JFP 31, €3, 29 pages, 2021. (© The Author(s), 2021. Published by Cambridge University Press 1
doi:10.1017/S095679682000026X

Protocol combinators for modeling, testing,
and execution of distributed systems

KRISTOFFER JUST ARNDAL ANDERSEN

Department of Computer Science, Aarhus University, Aarhus, Denmark
(e-mail: kristoffer@arndalandersen.dk)

ILYA SERGEY

NUS School of Computing, Yale-NUS College and National University of Singapore, Singapore
(e-mail: ilya.sergey@yale-nus.edu.sg)

Abstract

Distributed systems are hard to get right, model, test, debug, and teach. Their textbook defini-
tions, typically given in a form of replicated state machines, are concise, yet prone to introducing
programming errors if naively translated into runnable implementations.

In this work, we present Distributed Protocol Combinators (DPC), a declarative programming
framework that aims to bridge the gap between specifications and runnable implementations of dis-
tributed systems, and facilitate their modeling, testing, and execution. DPC builds on the ideas from
the state-of-the art logics for compositional systems verification. The contribution of DPC is a novel
family of program-level primitives, which facilitates construction of larger distributed systems from
smaller components, streamlining the usage of the most common asynchronous message-passing
communication patterns, and providing machinery for testing and user-friendly dynamic verification
of systems. This paper describes the main ideas behind the design of the framework and presents
its implementation in Haskell. We introduce DPC through a series of characteristic examples and
showcase it on a number of distributed protocols from the literature.

This paper extends our preceeding conference publication (Andersen & Sergey, 2019a) with an
exploration of randomized testing for protocols and their implementations, and an additional case
study demonstrating bounded model checking of protocols.

1 Introduction

Distributed fault-tolerant systems are at the heart of modern electronic services, spanning
such aspects of our lives as healthcare, online commerce, transportation, entertainment,
and cloud-based applications. From engineering and reasoning perspectives, distributed
systems are among the most complex pieces of software being developed nowadays. The
complexity is not only due to the intricacy of the underlying protocols for multiparty inter-
action, which should be resilient to execution faults, packet loss and corruption, but also
due to hard performance and availability requirements (Chandra ef al., 2007).

The issue of system correctness is traditionally addressed by employing a wide
range of whole-system testing methodologies, with more recent advances in integrating

PN

https://doi.org/10.1017/5095679682000026X Published online by Cambridge University Press @ CrossMark

https://doi.org/10.1017/S095679682000026X
https://orcid.org/0000-0002-4770-9661
mailto:kristoffer@arndalandersen.dk
mailto:ilya.sergey@yale-nus.edu.sg
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S095679682000026X&domain=pdf
https://doi.org/10.1017/S095679682000026X

2 K. J. A. Andersen and I. Sergey

techniques for formal verification into the system development process (Newcombe et al.,
2015; Hawblitzel et al., 2015; Dragoi et al., 2016). In an ongoing effort of developing
a verification methodology enabling the reuse of formal proofs about distributed
systems in the context of an open world, the DISEL logic, built on top of the Coq proof
assistant (Coq Development Team, 2020), has been proposed as the first framework for
mechanized verification of distributed systems, enabling modular proofs about protocol
composition (Wilcox et al., 2017; Sergey et al., 2018).

The main construction of DISEL is a distributed protocol P—an operationally described
replicated state transition system (STS), which captures the shape of the state of each
node in the system, as well as what it can or cannot do at any moment, depending on its
state. Even though a protocol P is not an executable program and cannot be immediately
run, one can still use it as an executable specification of the system, in order to prove
the system’s intrinsic properties. For instance, reasoning at the level of a protocol, one
can establish that a property /: SystemState — Prop is an inductive invariant wrt. a
protocol P.! A somewhat simplified main judgment of DISEL, P - c, asserts that an actual
system implementation ¢ will not violate the operational specification of P. Therefore, if
this holds, one can infer that any execution of a program ¢, will not violate the property
1, proved for protocol P. DISEL also features a full-blown program logic, implemented
as a Hoare Type Theory (Nanevski ef al., 2008), which allows one to ascribe pre- and
post-conditions to distributed programs, enforcing them via Coq’s dependent types, at the
expense of frequently requiring the user to write lengthy proof scripts.

While expressive enough to implement and verify, for instance, a crash-recovery service
on top of a Two-Phase Commit (Sergey et al., 2018), unfortunately, DISEL, as a systems
implementation tool, is far from being user-friendly, and is not immediately applicable for
rapid prototyping of composite distributed systems, their testing and debugging. Neither
can one use it for teaching without assuming students’ knowledge of Coq and Separation
Logic (O’Hearn et al., 2001). Furthermore, system implementations in DISEL must be
encoded in terms of low-level send/receive primitive, obscuring the high-level protocol
design.

In this work, we give a practical spin to DISEL’s main idea—disentangling protocol
specifications from runnable, possibly highly optimized, systems implementations, making
the following contributions:

e We distill a number of high-level distributed interaction patterns, which are com-
mon in practical system implementations, and capture them in a form of a novel
family of Distributed Protocol Combinators (DPC)—a set of versatile higher order
programming primitives. DPC allow one to implement systems concisely, while still
being able to benefit from protocol-based specifications for the sake of testing and
specification-aware debugging.

e We implement DPC in Haskell, providing a set of specification and implementa-
tion primitives, parameterized by a monadic interface, which allow for multiple
interpretations of protocol-oriented distributed implementations.

! Examples of such properties include global systems invariants, used, in particular, to reason about the whole
system reaching a consensus (Pirlea & Sergey, 2018; van Renesse & Altinbuken, 2015).

https://doi.org/10.1017/5095679682000026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682000026X

Protocol combinators for modeling, testing, and execution of distributed systems 3

e We provide a rich toolset for testing, running, and visual debugging of systems
implemented via DPC:

— visual exploration tools for tracing protocol execution.

— tools for guided random execution of implementations, enabling testing imple-
mentations against their protocol specifications as properties in the sense of
Claessen & Hughes (2011).

— alanguage for expressing protocol invariants, and tools for checking them on the
(bounded) state space of the protocol.

e We showcase DPC on a variety of distributed systems, ranging from a simple RPC-

based cloud calculator and its variations, to distributed locking (Kleppmann, 2016),

Two-Phase Commit (Gray, 1978), and Paxos consensus (Lamport, 1998, 2001).

2 Specifying and implementing systems with DPC

In this work, we focus on message-passing asynchronous distributed systems, where each
node maintains its internal state while interacting with others by means of sending and
receiving messages. That is, the messages, which can be sent and received at any moment,
with arbitrary delays, drops, and rearrangements, are the only medium of communication
between the nodes. DPC takes the common approach of thinking of message-passing sys-
tems as shared-memory systems, in which each message in transit is allocated in a virtual
shared “message soup”, where it lingers until it is delivered to the recipient (Sergey et al.,
2018; Wilcox et al., 2015).

The exact implementation of the per-node internal state might differ from one node to
another, as it is virtually unobservable by other participants of the system. However, in
order for the whole system to function correctly, it is required that each node’s behavior
would be at least coherent with some notion of abstract state, which is used to describe the
interaction protocol.

In the remainder of this section, we will build an intuition of designing a system “top-
down”. We will start from its specification in terms of a protocol that defines the abstract
state and governs the message-passing discipline, going all the way down to the implemen-
tation that defines the state concretely and possibly combines several protocols together.
For this, we use a standard example of a distributed calculator.

2.1 Describing distributed interaction

In a simple cloud calculator, a node takes Compute_Request ([3, 100, 201
one of two possible roles: that of a client or
that of a server. A client may send a request @ @
along with data to be acted upon to the

server (e.g., a list of numbers [3, 100, 20]

to compute the sum of), and the server in

turn responds with the result of the computation, as shown on the diagram on the right. For
uniformity of implementation, all message payloads, including the response of the server,
are lists of integers. Notice that this description does not restrict, e.g., the order in which a

Compute_Response ([123])

https://doi.org/10.1017/5095679682000026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682000026X

4 K. J. A. Andersen and I. Sergey

(@) (b)

’ClientInit (S, ns)

send (Compute Response, S, sum(ns))

send (Compute_ Request, S, ns)

h 4

’ Blocking ‘ ServerReady

receive (Compute Response, S, Xs)

h 4

’ ClientDone (xs) ‘ receive (Compute_ Request, C, ns)

Fig. 1. State transitions for a client (a) and a server (b) in the calculator protocol.

server must process incoming requests from the clients, leaving a lot of room for potential
optimizations on the implementation side.

