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THE SELMER GROUPS AND THE
AMBIGUOUS IDEAL CLASS GROUPS OF CUBIC FIELDS

YEN-MEI J. CHEN

In this paper, we study a family of elliptic curves with CM by Q(\/-—_3) which also
admits a Q-rational isogeny of degree 3. We find a relation between the Selmer
groups of the elliptic curves and the ambiguous ideal class groups of certain cubic
fields . We also find some bounds for the dimension of the 3-Selmer group over Q,
whose upper bound is also an upper bound of the rank of the elliptic curve.

0. INTRODUCTION

Let D be a cube-free integer. We consider the elliptic curve
E/(D:y2 =z’ +D21

which has j-invariant 0 and has complex multiplication 7= = +/—3. More precisely, =

is the endomorphism

7:E/Q — E/Q

(z,y) (_23 + 4D2,_y(33 = 8D2)>.

3z2 3v/—3z3
We set the following notation.
S1={pprime :p|Dand p=1 mod 3}
S, ={podd prime :p| D and p =2 mod 3}

ll == IS]l
12 == |Sz|
k=Quw), w= 1+v-3

2

K = k(¥2D)

U = the group of units of k
Uk = the group of units of K
Ck = the 3-class group of K

C’g) ={a€Ck:a” =a},
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where 7 is a generator of the Galois group of the field extension K/k and C’g{f) is called
the ambiguous ideal class group of K/k. We first define a map

v : SN E/k) — C,

then we can obtain an upper bound of the rank of the Selmer group S®®)(E/Q) by using
the theorem of Gerth [3] which gives an explicit computation of the rank of the group
CE{T) . On the other hand, we can obtain a lower bound by using the duality theorem
of Cassels [1]. More precisely, we can obtain the following inequalities:

I + €2 — 3 < dimgp, 5(3)(1’7/@) L2h+lh-e+1

where £; and ¢3, both depending on D), are integers 0, 1, or 2. For the family of curves
E/Q:y? = z® + D3, Frey (2] showed that the rank of the Selmer group of a 3-isogeny

is closely related to the class number of the quadratic field Q(\/B) . Also Jan Nekevaf

[4] proved some analogous results for the elliptic curve given by Dy? = 4z® — 27 which
is isomorphic to the curve given by y? =23 — 432D*%. Our result gives explicit bounds
for the dimension of SG®)(E/k) and implies that the dimension can be arbitrarily large.

1. THE SELMER GROUP S(™(E/k)

DEFINITION: Let F be a number field and let ¢ : E/F — E'/F be an isogeny
defined over F'. Then the ¢-Selmer group of E/F is the subgroup of H?! (GF/F’ E[d)])
defined by

def

SE/F) E ker{H? (Gf/F,E[qS]) - I;[l H (Gfu /FU,E)}.
veEMp

Observe that the map 7 : E/Q — E/Q given as above is defined over k£ but not
over Q and that E[n] is isomorphic to p3 as a Gal (k/k)-module, and thus we have

7 (Ggp, Blml) = k7 /8.

Given an element d € k*, it corresponds to the homogeneous space of £ which can be

given by
Cy : dz® + d%y® = 2D23.

Then such d will be an element of the Selmer group S{™(E/k) provided that C4 admits
a k,-rational point for all v € M. For any such d, since 2D is a perfect cube in K
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the principal divisor (d) must be a cube of some divisor in K, say (d) = a®. It is clear
that a” =a,soa € Cg). Thus we can define a homomorphism

v SYNE/R) — C
by ¥(d) = a. Then it is clear that ker % = Uk - K*n k*/k*s. Note that ¥ induces

two maps

ot SO(ER)T — o7,

v SNER) — )
where + and — refer to the action of Gal(k/Q). Observe that all of the groups
mentioned above are Fs-vector spaces.

LEMMA 1.1. (Gerth)

(a) dimg, CQ =20 +1 —e1;

(b) dimg, €O =1;;

(c) dimp, Cg)— =h+h—-e;

where €1 (depending on D) is 0,1 or 2.

PRrROOF: See [3]. 0
LEMmMa 1.2.

(2) dimg, S™(E/k) < dimg, C) + 2.

(b) dimg, S™(E/k)* < dimg, €07 4 1.

(c) dimp, SN E/k)” < dimg, C)7 +1.

