modulo n with gcd(a, n) = 1, and each ki is a residue modulo ni

with gcd(ki, ni) = 1,
(iii) � a ≡ 2 mod n, and

(iv) 2a +
m∑

i=1

2n
ni

ki ≡ 0 mod 2n.

The integer g defined by

g = n(2g0 − 1) +
m∑

i=1

n
ni

(ni − 1)

is called the genus of the data set.
Two SE data sets are considered to be the same if they differ by the reordering of

the pairs (k1, n1), . . . , (km, nm).

REMARK 3.2. As in the case of SP data sets, it is apparent here too that if m = 0,
then � ≡ 0 mod n. If m = 1 and g0 = 0, then from equation (3.1), we have

1 − g
n

= 1
n

+ 1
x1

,

which would imply that

−g
n

= 1
x1

,

which is impossible.

We will now establish the main theorem in this section, in which we will show that
SE data sets correspond to conjugacy classes of side-exchanging fractional powers.

THEOREM 3.3. For a given n ≥ 1, 1 ≤ � ≤ n, and g ≥ 0, the SE data sets of genus
g and exponent �//2n correspond to the conjugacy classes in Mod(Sg+1) of the side-
exchanging fractional powers of tC of exponent �//2n. Consequently, tC has a side-
exchanging fractional power of exponent �//2n if and only if there exists a data set of
genus g and exponent �//2n.

Proof. Suppose that h is a side-exchanging fractional power of exponent �//2n.
As in the first part of the proof of Theorem 1.1, we use h to obtain a C2n-action on
the closed surface Sg. Since h exchanges the sides of C, h2 preserves the sides of C
and hence the centres of the coned discs, P and Q. Since the actions at P and Q are
conjugate by a homeomorphism h′ that generates C2n, rotation angles at P and Q must
be equal to 2πk/n for some integer k as indicated in Figure 1.

Let O be the quotient orbifold for the C2n action on Sg. Denote the genus of O
by g0, and select standard generators ai, bi, 1 ≤ i ≤ g0 of the fundamental group of
the underlying surface. O has one distinguished cone point, p, of order n, which is the
image of the distinguished fixed P and Q under the quotient map, and possibly m other
cone points xi, 1 ≤ i ≤ m.
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A B

P Q

Figure 1. The local effect of h and h2 on disc neighbourhoods of P and Q. The
rotation angle of h2 at P and Q is 2πk/n.

From orbifold covering space theory, the orbifold covering map Sg → O
corresponds to an exact sequence

1 −→ π1(Sg) −→ πorb
1 (O)

ρ−→ C2n −→ 1.

Here, C2n is the group of covering transformations, generated by t, and t2 generates
the stabilizer at P. Let α be the generator of πorb

1 O going around p and γi be generators
going around xi, selected so that

πorb
1 (O) =

〈
α, γ1, . . . , γm, a1, b1, . . . , ag0 , bg0 |

αn = γ
n1
1 = · · · = γ nm

m = 1, αγ1 · · · γm =
g0∏

j=1

[aj, bj]

〉

ρ(α) is determined by the covering transformation corresponding to the loop α, which
fixes P and has turning angle 2πk/n at P for some k with gcd(k, n) = 1. So in C2n,
α represents (h2)

a = h2a, where ka ≡ 1 mod n. The rotation angle around Q is also
2πk/n. Since h2n = (h2)

n = tg+1
�, the left-hand twisting angle of h2 along the tubular

neighbourhood N of C is 2π�/n. This requires 2πk/n − (−2πk/n) = 2π�/n, giving
2k ≡ � mod n. Multiplying by a produces condition (iii) of a data set.

For 1 ≤ i ≤ m, the preimage of xi consists of 2n/ni points cyclically permuted by
t. Each of the points has stabilizer generated by t2n/ni . The rotation angle of t2n/ni must
be the same at all points of the orbit, since its action at one point is conjugate by a
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power of t to its action at each other point. So the rotation angle at each point is of
the form 2πk′

i/ni, where gcd(k′
i, ni), and as before, lifting γi shows that ρ(γi) = t(n/ni)ki ,

where kik′
i ≡ 1 mod ni. Since C2n is abelian, we have that ρ(

∏g0
j=1[aj, bj]) = 1, so

1 = ρ(αγ1 · · · γm) = t2a+(2n/n1)k1+···+(2n/nm)km ,

giving condition (iv) of the data set.
The fact that the genus of the data set equals g follows from the multiplicativity of

the orbifold Euler characteristic for the orbifold covering Sg → O:

2 − 2g
2n

= 2 − 2g0 +
(

1
n

− 1
)

+
m∑

i=1

(
1
ni

− 1
)

. (3.1)

Thus h leads to an SE data set of exponent �//2n. Finally, as in the proof of Theorem 1.1
of [3], the converse is a matter of reversing the argument. The arguments for establishing
that an SE data set would determine h up to conjugacy and the converse are similar
to those in the proof of Theorem 1.1. However, the part of that proof that pertains to
showing that {P, Q} is preserved by some conjugating homeomorphism is redundant
in this case. �

Theorem 3.3 allows us to regard the conjugacy class of a side-exchanging fractional
power of exponent �//2n on Sg+1 simply as an SE data set. In the following proposition,
we derive a condition under which a side-exchanging fractional power can be the power
of another (side-exchanging) fractional power.