In order to capture the behavioral contract describing the interaction between clients
and servers, we need to be able to outlaw some unwelcome communication scenarios. For
instance, in our examples, it would be out of protocol for the server to respond with a wrong
answer (in general an issue of safety) or to the wrong client (in general an issue of security).
A convenient way to restrict the communication rules between distributed parties is by
introducing the abstract state describing specific “life stages” of a client and a server, as
well as associated messages that trigger changes in this state—altogether forming an STS,
a well-known way to abstractly describe and reason about distributed protocols (Lampson,
1996; Lamport & Schneider, 1985).

Let us now describe our calculator protocol as a collection of coordinated transition
systems. The client’s part in the protocol originates in a state ClientInit containing the
input it is going to send to the server, as well as the server’s identity. From this state, it
can send a message to server S with the payload [3, 100, 20]. It then must wait, in a
blocking state, for a response from the server.? Upon having received the message, the
client proceeds to a third and final state, ClientDone. From here, no more transitions are
possible, and the client’s role in the protocol is completed. A schematic outline of the client
protocol is depicted in Fig. 1 (a).

In our simplified scenario, the protocol for the server (Fig. 1, (b)) can be captured by
just one state, ServerReady, so that receiving the request and responding to it with a correct
result is observed as “atomic” by other parties, and hence, is denoted by a single composite
transition. Even though, technically, the server performs two actions (a receive then a
send), it is convenient to think of this sequence as of an atomic one, which is the common
perception of remote procedure calls. In other words, at the specification level, the server
immediately reacts to the request by sending a response.

Notice that the protocol places no demands on the number of clients, servers or unrelated
nodes in the network, nor does it restrict the number of instances of the protocol are running
in a given network. The specification is “local” to the parties involved (which in general
can number arbitrarily many).

This “request/respond” communication pattern is so common in distributed program-
ming that it is worth making explicit. We will refer to this pattern as a pure remote

2 Remember that this is a specification-level blocking, the implementation can actually do something useful in
the same time, just not (observably) related to this protocol!

https://doi.org/10.1017/5095679682000026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682000026X

Protocol combinators for modeling, testing, and execution of distributed systems 5

procedure call (RPC) and take it as our first combinator for protocol-based implementation
of distributed systems.

2.2 Specifying the protocol

We can capture the RPC-shaped communication in DPC by first enumerating all possible
states of nodes in the protocol in a single data type. For the calculator, the states can be
directly translated from the description above to the following Haskell data type:

data S = ClientInit NodeID [Int]
| ClientDone [Int]
| ServerReady

NodeID is a type synonym for Int, but any type with equality would serve. ClientInit
contains the name of the server and the list to sum. ClientDone contains the response from
the server.’ Next, we describe the only kind of exchange that takes place in a network of
clients and servers communicating by following the RPC discipline. We do so by speci-
fying when a client can produce a request in a protocol, and how the server computes the
response, as we will shortly do in code. Perhaps, a bit surprisingly, no more information
is needed, as the pattern dictates that clients await responses from servers, and the server
responds immediately. This is the reason why we need only enumerate two states for the
client, eliding the one for blocking, as per Fig. 1 (a): the framework adds the third during
execution by wrapping the states in a type with an additional Blocking constructor.* The
following definition of compute outlines the specification of the protocol’s STSs:

compute :: Alternative f = ([Int] — Int) — Protlet f S
compute h = RPC "compute" clientStep serverStep
where
clientStep :: S — f (NodeID, [Int], S)
clientStep s = case s of
ClientInit server args — pure (server, args, ClientDone)
_ — empty
serverStep :: [Int] — S — £ ([Int], S)
serverStep args s = case s of
ServerReady — pure ([h args], ServerReady)
_ — empty

As per its type, compute takes a client-provided function of type [Int] — Int, which is
used by the server to perform calculations. The result of compute is of type Protlet f S,
where S is the data type of our STS states defined just above and £ is a type-former encap-
sulating possible non-determinism in a protocol specification. This is is a standard pattern
for programming “with effects” in the pure fragment of Haskell. Later constructions will
make integral use of non-determinism to, e.g., decide on the next transition depending on
the external inputs, and the parameter £ serves to restrict what notion of non-determinism

3 One could argue that the client and server states don’t have to belong to the same type. However, having
experimented with different options, we found it easier to define all states of the same protocol as instances of
the same data type. The alternative would increase the implementation overhead when combining parts of the
protocol.

4 See the discussion of executing specification in Section 3.

https://doi.org/10.1017/5095679682000026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682000026X

6 K. J. A. Andersen and I. Sergey

is used in the definition of protocols.’ For now, the result of compute is entirely determin-
istic, but must still be “wrapped” in the constructors of the nondeterministic effect, here
pure and empty indicating a single result and the absence of results, respectively.

Protlets (aka “small protocols”) are the main building blocks of our framework.
Complex protocols from literature decompose into interactions shaped as RPCs, notifi-
cations, efc., and we manage to capture all of them in protlets. Simply put, for every arrow
in a diagram of the network indicating a communication channel, the protocol has a prot-
let detailing the exchanges occurring across that channel. A distributed protocol can be
thought of as a family of protlets, each of which corresponds to a logically independent
piece of functionality and can be captured by a fixed interaction pattern between nodes.
In a system, each node can act according to one or more protlets, executing the logic
corresponding to them sequentially, or in parallel. For this example, there is just the one
exchange of messages, so a single protlet makes for the complete protocol description.

Our framework provides several constructors to build protlets from the data type
description for the protocol state space and the operational semantics of its transitions.
In the example above, RPC is a data constructor, which encodes the protlet logic by means
of two functions. Its first argument, clientStep, prescribes that from ClientInit state,
a node can send args to node server, and the response payload is later wrapped via
ClientDone to form the successor state. The second argument, serverStep, says that the
state ServerReady can serve a request in one step: receiving args and responding with
f args in a singleton list, continuing in the same state. We have now completely captured
the above intuitions and transition system of the calculator in less than ten lines of Haskell.

2.3 Executing the specification

The immediate benefits of having an executable operational specification of a protocol is
to be able to run it, locally and without needing full deployment across a network, ensuring
that it satisfies basic sanity checks and more complex invariants.

The execution model for protlets is a small-step operational semantics, with the granu-
larity of transitions being that of the involved protlets. We take as machine configurations
the entire network of nodes and their abstract states.

In case several protlets of a similar shape are involved (e.g., a node is involved in two or
more RPCs—see our Case Study of a Two-Phase Commit protocol in Case Study 4.3), we
distinguish them by introducing protlet labels, a solution that is standard for program log-
ics for concurrency (Sergey ef al., 2016; Dinsdale-Young et al., 2010). A label is a name
associated with each protlet instance associated with a node. This solves an implementa-
tion detail of maintaining state across several instances of the same protlet over time, local
to a node: pure, functional programming cannot discern two structurally equal instances of
a protlet unless named. Additionally, having introduced protlet labels to logically partition
the local state of each node along the protlet instance space, we can also share the naming
across nodes to split the global state into views of each, complete protocol instance. We
represent this operational machine configuration as the datatype SpecNetwork, which is
an instantiation of an abstract structure of a network state NetworkState, representing the

5 One can think of any protocol, whose diagram has a fork, as nondeterministic.

https://doi.org/10.1017/5095679682000026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682000026X

Protocol combinators for modeling, testing, and execution of distributed systems 7

global environment and a local state for each node in the network. The generality allows
code reuse across the framework. For execution, the global environment is a protocol spec-
ification for each instance label. The per-node state consists of a protlet state for each
protocol instance, and a message queue. The intention is that the operational semantics
updates the state of just one protlet of one node at a time.

data NetworkState global local = NetworkState {
_globalState :: global,
_localStates :: Map NodeID local
}

type SpecNetwork f s =
NetworkState (Map Label [Protlet f s])
(Map Label (NodeState s), [Messagel)

The following describes a network for the calculator protocol with two nodes (identified
by 0 and 1), both running just one protlet (labeled with 0), for the input for the example
from Section 2.1:

addNetwork :: Alternative f = SpecNetwork f S
addNetwork = initializeNetwork nodeStates protocols
where
nodeStates = [(server, [(0, ServerReady)])
, (client, [(0, ClientInit server [3, 100, 20]1)]1) 1]

protocols = [(0, [compute sum])]
server, client :: NodelD
(server, client) = (0, 1)

Here, initializeNetwork is a convenience function to initialize the SpecNetwork datas-
tructures from human writeable descriptions in the form of association lists.