PROOF: (a) We already see that ¥ is a homomorphism from S(™(E/k) to CE(T)
with ker% = Ug - K*3 N k*/k*®. Since Ux - K** Nnk* = Ux - K** Nk*, we have
Uk - K*3Nk*/k*® = {1,2D,4D?} - U - k**/k*3. The Dirichlet Unit Theorem implies
that Uy = pg. Hence dimy, ker ¥ = 2 and and thus we have

dimg, ST(E/k) < dimg, C{) + 2.

(b) Observe that ker ®7 is generated by {2D}, and thus dimy, ker ¥* = 1. There-
fore (b) holds.
(c) Similar to (b) except that ker ¥~ is generated by {w}. 0
ProposiTION 1.3.
(a) dimg, S"NE/E) <L+l —e +2.
(b) dimg S™(E/k)T <l +1.
(c) dimy, SCNE/k) <h+l—e +1.

PRrOOF: Follows immediately from Lemma 1.1 and Lemma 1.2. 1]
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2. THE SELMER GROUP S®)(E/k)

Recall that 72 = —3, so we have the following exact sequence
0 — E[n] — E[3] = E[r] — 0.

Taking Galois cohomology as Gy, Gi/k’ and G / x-modules respectively, we know
that each row of the following commutative diagram is exact except at the end. Since
we can view Gy /K 38 2 subgroup of G;/k, the Inf-Res sequence implies that each

column is also exact.

0 0 0
! L !
0 — E[r] —» H*(Gk/k, E[n]) — H'(Gkyi, E[3]) 5 H(Gk/, E[n]) 50
! . !
0 Elr] - B (G4, Blrl) — B (Gypsy BI3]) 2 H' (G, Eln]) S0
! ! o
0~ B (Grype, Elm) )t — H* (G EI3] ) 5 H' Gy, Elm]) )t 550
i l l
0 — H*(Gk, E[x]) » H*(Gk/x, E[r]) » H*(Gk/x, E[n]) — - -

1 l 1

By routine computations, we have the following equalities:

H'(Gkyx, Eln)) = H*(Gkyx, Elr]) = Z/32Z,
H' (Gxye, E3)) = H?(Gren, E3]) = 2/3L.

Then it is clear that the first row is exact. Note that E[3] is isomorphic to p3 X 3 as
a Gal (K/K)-module; thus we have

;g (GE/K,EB]) ~ K*/K** x K*/K*3.

The third row is equivalent to the following exact sequence, and therefore it is exact.

O—PK*/K*s —)K*/K*S x K*/K*S —-—)K*/K*a —50
a+— (a,1) (a,b) — b

Combining all the observations above, we have the following lemma:
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LEMMA 2.1. The Fs-dimension of the cokernel of the map
7 B'(Gy s, BI3)) - H* Gy Bl))

is less than or equal to 1.

PrROPOSITION 2.2. The F3-dimension of the cokernel of the map
7 : SON(E/k) — S (E/k)

is less than or equal to 2.

PROOF: Given arbitrary a € S(™(E/k) - in other words the corresponding ho-
mogeneous space is locally trivial everywhere — it is easy to check that at least one of

a, 2Da, 4D%a is locally a cube everywhere except at v, v | 3. If a is in the image of
the map 7 : H! (G-,;/k,E[S]) — H? (Gﬁ/k’E[”]) and it is locally a cube at v, v | 3,
then (1,a) € S®)(E/k) and 7((1,a)) = a. It is easy to see that given a finite set
T of indepedent elements in k*/k** one can find another set T' such that T and T'

generate the same subgroup in k*/k* and every element in T’ is a cube at v, v | 3
with at most one exception. Therefore Lemma 2.1 implies that the F3-dimension of the

cokernel of the map S®)(E/k) 5 S(™(E/k) is less than or equal to 2. 0

COROLLARY 2.3. Assume that III(E/k)[3°] is finite. Assume that either D
is not divisible by 3 or D is divisible by 9. Then the sequence

0 = E[r] —» S™(E/k) — SO(E/k) 5 ST(E/k) — 0

is exact.