PROPOSITION 3.4. Let h be a side-exchanging fractional power of tC of exponent
�//2n such that � is composite integer with gcd(�, n) = 1. Let r be a divisor of �. Then,
h = (h′)r for some side-exchanging fractional power h′ of tC of exponent �′//2n.

Proof. Describe the conjugacy class of h by an SE data set D =
((�, 2n), g0, a; (k1, n1), . . . , (km, nm)), with �a ≡ 2 mod n. Consider the tuple D′

obtained by replacing � with �′ = �/r, and multiplying the values a and k1, . . ., km

by r. Since gcd(�, n) = 1, D′ satisfies condition (ii) of an SE data set. Also, the fact that
(l/r) ar ≡ �a ≡ 2 mod n would imply that D′ also satisfies condition (iii) of an SE data
set. In other words, D′ represents a side-exchanging fractional power h′ of exponent
�′//2n, where �′ = �/r.

As in the proof of Theorem 3.3, numerical data corresponding to h described an
orbifold O = Sg/C2n and an orbifold covering Sg → O corresponding to the kernel
of a homomorphism πorb

1 (O) → C2n. The restriction h0 of h to a subsurface of Sg was
extended to an annulus N, giving h on Sg+1. The h′ above is obtained from the same
orbifold O as h is, but using a restriction of h′

0 of a different covering transformation
of Sg. Both have order 2n, so h0 equals some power of h′

0. Therefore, on N, we have
that h2n = t�C = (h′)�

′r. �
The following is a concrete example that illustrates Proposition 3.4.

EXAMPLE 3.5. The SE data set D = ((6, 10), 0, 2; (3, 10), (3, 10)) that represents
the conjugacy class of a side-exchanging fractional power h of tC of exponent
6//10 in Mod(S5), is the second power of a side-exchanging fractional power
h′ of tC of exponent 3//10, whose conjugacy class is described by the data set
D′ = ((3, 10), 0, 4; (1, 10), (1, 10)). It is quite apparent that D′ can be obtained from D
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by multiplying a = 2, k1 = 3, and k1 = 3 of D by r = 2 (modulo 5), and then replacing
� = 6 with �′ = �/r = 3.

REMARK 3.6. It is a well-known result of Harvey [1] and Wiman [8] that the
largest order of a cyclic action on a closed orientable surface of genus g is 4g + 2. For
this reason, 2n ≤ 4g + 2, and from our earlier assumption, � ≤ 4g + 1. Therefore, it is
interesting to note that for g ≥ 1, there exists an SE fractional power of tC of degree
4g + 1//4g + 2 in Mod(Sg+1) and its conjugacy class is represented by the SE data set
D = ((4g + 1, 4g + 2), 0, 2g − 1; (1, 2), (2g + 5, 4g + 2)).

In the following corollary, we shall derive a lower bound for 2n.

COROLLARY 3.7. Suppose that h is an SE fractional power of tC of exponent �//2n
given by the SE data set D = ((�, 2n), g0, a; (k1, n1), . . . , (km, nm)). Then

(a) n is odd if � is odd, and
(b) 2n ≥ 2g+m

2g0+m−1

Proof. The proof of (a) follows directly from conditions (ii) and (iii) in the definition
of an SE data set. For, if n is even, then � must be even since a is relatively prime to
n. To show (b), we use equation (3.1) from the proof of Theorem 3.3, which upon
simplification gives

−g
n

= 1 − 2g0 +
m∑

1=i

(
1
xi

− 1
)

. (3.2)

Since xi ≤ 2n, we have that

−2g
2n

≤ 1 − 2g0 + m
2n

− m.

Since we know by Remark 3.2 that if m = 1 then g0 > 0, we can infer that

2n ≥ 2g + m
2g0 + m − 1

.

�
REMARK 3.8. From Remark 3.2, we know that m ≥ 2 whenever g0 = 0. Moreover,

when g0 = 0, it follows then from Corollary 3.7 that 2n ≥ 2g + 2. It is worth mentioning
here that (for g ≥ 1) there always exists a side-exchanging fractional power of tC

exponent 2//2g + 2 in Mod(Sg+1) and its conjugacy class is given by the SE data set
D = ((2, 2g + 2), 0, 1; (2g + 1, 2g + 2), (2g + 1, 2g + 2)).

When g0 = 0 and � = 2, below are the SE data sets that represent conjugacy classes
of side-exchanging essential fractional powers of tC in Mod(S5).
Exponent 2//10:

(i) D1 = ((2, 10), 0, 1; (1, 10), (7, 10)).
(ii) D2 = ((2, 10), 0, 1; (9, 10), (9, 10)).