In any given network configuration, many actions can be possible. A node may be ready
to initiate an RPC, or it (or another node entirely) might be ready to receive a message—
many such actions may be enabled and relevant at once.® As the purpose of running the
specification is to trace the possible behaviors in the protocol, we choose the next action to
execute in the network by leaving the resolution to the user of the semantics. To do so, we
implement the executable small-step relation as a monad-parameterized function capturing
the possibility of non-determinism (hence Alternative f). This makes the implementa-
tion of the operational semantics simple, yet general, as it just needs to describe an f-ary
choice or £-full collection of possible transitions at each step:

step :: (Monad f, Alternative f) = SpecNetwork f s — f (SpecNetwork f s)
step = applyTransition <$> possibleTransitions network <k> pure network

Here, possibleTransitions enumerate the possible transitions enabled in network, and
applyTransition computes the subsequent network state through each transition. The net-
work can be “run” by iterating this small-step execution function with a suitable instance of
£, a standard construction in implementations of non-determinism in monadic interpreters.

For example, we can instantiate the non-determinism to the classic choice of the list
monad (Liang et al., 1995), which leads to enumerating every possible action. We can

6 And their abundance is precisely why reasoning about distributed systems is hard.

https://doi.org/10.1017/5095679682000026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682000026X

8 K. J. A. Andersen and I. Sergey

—————Node 0 — NE Node 1 — ONLINF—————
State State 1
fromList [(@,Running ServerReady)] fromList [(@,Rumning ClientInit @ [3,

0 0

€hoices
Smtl*bgsagesﬂ [Message {_msgFrom = 1, _msgTag = "compute_Request", _msgBody
Crash 1
a choice by pressing enter while the field reads <n> for 1 to#ofcpticm—l-

Choice: @

Fig. 2. The interactive exploration tool, loaded with the calculator protocol.

then iterate the function step by choosing an arbitrary transition, as captured by the
simulateNetworkIO function used in the following interaction with the library, where we
explore the “depth” of a single run of the protocol.

> length <$> simulateNetworkIO addNetwork
4

This is coherent with the first example we envisioned wrt. the protocol: there is (1) the
initial state; (2) the state with the client awaiting response, but the message undelivered,
(3) the state with the client waiting and the server having sent a response; and finally, (4) a
terminal state with the client done.

The non-determinism can be similarly resolved by enumerating all possible paths
through a protocol, up to a certain trace length if the execution space is not finite. If the
state space of a network is finite, this can yield actual finite-space model checking pro-
cedures. In the following subsection, we will explore another alternative to resolving the
non-determinism, yielding an unusual yet very useful execution method.

2.4 Interactive exploration with GUI

By delegating the decision of which transition to follow to the user of an application that
performs this simulation, we can allow the client of the framework to explore the net-
work behavior interactively. The DPC library provides a command-line GUI application
facilitating interactive exploration of distributed networks step-by-step. Provided an initial
network specification like the one described previously, one can start the session by typing
the following:

> runGUI addNetwork

This yields the interface displayed in Fig. 2. By choosing specific transitions in sequence,
the user can evolve and inspect the network at each step of execution. This is useful for
protocol design and debugging, and can help understand the dynamics of a protocol, and
the kinds of communication patterns it describes.

For example, in Fig. 3, we show the subsequent prompt after showing the selection of
Option 1:

https://doi.org/10.1017/5095679682000026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682000026X

Protocol combinators for modeling, testing, and execution of distributed systems 9

———HNode 8 — (NINE—————— ————Hode 1 — ININN————
State State
fronList [(@,Running ServerReady)] from_ist [(@,Blocking in state Client

Tnbox: D
compute__Request(from 1, [3,20], to @

Thoices
wae&mwmﬂ, _msgTag = "compute_Response”, _msgBody
Crash 1

Meke a choice by pressing enter while the field reads <n> for 1 to # of opti
Choice: 1 |

Fig. 3. Choosing option 1 in the prompt from Fig. 2.

SentMessages 0 1 [Message {_msgFrom = 1, _msgTag = "compute__Request",...

SentMessages is a human readable piece of data that represents the option of sending in
protocol instance 0, from node 1 the message with sender 1 of tag "compute__Request".
The format chosen is the debug serialization format provided by Haskell’s Show and Read
type classes for ease of experimenting: any data of the sort displayed to the user can be
directly copied and used in scripts or command prompts. Here, the recipient and message
content is elided for issues of screen-space, but as the window is enlarged, so is the depth
of information provided to the client of the framework.

The state view then shows that Node 0 now has said message waiting for it in the soup,
and Node 1 is now blocking. The user is then presented with subsequent possible choices,
here the option for the calculator to receive the request and send the response in one atomic
action, as dictated by the protocol.

Additionally, as can be seen in Fig. 2, in the interactive tool we enrich the possible
transitions at every step with the possibility of a node to go offline. In effect, it means it will
stop processing messages, modeling a benign (non-byzantine) fault. Other nodes cannot
observe this and will “perceive” the node as not responding. It is implemented by eliding
the actions performed by the offline node when computing the set of possible actions. This,
however, becomes very useful when we move to explore protocols that allow for partial
responses among a collection of nodes, as in the case of crash-resilient consensus protocols.
For instance, the Paxos specification of Case Study 4.2 can be readily inspected using this
GUI. The example code explores a configuration of two proposers and three acceptors, but
as many actors as the user has screen space can be run.

We concede that the text-based GUI does not scale well beyond eight actors, but one can
imagine richer interfaces than a text-based one. For example, the application is a purely
functional program advancing with a small-step operational semantics: the state could be
saved on a stack and visualized, like a directory structure familiar from file systems.

2.5 Protocol-aware distributed implementations

Distributed systems protocols serve as key components of some of the largest software sys-
tems in use. The actions taken in the protocol are governed by programs outside the key

https://doi.org/10.1017/5095679682000026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682000026X

10 K. J. A. Andersen and I. Sergey

protocol primitives, so it is vital that implementations can integrate with software compo-
nents in real general-purpose languages. We here present such a language with primitives
for sending and receiving messages as an embedded domain-specific language (EDSL) in
Haskell. This allows use of the entire Haskell toolkit in engineering efficient optimized
implementations relying on distributed interaction.

Naturally, as implementations “refine” the abstract protocols (in the way they, e.g.,
implement internal state), we want to ensure that the they still adhere to the protocol
as specified. To achieve this, we introduce primitives for annotating implementations
with protocol-specific assertions. These annotations can be ignored by execution-oriented
interpretations aiming for efficiency rather than verification guarantees.

The following code implements a calculator server in plain Haskell using do-notation to
sequence effectful computations. The effects are described by type class constraints on m,
the monad used for sequencing: MessagePassing provides a send and receive primitive,
and ProtletAnnotations S provide the enactingServer primitive over the state-space S.
The type S is the data type defined in Section 2.2, and denotes the abstract state space we
wish to relate to subcomputations in our implementation, as explained below.

addServer :: (ProtletAnnotations S m, MessagePassing m) = Label — m a
addServer label = loop
where

loop = do

enactingServer (compute sum) $ do
Message client _ args < spinReceive [(label, "Compute__Request")]
send client label "Compute__Response" [sum args]

loop

By using type classes describing operations, we allow for several different interpretations
of this code. For instance, by interpreting the send and receive as POSIX Socket opera-
tions, we obtain a subroutine in the IO Monad, Haskell’s effectful fragment, that we can
integrate into any larger development with no interpretive overhead. The spinReceive
operation is defined using recursion and a primitive receive operation that attempts to
receive an incoming message with a tag from among a list of candidate message tags in a
non-blocking manner.