PROOF: It suffices to show that
SCNE[k) S S(E/E) - 0
is exact. Given arbitrary a € S(™(E/k), the second hypothesis implies that a is
locally a cube at v, v | 3. Thus (1,a) € S®)(E/k) and 7((1,a)) = a. Again according
to Lemma 2.1, we know that Fs-dimension of the cokernel of the map SG)(E/k) 5

S(™)(E/k) is less than or equal to 1. Now the first hypothesis implies that S®)(E/k) 5
S()(E/[k) is surjective if and only if dimz, S@®)(E/k) is odd. Therefore we need the

following lemma to complete the proof. 1|
LEMMA. dimy, S®)(E/k) is odd.

PRrROOF: 1° There is an exact sequence

0 — E(k)/3(E(k)) —> S®)(E/k) — (E/k)3] — 0
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which implies dimy, S®)(E/k) and dimg, E(k)/3(E(k)) have the same parity, thus it
suffices to show that dimg, E(k)/3(E(k)) is odd.

2° Consider the following sequence:
0 — E(Q) = E'(k) 25 B'(Q) — 0
(z,y)— P = (—32:, -3 —3y) — P4 P°

where E' is given by E'/Q : y2 = 23 — 27D? and is isogeneous to the original curve E.
We claim that the sequence is exact. It is clear that «a is injective and that ker # = ima.
We show that  is surjective. Given any point @ = (z,y) € E'(Q), then P = (zw, —y)
and P° = (:z:wz,—y) are both k-rational points. By an easy computation, we have
@ = P+ P° = 3(P), and so f is surjective.

Since the group E'(Q) is torsion-free and finitely generated, it is a projective Z-

module, and thus the above sequence splits. By taking tensor products with the group
Z /3Z, we obtain another exact sequence

0 — E(Q)/3E(Q) — E'(k)/3E'(k) — E'(Q)/3E'(Q) — 0.
Therefore we have
dimg, E(k)/3(E(k)) = dimp, E(Q)/3E(Q) + dimg, E'(Q)/3E'(Q)
= 2dimg, E'(Q)/3E'(Q) + 1.
(Since Eiors(Q) = Z/3Z and rank (E(Q)) = rank (E'(Q)).) 1

3. BounDs FOR THE DIMENSION OF THE SELMER GrRoUP SG)(E/Q)

Now we turn to consider the 3-isogeny

A E/Q— E'/Q
(2,3) ( +4D y(e* —8D2))

k]
z2 z3

and its dual R
A E'/Q— E/Q

3 2 3 _216D%
(2,) ( +4D* y(z ))-

8122 ’ 72923
Then we can identify
SO(E/Q) = S™(E/k), SCNE'/Q) = STHE/R),
S E/Q) = SUE/k)".

Denote the dimensions of S(E/Q), 5(:\)(E'/Q), SGXE/Q) by s, &', t respectively.
Now we state the duality theorem of Cassels, which will be used latter.
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THEOREM. (Cassels [1])

| SME/Q) | _ | Erors(Q) | H % Jem) | Wmin [
| SN E/Q) | | Elos(@ | 41 e

fE(IR) | Wmin |oo '

LEMMA 3.1. s—s'= —Ily — e, where ¢; depending on D is -2, -1, 0 or 1.
PROOF: 1° By elementary calculation,

fEl(m) lwiinloo 1

fE(m) lwminle 37
2% By using the Tate’s algorithm [5], we can obtain the following equalities :

3 if p=2 mod 3,

. 3 c
lfp‘I'GD,cp:c;=1; lfPID,p¢2,3, c—p={1 ifp_=_1m0d3.

3 if 3| D,
e _[8 fDisodd, e ] 4 p=1248 mod9,
5 1 if D is even ; 3 1
3 if D=5,7 mod?9.
By combining all the above equalities, Lemma 3.1 will follow. 0

Finally, we obtain an upper bound and a lower bound for the dimension of the
Selmer group SCY(E/Q).

PrROPOSITION 3.2. lh+4+e3—-3<t<2L 4+l —¢e1+1
PRrooOF: 1° According to Proposition 2.2 we already know that the sequence
0 — Eln] - SO(E/k) —» S®(E/k) 5 S()(E/k)

is exact and dim coker ¥ £ 2. By considering the Galois group Gal (k/Q) acting on
each group, we obtain another exact sequence

0= B[] - SV(E/Q) » sP(E/Q) > sO) (£'/q)
with dim coker X € 2. Thus
s+8 —-3<t<s+4s —1.
2° By combining Lemma 3.1 and Proposition 1.3, we have

Lb+e-3<t<2h+h+ea+1.

Thus the proposition holds. 0
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