Exponent 3//10:
(i) D1 = ((3, 10), 0, 4; (1, 10), (1, 10)).

(ii) D2 = ((3, 10), 0, 4; (3, 10), (9, 10)).
Exponent 4//10:

(i) D1 = ((4, 10), 0, 3; (1, 10), (3, 10)).
(ii) D2 = ((4, 10), 0, 3; (7, 10), (7, 10)).

https://doi.org/10.1017/S0017089513000177 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089513000177


FRACTIONAL POWERS OF DEHN TWISTS 209

Exponent 6//10:
(i) D1 = ((6, 10), 0, 2; (3, 10), (3, 10)).

(ii) D2 = ((6, 10), 0, 2; (7, 10), (9, 10)).
Exponent 7//10:

(i) D1 = ((7, 10), 0, 1; (1, 10), (7, 10)).
(ii) D2 = ((7, 10), 0, 1; (9, 10), (9, 10)).

Exponent 8//10:
(i) D1 = ((8, 10), 0, 4; (1, 10), (1, 10)).

(ii) D2 = ((8, 10), 0, 4; (3, 10), (9, 10)).
Exponent 9//10:

(i) D1 = ((9, 10), 0, 3; (1, 10), (3, 10)).
(ii) D2 = ((9, 10), 0, 3; (7, 10), (7, 10)).

Exponent 2//12:
(i) D1 = ((2, 12), 0, 1; (1, 4), (7, 12)).

(ii) D2 = ((2, 12), 0, 1; (3, 4), (1, 12)).
Exponent 4//12:

(i) D1 = ((4, 12), 0, 5; (1, 4), (11, 12)).
(ii) D2 = ((4, 12), 0, 5; (3, 4), (5, 12)).

Exponent 8//12:
(i) D1 = ((8, 12), 0, 1; (1, 4), (7, 12)).

(ii) D2 = ((8, 12), 0, 1; (3, 4), (1, 12)).
Exponent 10//12:

(i) D1 = ((10, 12), 0, 5; (1, 4), (11, 12)).
(ii) D2 = ((10, 12), 0, 5; (3, 4), (5, 12)).

Exponent 2//18:
(i) D1 = ((2, 18), 0, 1; (1, 2), (7, 18)).

Exponent 4//18:
(i) D1 = ((4, 18), 0, 5; (1, 2), (17, 18)).

Exponent 5//18:
(i) D1 = ((5, 18), 0, 4; (1, 2), (1, 18)).

Exponent 7//18:
(i) D1 = ((7, 18), 0, 8; (1, 2), (11, 18)).

Exponent 13//18:
(i) D1 = ((8, 18), 0, 7; (1, 2), (13, 18)).

Exponent 10//18:
(i) D1 = ((10, 18), 0, 2; (1, 2), (5, 18)).

Exponent 11//18:
(i) D1 = ((11, 18), 0, 1; (1, 2), (7, 18)).

Exponent 13//18:
(i) D1 = ((13, 18), 0, 5; (1, 2), (17, 18)).

Exponent 14//18:
(i) D1 = ((14, 18), 0, 4; (1, 2), (1, 18)).

Exponent 11//18:
(i) D1 = ((16, 18), 0, 8; (1, 2), (11, 18)).

Exponent 17//18:
(i) D1 = ((17, 18), 0, 7; (1, 2), (13, 18)).
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Table 1. These data illustrate that, in general, ESP(g) < ESE(g),
while NSP(g) > NSE(g). The data seem to indicate that though the
side-exchanging fractional posers achieve more exponents, they are
in general fewer in number when compared with side-preserving
fractional powers.

g + 1 ESP(g) ESE(g) NSP(g) NSE(g)

20 35 102 236 322
21 77 102 1,034 148
22 75 103 1,284 283
23 57 188 468 906
24 57 99 1,142 171
25 111 134 1,498 491
26 59 154 628 625
27 83 193 1,610 349
28 85 146 1,208 414
29 89 178 930 1,009
30 69 178 1,770 226

4. The occurrence of side-exchanging and side-preserving fractional powers. In
this section, we shall make a general comparison between the occurrences of side-
exchanging and side-preserving essential fractional powers of tC and their exponents
in Mod(Sg+1). We will use the following notation.

NOTATION 4.1. We will denote the number of distinct exponents of side-exchanging
and side-preserving essential fractional powers of tC in Mod(Sg+1), respectively, by
ESE(g) and ESP(g). Also, we will denote the total number of side-exchanging and
side-preserving essential fractional powers of tC (up to conjugacy) in Mod(Sg+1) ,
respectively, by NSE(g) and NSP(g).

For 20 ≤ g + 1 ≤ 30, Table 1 gives ESP(g), ESE(g), NSP(g), and NSE(g).
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