The body of addServer is annotated with a (compute sum) protlet, enforcing that the
server responds to the client atomically (in terms of message passing) and to perform
the sum function (or something observationally equivalent) on the supplied arguments.
By bracketing the receive and send in the enactingServer primitive, the implementation
declares its intent to conform to the server role of the RPC, as dictated by the protocol.
Once we have a client to play the other role in the protocol, we will demonstrate how
this intent can be checked dynamically. The message tags that appear in the code are by
convention the tags used in the RPC protocol, i.e., the name of the protocol with a suffix
indicating the role in the RPC that the message plays.

In contrast with DISEL and other static verification frameworks that enforce protocol
adherence via (dependent) type systems (embedded in Coq or other proof assis-
tants) (Sergey et al., 2018; Krogh-Jespersen et al., 2020), we verify protocol properties
dynamically. The trade-off is that of coverage versus annotation and proof overhead.
We can, through exploiting executable specifications, check that running a program as

https://doi.org/10.1017/5095679682000026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682000026X

Protocol combinators for modeling, testing, and execution of distributed systems 11

a system of a program adheres to a protocol. If the abstract protocol specification is
violated, a dynamic error will be raised. Notice that addServer is, like the specification
of the compute protlet, agnostic in the number and kinds of other nodes in the network.
Its behavior is locally and completely described by its implementation, and is segregated
from interfering with unrelated protlets via the label parameter. We refer the reader to
the development for a number of client component implementations.

Let us now reap the benefits of protocol-aware distributed programming enabled by DPC
and dynamically check that the implementations do indeed follow the abstract protocols.
We achieve this by interpreting the EDSL into a datatype of abstract syntax trees (AST) that
makes it possible to inspect their evaluations at runtime. We give a small-step structural
operational semantics to this language, and, precisely like the exectuable specifications, lift
the evaluation of a single program to that of an entire network of programs, by assigning
each program a node identifier in the network, as show below. Here, Node 1 runs the client
implementation and Node 0 runs the server.

addConf :: (ProtletAnnotations S m, MessagePassing m) = ImplNetwork m Int

addConf = initializeImplNetwork [

(1, addClient 0 20 3 0)

, (0, addServer 0)
1

The similarity to specification-level configurations is not incidental: ImplNetwork is
another instantiation of NetworkState:

type ImplNetwork m a = NetworkState [Message]l (m a)

Here, the global state (of type ImplNetwork m Int, with m constrained as in
addServer/addClient) is just the message soup, and the node-local state is the program
itself. An interpreter for such configurations is implemented by the following function:

traceRoundRobin :: ImplNetwork (AST s) a — [TraceAction s]

Here, the AST data type is the AST, in the style of Higher Order Abstract Syntax (Pfenning
& Elliott, 1988), for message-passing implementations to be interpreted in. The result of
running the network is a (possibly infinite but productive) list of TraceActions. Trace
actions describe “events” in the network: messages received and messages sent. We can
simulate a full run of the network by using the trace actions to resolve the non-determinism
of choices in the operational semantics.

For utility, we here bake in a round-robin schedule to ensure fair execution, but provide
more general interpreters parametrized by a schedule and returning richer results, e.g.,

runWithSchedule :: [NodeID] —

ImplNetwork (AST s) a —
[(TraceAction s, ImplNetwork (AST s) a)l

We can verify that our implementation indeed adheres to the desired protocol by the
trace produced by traceRoundRobin on a network configuration, ensuring that (a) every
observable action is compatible with the state that the node is supposed to be in and (b)
checking the messages expected from these states. For this, we implement yet another
operational semantics, where the machine configuration is a protocol state for every node
id, and the program is a trace of primitive actions. We here call it checkTrace. The inter-
preter faults if the current action is not applicable to the state, or sends or receives messages

https://doi.org/10.1017/5095679682000026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682000026X

12 K. J. A. Andersen and I. Sergey

not prescribed by the specification. We can run the adherence checker on a prefix (e.g., of
length 15) of the infinite trace as follows:

> checkTrace addNetwork $ take 15 $ traceRoundRobin addConf

Right ()

The result of Right () indicates success: the trace did indeed conform to the protlet
annotations of the program, assuming the initial state of the implementations in addConf
conformed to an initial abstract state corresponding to the the network state of addNetwork.
This implementation defines our notion of finite profocol adherence: a node adheres to a
protocol when it sends and receive messages in the order of, and of the structure pre-
scribed by, a specification. We illustrate below that the implementation can identify both
out of order messaging, and malformed or “functionally” incorrect messages in the correct
order.

What happens if we introduce a mistake in the implementation? For instance, what if we
run the client implementation twice? We can illustrate this by altering addConf to demand
the addClient to be run twice in succession:

addConf = initializeImplNetwork [

(1, addClient 0 3 20 0 » addClient O 100 11 0)
, (0, addServer 0)
]
The checker then reports an error, as this is not allowed by the protocol: the client would
have brought itself to the terminal state ClientDone by the first RPC, and, hence, cannot
proceed.
> checkTrace addNetwork $ take 30 $ traceRoundRobin addConf

x Exception: Node 1 expected to initiate rpc compute
Node is in state: ClientDone [23]

In a different scenario, if we erroneously annotate the server as intending to serve a product
function (instead of sum), we will fail protocol adherence, because the specification does
not agree on the content of the messages.

addServer :: (ProtletAnnotations S m, MessagePassing m) = Label — m a
addServer label = loop
where

loop = do

enactingServer (compute product) {- !'ERROR!! -} $ do

> checkTrace addNetwork $ take 15 $ checkTrace addConf
**%% Exception: The server response did not follow the protocol from state
ServerReady
Expected: [60]
Got: [23]

Of course, here we only observe the error because our single instantiation of the client’s
payload, [20, 3], happened to disagree on the sum and product function. What if the
payload was [1]?

By enriching dynamic testing with protocol adherence checks we believe we can achieve
greater assurances of the correctness of our implementations without resorting to use full-
blown verification frameworks (Hawblitzel et al., 2015; Sergey et al., 2018).

https://doi.org/10.1017/5095679682000026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682000026X

Protocol combinators for modeling, testing, and execution of distributed systems 13

2.6 Introducing randomized testing to distributed systems

Naturally, the dynamic testing demonstrated in the preceeding section is only as good as the
creativity and insight of the developer. The originators of QuickCheck observed that pure
functional programs with executable specifications acting on first-order data is a natural
setting for exploiting randomized testing: instead of carefully crafting pathological cases
to demonstrate absence of errors, define a generator for random program input and write
more programs to decide whether the program under test performs as expected (Claessen
& Hughes, 2011).

DPC is a natural fit for this approach: we have an executable specification of a protocol,
along with a re-interpretable DSL for implementing these protocols. This suggests that we
generate random input data for the implementations, and use our executable specification
as ground truth for correctness of implementations.

This is in general as complicated as the type of the input data: in this, and all other
protocols in this paper, we are acting on simple messages of lists of integers. Generators
for this is readily available in the QuickCheck libary.

First, we parameterize the initial configurations of the specification and implementation
execution configurations by the numbers that the client want operated on.

addNetwork :: Int — Int — SpecNetwork f S
addConf :: Int — Int — ImplNetwork m [Int]

With this in hand, we can formulate universally quantified boolean properties (indexed
boolean-valued expressions) that can then be evaluated on randomly generated inputs.
At its most basic, we wish the evaluation of the implementation to conform to the
specification, a property here formulated using checkTrace as described in Section 2.5:
prop_simpleAddNetwork :: Int — Int — Bool
prop_simpleAddNetwork x y =

let trace = take 100 traceRoundRobin (addConf x y) in
checkTrace (addNetwork x y) trace = Right ()

The prefix of prop_ is a convention that allows for discovery of properties by the
QuickCheck toolset. The function traceRoundRobin is a pure interpreter for the imple-
mentation language that schedules nodes in a fair round-robin fashion. QuickCheck can
now help us exorcise bugs of the class previously identified as problematic for unit testing:
> quickCheck prop_simpleAddNetwork
skt Failed! (after 2 tests and 2 shrinks):
Exception:
The server response did not follow the protocol from state: ServerReady
Expected: [0]
Got: [1]

1

QuickCheck reports that on payload [0, 11, the server implementation violated the server
specification: it replied to the client with 1 rather than 0 as (erroneously) dictated by the
specification.

QuickCheck can also help us with the problem of systematically testing a class of
errors unique to the setting of nondeterministic concurrent computation via message-
passing, namely that of programs not accounting for all possible schedules. As the number

https://doi.org/10.1017/5095679682000026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682000026X

14 K. J. A. Andersen and I. Sergey

of instructions per process increases, the number of possible schedules grows exponen-
tially, and aggressively so. Corner cases are also difficult to foresee, so in lieu of formal
verification, the possibility of randomly exercising possible schedules is worth pursuing.
A schedule arises from the nondeterministic interleaving of threads, but a concrete
schedule can be represented by a sequence of integers, in Haskell a value of type [NodeID],
indicating the order of execution of the nodes in the distributed system. We generalize
roundRobinTrace t0 traceSchedule, parametrized by the specific schedule to use.

arbitraryScheduleFor :: [NodeID] — Gen [NodeID]
arbitraryScheduleFor s = infiniteListOf (elements s)

prop_simpleAddNetworkArbSchedule :: Int — Int — Property
prop_simpleAddNetworkArbSchedule x y =
forAll (arbitraryScheduleFor (nodes conf)) $ Aschedule$ —
let trace = take 100 $ fst <$> runWithSchedule schedule conf in
checkTrace (addNetwork x y) trace =— Right ()
where
conf = addConf x y

We use the forA11l combinator to build a Property, in essence a generalization of a boolean
valued expression to a function taking a random seed (and some additional configuration
controlling the generation process). Here, forAll is used to explicitly supply the gener-
ator arbitraryScheduleFor to be used for generating traces as opposed to the implicit
inference of appropriate generators for x and y via type classes (The existing instance for
[Int] simple generates a finite list of random integers). QuickCheck uses the convention
of naming generators “arbitrary”.

This now let us exercise the implementation for bugs arising due to pathological exe-
cution orders of each node in the network. It appears robust to arbitrary interleavings of
execution:

> quickCheck (withMaxSuccess 10000 prop_simpleAddNetworkArbSchedule)
44+ 0K, passed 10000 tests.

We believe we here have illustrated the applicability of randomized testing to build a
discipline of testing for distributed systems. By exploiting that the specification language
of DPC is executable, we leverage existing technologies to give us a lightweight process
for writing convincingly correct implementations of distributed components.

2.7 Multiple semantics for distributed systems executions

The versatilty of our approach to designing and running distributed systems is enabled by
the ability to execute the composed protocols using three different structural operational
semantics, summarized in Table 1.

The first is a semantics for the specification language acting at the level of protlets, as
demonstrated in Section 2.3. A SpecNetwork is an assignment of protocol states to every
node in a network along with a collection of protlets over those nodes. The stepping func-
tion is parametrized by a notion of non-determinism, £, that we instatiate with, e.g., 10 to
produce the GUI-driven exploration tool (Section 2.4).

https://doi.org/10.1017/5095679682000026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682000026X

Protocol combinators for modeling, testing, and execution of distributed systems 15

Table 1. Operational semantics for distributed protocol

Semantics Name Machine Configuration Step Function Signature

Executable SpecNetwork SpecNetwork -> f (SpecNetwork)
Specifications

Pure, Tracing (Schedule, ImplNetwork AST) ImplNetwork — NodeID —
Semantics

(ImplNetwork AST, TraceAction)
Trace Verification ([TraceAction], SpecNetwork) TraceAction — SpecNetwork —
Either Error SpecNetwork

The second semantics, showcased in Section 2.5, is an “implementation”. It acts on a
network configuration where each node has a program in the pure monadic language of
Haskell extended with message-passing operations, here reified as AST as explained in the
corresponding section of the paper. This is then interpreted in a straight forward manner.
A part of the configuration is a Schedule, an infinite list of NodeIDs. The step relation then
computes the corresponding TraceAction (Send, Receive or No-Op) of the next node in
the schedule, and advances the network state.

The third semantics also acts on a SpecNetwork, but drives the evolution by applying
the step relation of the first, and verifying that a supplied trace action can produce at
least one of the “f-many” choices. In this particular case £ is instantiated with [1, the list
Alternative used to represent finite determinism. This semantics is used for verification,
as in the randomized testing examples (Section 2.6).

3 Framework internals

3.1 The specification language

A full distributed system specification consists of a collection of nodes, each assigned
a unique node identifier, and a collection of protlets for each instance label. A node
owns local state, partitioned according to protocol instance labels. A protlet describes one
exchange pattern between parties. A collection of protlets over the same state space then
describe an entire protocol.

In the overview we saw the simplest protlet, the pure RPC, but through exploration
of examples and case studies, we have discovered a number of such patterns. These are
implemented as extensions to the Protlet data type. One such is the broadcast protlet,
integral for describing multiparty protocols. We elide the other protlet constructors, which
can be found in our implementation.

data Protlet f s =
| RPC String (ClientStep s) (ServerStep s)
| Broadcast String (Broadcast s) (Receive f s) (Send f s)

The component functions of the protlets reuse a number of common type abbreviations,
here ClientStep, Send, etc. All are at work in the above listing. This common structure

https://doi.org/10.1017/5095679682000026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682000026X

16 K. J. A. Andersen and I. Sergey

unifies their implementation in the operational semantics. The expansion of, e.g., the
Broadcast synonym is as follows:

type Broadcast s = s — Maybe ([(NodeID, [Int])], [(NodeID, [Int])] — s)

This models a “partial” function on states s, saying under which conditions a node can
initiate a broadcast, by enumerating the recipients and the body of the messages to them,
along with a continuation processing the received answers with their associated senders.
This continuation is stored in the implicit blocking state during actual execution of the
specification.

The specification language is given a nondeterministic operational semantics as
described in Section 2.3. Recall the network step function:

step :: (Monad f, Alternative f) = SpecNetwork f s — f (SpecNetwork f s)

It is implemented by computing an £-full of possible transitions for every node in the
network and combining the result of taking all possible transitions on the current network.
The key operation of step is a dispatch on the current protocol state of a node:
case state of
BlockingOn _ tag f nodelDs k —
resolveBlock label tag f nodeID inbox nodeIDs k
Running s — do

protlet < fst <$> oneOf (_globalState Map.! label)
stepProtlet nodeID s inbox label protlet

The constructors BlockingOn and Running are supplied by the framework. The first is used
to track the terms under which a node is blocking: what message(s) it needs to continue
and from whom. resolveBlock computes whether the conditions are met for the current
node to continue.

Here, _globalState is the mapping of collections of protlets (i.e., a protocol) from
instance labels. We then choose between protlets using oneOf::[a] — £ a. The func-
tion stepProtlet dispatches control based on a case distinction on the protlet constructor:
for example, here is the branch for the Broadcast protlet:

stepProtlet :: (Monad m, Alternative m) =
NodeID — s — [Message] — Label — Protlet m s — m (Transition s)
stepProtlet nodeID state inbox label protlet = case protlet of

Broadcast name broadcast receive respond —

tryBroadcast label name broadcast nodeID state inbox <|> -- (1)
tryReceive label (name ++ "__Broadcast") receive nodeID state inbox <|> -- (2)
trySend label respond nodeID state inbox -- (3

A node attempting to advance a protocol using the Broadcast protlet can do so if it is
(1) a client ready to perform a broadcast; (2) a server ready to receive such a broadcast;
or (3) a server that is ready to respond to a broadcast. The try functions all follow the
same structure: check that the user-provided protlet component functions apply, and if
so, generate an appropriate transition. The result of each call is combined using <|>, the
choice operator for the Alternative instance for m. For instance, here is the signature of
one such function for Broadcast:

tryBroadcast :: Alternative f = Label — String — Broadcast s —
NodeID — s — [Message] — f (Transition s)

https://doi.org/10.1017/5095679682000026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682000026X

Protocol combinators for modeling, testing, and execution of distributed systems 17

Interpretations of Protocols. As described in Section 2.3, the operational semantics of
protocols can be instantiated to obtain different interpretations. We here look at bounded
model checking mentioned in passing in the overview. We can use the List monad to
enumerate all execution paths in a breadth-first manner:

simulateNetworkTraces :: SpecNetwork [] s — [[SpecNetwork [] sl]

This yields a list-of-lists where the nth list contains all possible states after n steps of
execution, in a breadth-first enumeration of the state space. Each constituent list of states is
necessarily finite, but the list-of-lists need not be in the case of infinite network executions.
By virtue of Haskell’s lazy evaluation, such a computational object is easy to construct and
to manipulate, without worrying about its size upon creating it. We can write a procedure
that, given a trace, applies a boolean predicate at every step of the trace.

checkTraceInvariant :: Invariant m s Bool — m — [SpecNetwork f s] —
Maybe Int

The Invariant data type is an abbreviation for a boolean predicate on the type s that
additionally takes some “meta-data” m, like “roles” in a protocol, needed to express the
invariant. The procedure checkTrace returns Nothing to signify that there were no viola-
tions of the invariant, while it returns Just n to report that the nth state was the first state to
violate the invariant. With this language of predicates we can build invariants and with the
aforementioned checking procedure we can perform (bounded) checking that an invariant
is in fact inductive (i.e., holds for each state). In the case of a finite state space, this amounts
to real verification of inductive invariants. The most sophisticated example we have suc-
cessfully specified is an inductive invariant for a Two-Phased Commit protocol (Sergey
et al., 2018), for which we refer the curious reader to the implementation.

3.2 The implementation language

The monadic language for message-passing programs is implemented as an EDSL in
Haskell. This has the benefit of providing all the standard tools for writing Haskell pro-
grams; all the abstraction mechanisms and organizational principles are at hand to write
sophisticated software, including lazy evaluation, higher order functions, algebraic data
types, and more. By virtue of the modularity offered by the approach of EDSLs, it is
straightforward to give multiple interpretations of such programs.

The described DPC’s implementation (Andersen & Sergey, 2019b) fragment comes with
three interpretations of the monadic interface:

1. The AST monad used for dynamic verification of implementation adherence of the
implementations to protocols, and covered in detail in Section 2.5.

2. A shared-memory based interpretation where nodes are represented as threads,
and message passing is performed by writing to shared message queues using
non-blocking concurrency primitives.

3. An interpretation for distributed message passing.

In the third case (true distribution), we give an interpretation into I0 computations
performing message passing through POSIX Sockets. For this, each computation needs
an “address book” mapping NodeIDs to physical addresses (concretely, IP addresses and
ports). Additionally, each program will have access to a local mailbox, represented by a

https://doi.org/10.1017/5095679682000026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682000026X

18 K. J. A. Andersen and I. Sergey

message buffer being filled by a local thread whose only function is to listen for messages.
These two pieces of data are collected in a record of type NetworkContext. Computations
running in such a context are idiomatically captured in a type synonym over the ReaderT
monad transformer:

newtype SocketRunnerT m a = SocketRunnerT {
runSocketRunnerT :: ReaderT NetworkContext m a }

What follows is the implementation of the send primitive in this particular instance of
the message-passing interface:

instance MonadIO0 m = MessagePassing (SocketRunnerT m) where
send to 1bl tag body = do
thisID < this
let p = encode $ Message thisID tag body to 1bl
peerSocket <« (!'to) <$> view addressBook
void . 1iftI0 $ Socket.send peerSocket p mempty$

The code for sending messages is, thus, implemented in a form of a Reader-like computa-
tion over an I0-capable monad m as indicated by the MonadI0 constraint. It starts by building
aMessage containing the supplied tag, body, receiver (to) and label, along with the execut-
ing nodes 1D, as supplied by another primitive, this. It then uses encode to serialize this
message into bytestring p. Then, p is sent to the appropriate peerSocket, as resolved by
the addressBook, using the System. Socket . Send operation from the POSIX Socket library
for Haskell. The monadic glue code (and the rest of the Haskell toolkit) is interpreted by
choosing an appropriate base monad for the interpretation, e.g., the I0 monad. Ultimately,
we build the following function for running the system:

defaultMain :: NetworkDescription — NodeID — SocketRunner a — IO ()

It takes a NetworkDescription, which maps NodeIDs to physical addresses, a NodeID with
which to identify this node, and a computation in the above described interpretation of mes-
sage passing programs. The result is an I0 () computation that establishes (if run on each
machine) a fully connected mesh network with every node in the supplied network descrip-
tion, and then proceeds to run the supplied computation, passing messages accordingly.
This interpretation can be used to facilitate integration of DPC-based implementations
with real Haskell code once they have been assured to comply with their protocols.

4 Evaluation

The implementation of DPC is publicly available online for extensions and experimenta-
tion.” We now report on our experience of using DPC for implementing and validating
some commonly used distributed systems.

7 The latest version is available at https://github.com/kandersen/dpc. The version at the time of
publication can be found at (Andersen & Sergey, 2019b)

https://doi.org/10.1017/5095679682000026X Published online by Cambridge University Press

https://github.com/kandersen/dpc
https://doi.org/10.1017/S095679682000026X

Protocol combinators for modeling, testing, and execution of distributed systems 19

4.1 More examples

In order to evaluate the framework, we have encoded a number of textbook distributed
protocols, translating their specifications to the abstractions of DPC. By doing so, we were
aiming to answer the following research questions:

1. Are our Protlet-based combinators sufficiently expressive to capture a variety of
distributed systems from the standard literature in a natural way?

2. Is it common to have realistic protocols that require more than one combinator, i.e.,
can be readily expressed decomposed as multiple Protlets?

3. What is the implementation burden for encoding systems using DPC?

The statistics for our experiments is summarized in Table 2.

The framework has been shaped by the explorations of protocols that we have made,
but we believe that the answer to Q1 is affirmative, supported by the variety of pro-
tocols we have so far explored. The answer to Q2 is also affirmative. For instance
the two-phase protocols like Paxos and Two-Phase Commit (2PC) naturally decompose
into two broadcast/quorum phases, while more asymmetric protocols like distributed
locking (Kleppmann, 2016) requires as many as four protlets.

Regarding Q3, the lines of code versus complexity of protocol are indicative of a positive
relationship between complexity and effort to encode a protocol, which is desirable. That
is, a lot of complexity is encapsulated by the treatment of combinators, so the coding effort
in the framework is very light.

The nature of the verification that the framework enables is naturally not strictly sound
(as it is dynamic), but techniques like bounded model checking are readily explorable.
With it, we have been able to validate, e.g., correctness for the 2PC protocol (Sergey et al.,
2018), whose formal proof poses a significant proof burden.

In terms of real-time expenses of verification, individual runs of verification, trace gener-
ation, efc., is perceptually instantaneous for the scale of the experiments here. Verification
via randomized testing naturally scales with the number of samples tested. Likewise,
bounded checking scales with the depth of traces. Below, we provide some rudimentary
timings, obtained on a Late 2013 MacBook Pro, 2.6 GHz i5 CPU, 8 GB of 1600 MHz
DDR3 Memory. We first illustrate testing time versus number of samples:
*DPC.Examples.PADL> quickCheck (withMaxSuccess 1000 prop_simpleAddNetwork)

+++ 0K, passed 1000 tests.
(0.87 secs, 403,673,944 bytes)

+*DPC.Examples.PADL> quickCheck (withMaxSuccess 10000 prop_simpleAddNetwork)
+++ 0K, passed 10000 tests.
(7.07 secs, 4,036,093,952 bytes)

Second, time versus depth of verification:

+*DPC.Examples.PADL> quickCheck (withMaxSuccess 1000
(prop_simpleAddNetworkWithDepth 10))

+++ 0K, passed 1000 tests.

(0.34 secs, 68,176,840 bytes)

+*DPC.Examples.PADL> quickCheck (withMaxSuccess 1000
(prop_simpleAddNetworkWithDepth 100))

https://doi.org/10.1017/5095679682000026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682000026X

20 K. J. A. Andersen and I. Sergey

Table 2. A summary for implemented systems: protocol, runnable implementation, count of
constituent protlets, size of encoding (lines of code), employed combinators

Protocol Impl Protlets LOC RPC ARPC Notif Broad Quorum
Calculator v 1 10 v

Lock Server 4 73 v Vv v

Concurrent Database 3 23 v

Two-Phase Commit 2 43 v

Paxos v 2 42 v

+4++ 0K, passed 1000 tests.
(0.70 secs, 403,681,864 bytes)

#DPC.Examples.PADL> quickCheck (withMaxSuccess 1000
(prop_simpleAddNetworkWithDepth 1000))

+++ 0K, passed 1000 tests.

(6.68 secs, 3,701,282,896 bytes)

The framework also affords exploration in other directions than we have mentioned so
far. We have experimented with enriching the message passing language with operations
for shared-memory concurrency and thread-based parallelism. The database example in the
table uses node-local threads to maintain a database that is served by two different threads.
Our approach to dynamic checking of protocol adherence scales to concurrency, and we
have a concurrent Calculator server serving multiple arithmetic functions in parallel.

4.2 Case Study: Constructing and Running Paxos Consensus

For a representative exploration of the capabilities of DPC, we turn to a study of the Paxos
Consensus (Lamport, 1998; Garcia-Pérez et al., 2018; Chandra ef al., 2007). Paxos solves
a problem of reaching a consensus on a single value agreed upon across multiple nodes,
of which a subset acts as proposers (who suggest the values) and another, complementary
subset acts as acceptors (who reach an agreement). The nature of the Paxos algorithm lends
itself well to interactive exploration and the specification should be robust to issues that
appear specifically in distributed systems, like arbitrary interleaving of messages, message
reorderings, and nodes going offline. The tools we have developed so far are enough to
explore these aspects of the protocol.

We can specify this protocol in DPC with relatively little code. We further generalize

the Broadcast combinator to “quorums” — broadcasts that await only a certain number
of responses before proceeding. We introduce another entry in our Protlet datatype for
capturing this pattern.

data Protlet f s = ...
| Quorum String Rational (Broadcast s) (Receive s) (Send f s)

The Quorum protlet is and acts identical to the Broadcast protlet, but it is further
instrumented by a rational number indicating the number of responses to await before
proceeding. We encode the dissection of nodes into proposers and acceptors directly in the
state of the protocol, similar to how we dissected the state space of the cloud server along
Client/Server lines.

https://doi.org/10.1017/5095679682000026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682000026X

Protocol combinators for modeling, testing, and execution of distributed systems 21

Proposer Acceptor

FirstBallotOk
Init Done receive quorum_prepare

send quorum_prepare (no condition)

’Blocking F——»

receive responses
from the quorum

CurrentlySupporting(n)

_+ Blocking ‘ receive quorum_commit receive
quorum_prepare

send quorum_commit

Polled

PreviouslyAccepted(n)

Fig. 4. State transition diagram of Paxos consensus protocol.

The state-space diagram of Paxos is given in Figure 4. The proposer starts in
(ProposerInit b v as) with the desire to propose to acceptors as the value v with priority
(ballot) b. We encode this with a quorum protlet:

prepare :: Alternative f = Label — Int — Protlet f PState
prepare label n = Quorum "prepare" ((fromIntegral n % 2) + 1) propositionCast ...
where

propositionCast = Acase
ProposerInit b v as — Just (zip as (repeat [b]), propositionReceive b v as)
_ — Nothing

Here, prepare is parameterized by the number of participants. Hence, the protlet dictates
we should wait for a majority quorum, to avoid ties in the system. The listing shows the
initiation of the first broadcast as representative of the rest of the implementation. The
proposer starts in a ProposerInit state, in which it initiates a broadcast poll of all as
acceptors, sending its ballot b.

The second phase of the protocol is encoded as another Quorum protlet, where the pro-
posers react to the outcome of the responses on the first polling. The phase ordering is not
explicitly defined, but a deliberate consideration is made in the design of the state space:
the initial state of the second phase protlet is precisely the terminal state of the first phase
protlet. Phase ordering emerges from this mechanism. The interactive exploration tool can
be used to explore, for instance, the robustness of the protocol with respect to crashing
participants versus crashing proposers, and why a quorum size of (g + 1) acceptors is
sufficient for reaching consensus.

The explored implementation demonstrates use of the stafe monad to organize the accep-
tor as an effectful program, and a callback to provide the ballot to the proposer, using
features of Haskell, while retaining the benefits of the framework. Neither effect is possible
to express at the protocol specification level.

4.3 Case Study 2: Specifying and model checking Two-Phased Commit

For a representative of the verification capabilities of DPC, we turn to a study of the Two-
Phase Commit protocol encoded in DISEL (Sergey et al., 2018). There, it was properly
formalized in the DISEL framework, so it translates readily to DPC. This case serves as a
study of the same work done using a lightweight, formally guided approach, as opposed to
a fully formal framework.

https://doi.org/10.1017/5095679682000026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682000026X

22 K. J. A. Andersen and I. Sergey

Coordinator Participant
Init
send send
send-broadcast broadcast roceive broadcast
prepare i response propare response
receive receive
s broadcast broadcast
Blocking response | response GotRequest
receive prepare . v -
response, Blocklng send Yes/ send “Np’
[>0 “No”
8z v
59 RespondedYes RespondedNo
g8 Abort send
K é broadcast Tocoive
Lq “Abort” . receive broadcast
€ Blockin “ " ?roadg_ast
d A Accept receive “Aport
broadcast
Commit Abort Abort
. send
Commit broadcast
“Accept”

Fig. 5. State transition diagram of the Two-Phase Commit protocol.

The Two-Phase Commit state transition diagram is given in Figure 5. The DISEL encod-
ing of the 2PC protocol as described by Weikum & Vossen (2002) assumes a single
coordinator, often known as a “proposer” in similar treatments, and a static collection of
participants, or acceptors. The coordinator asks the participants to agree or disagree with a
particular transaction, and the consensus is communicated back to the acceptors once the
coordinator has tallied all votes. The state space of the nodes in the protocol is the most
complicated we have studied so far:

CoordinatorInit [NodeID]
CoordinatorCommit [NodeID]
CoordinatorAbort [NodeID]

data State =
|
|
| ParticipantInit
|
|
|
|
|

ParticipantGotRequest NodeID
ParticipantRespondedYes NodeID
ParticipantRespondedNo NodeID
ParticipantCommit NodeID
ParticipantAbort NodeID

The coordinator maintains a list of participants to poll for acceptance, and each participant
records the server to respond to upon contact. The server proceeds from CoordinatorInit
to either CoordinatorCommit or CoordinatorAbort depending on the outcome of the
polling round, and from there back to CoordinatorInit upon sending the result of the
poll to all participants. Each participant starts in the ParticipantInit state, and proceeds
to ParticipantGotRequest upon being polled by a coordinator. From here it can accept
or reject the request as desired, this is left up to the implementaion: it is however specified
that it must move to ParticipantRespondedYes or ParticipantRespondedNo, respectively.
From there it moves to ParticipantCommit or ParticipantAbort as appropriate when
learning of the outcome of the poll at large from the coordinator.

A safety specification of the protocol is traditionally given in a form of inductive invari-
ant—a property that is satisfied by the initial state of the system and is preserved by each

https://doi.org/10.1017/5095679682000026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682000026X

Protocol combinators for modeling, testing, and execution of distributed systems 23

modification it undergoes—ultimately implying that “nothing bad happens”. Finding an
invariant strong enough, so it would adequately capture the relevant properties system, is
a work of art, and inevitably requires a human prover’s assistance (Padon et al., 2016).
However, once an invariant is defined, it can be checked mechanically. Invariants are usu-
ally defined by conjoining global predicates on the states of each node without regard for
the specification of the protocol. That is, they declaratively express the legal states of the
entire system without mention of legal ways to get there.

Invariants in DPC are expressed as predicates on the specification-level state space, and
in particular, it was straightforward to adapt the Cog-formulated inductive invariant of the
2PC system to a Haskell function deciding the same property for a 2PC specification.

The invariant checker enabled by DPC appears to be a very useful tool. In this particular
case, we can borrow an invariant from DISEL formalization that expresses full correctness
of the 2PC protocol, but it is conceivable that “smaller” properties might be of interest. For
local examples, that a particular state is never entered, or that the payload of a particular
state satisfies a predicate. As an example of system-wide properties, spanning multiple
nodes, one can assert that no two nodes are in a particular state at once.

The entire invariant is specified as a disjunction:

tpcInvariant :: TPCInv
tpcInvariant = everythingInit <||> phaseOne <||> phaseTwo

The invariant asserts that all nodes in the system are either in the initial state, the started
phase one or all participants have been polled and the system is in phase two. The type
synonym TPCInv simply wraps the Invariant type introduced in Section 3.1, instantiated
by the State type of this particular case study. The operator <||> simply lifts boolean
disjunction to the Invariant type.

Let us illustrate the implementation details of the invariant looking at the implementa-
tion the phaseOne invariant and its components.

phaseOne :: TPCInv

phaselne =
forCoordinator coordinatorPhaseOne <&&>
forallParticipants participantPhaseOne

We here use domain specific combinators that have been built to make it convenient to
refer to the nodes in the state space by their roles as opposed to their NodeID. The predicate
participantPhaseOne is a large disjunction enumerating that a particular node is either in
the initial state because it hasn’t been polled by the coordinator; or it is in the GotRequest
state because it has been polled exactly once; or it has responded yes or no, sending the
appropriate messages to the coordinator:

participantPhaseOne :: NodeID — TPCInv
participantPhaseOne pt = do
cn < getCoordinator
foldOr [
runningInState ParticipantInit pt
<&&> noMessageFromTo pt cn
<&&> messageAt pt "Prepare__Broadcast" [] cn,

https://doi.org/10.1017/5095679682000026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682000026X

24 K. J. A. Andersen and I. Sergey

runningInState (ParticipantGotRequest cn) pt
<&&> nolutstandingMessagesBetween pt cn,

runningInState (ParticipantRespondedYes cn) pt
<&&> noMessageFromTo cn pt
<&&> messageAt cn "Prepare__Response" [1] pt,

runningInState (ParticipantRespondedNo cn) pt
<&&> noMessageFromTo cn pt

<&&> messageAt cn "Prepare__Response" [0] pt
]

The utility predicates like noMessageFromTo are “primitives” provided by the Invariant
library that are reusable across specifications. They express general properties like state of
the message soup pertaining to a particular node or set of nodes.

With an invariant like this in hand, we can check that the specification satisfies this
property at every step, i.e., that the invariant is inductive:

> checkInvariantTraces tpcInvariant initNetworkMetadata . take 15 $
simulateNetworkTraces initNetwork

Nothing

What we see is exhaustive bounded model checking of the specification: the trace enumer-
ation via simulateNetworkTraces evolves the network in a breadth-first manner, returning
a list of frontiers, while checkInvariantTraces iterates through this “tree” and ensures that
the supplied invariant is never violated. Additionally, it is supplied with protocol-specific
metadata, some global context accessible to the invariant, which in this case includes the
assignment of roles in the protocol to the node identifiers used in initNetwork.

Here, we look 15 frontiers deep, a grossly exponential number of states, but enough for
the protocol to have run at least once.

While by no means a wild feat of engineering, this brings hard verification to a very
lightweight toolkit at very little cost to developers of algorithms. By comparison, the
equivalent formal verification in DISEL is more than 2,000 lines of definitions and well-
formedness property proofs, not counting the invariant itself, before the formalization
begins any proof-work. Here, we start exploring the behavior and nuances of the protocol
of interest in as little as 75 lines in the case of 2PC.

5 Related work

Declarative programming for distributed systems. In the past 5 years, several works
were published proposing mechanized formalisms for verification of distributed protocols,
both in synchronous (Dragoi et al., 2016) and asynchronous setting (Sergey et al., 2018;
Wilcox et al., 2015). All those frameworks allow for executable implementations, yet the
encoding overhead is prohibitively high, and no abstractions for specific interaction pat-
terns are provided in any of them. Most of the DSLs for distributed systems we are aware
of are implemented by means of extracting code rather than by means of a shallow DSL
embedding (Killian et al., 2007; Liu et al., 2012; Leonini et al., 2009). MACE (Killian
et al.,2007), a C++ language extension and source-to-source compiler, provides a suite of

https://doi.org/10.1017/5095679682000026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682000026X

Protocol combinators for modeling, testing, and execution of distributed systems 25

tools for generating and model checking distributed systems. DISTALGO (Liu ef al., 2012)
and SPLAY (Leonini ef al., 2009) extract implementations from protocol descriptions.

In a recent work, Brady (2017) has described a discipline for protocol-aware program-
ming in IDRIS, in which adherence of an implementation to a protocol is ensured by the
host language’s dependent type system, similarly to DISEL, but in a more lightweight
form. Brady’s approach allows for static verification of distributed interactions by using
dependent types for constraining peer-to-peer communication. However, this design also
makes it difficult to provide dedicated combinators for specific one-to-many or many-to-
many communications patterns, e.g., broadcasts or quorums, which would retain the same
static safety guarantees. Those combinators are possible to implement in DPC due to our
framework’s less restrictive typing discipline and focus on runtime verification.

Similarly to our DPC-based language for defining protocol combinators, the P program-
ming language by Desai ef al. (2013) has been introduced as a way to facilitate modular
construction of distributed systems. In P, a program is a collection of machines. Machines
communicate with each other asynchronously through events. In order to implement a pro-
tocol, the programmer must specify the structure of the machines and events. P programs
can be verified via the built-in PTESTER tool, and are compiled to C as a executables.
Therefore, P approach introduces a gap between the verified and the executable artifacts.

More recently, the MODP system (Desai et al., 2018) has been built on top of it. MODP
is an extension of P, which allows for more complex programs to be built. In MODP,
users can implement systems as individual modules, and combine them into a larger mod-
ule horizontally, i.e., by means of DISEL-style Rely-Guarantee-based composition (Jones,
1983). While similar in spirit to DPC, MODP’s composition framework appears to be
more coarse-grained then what we have described. For instance, even though MODP has
been used to define and test a version of Paxos, it is not clear how to implement a in it a
combinator such as our Quorum, which can be reused across multiple protocols.

Behavioral Types and Dynamic Contracts. Related to our work are the recent
approaches for the dynamic verification of message-passing distributed systems based on
session types, which make use of contracts and runtime monitors (Melgratti & Padovani,
2017; Gommerstadt et al., 2018). For instance, the chaperone contracts by Melgratti &
Padovani (2017) allow to impose dynamic checks, in the style of Findler & Felleisen
(2002), on the contents of the messages transmitted between the processes, providing a cor-
responding blame calculus to detect faulty processes at runtime. The work by Gommerstadt
et al. (2018) defines dynamic contracts that are more expressive with regard to a number
of properties that can check for a message-passing communication. Similarly to moni-
tors, they can establish that the communication abides by the constraints imposed by
the protocol by inspecting the contents of the messages. Instrumented with internal state
Gommerstadt et al.’s concurrent contracts are even capable of dynamically checking prop-
erties of data being transferred, for instance, checking that the integer responses to a series
of requests come in an ascending order. While DPC take an intrinsic approach to defin-
ing the behavior, enforcing the crucial state invariants by construction, the concurrent
contracts take a more extrinsic perspective, being ascribed to an already defined implemen-
tation as additional checks. Furthermore, in their dynamic checks, concurrent contracts and
monitors are limited to the data, which is locally available to a process. In contrast, for the

https://doi.org/10.1017/5095679682000026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682000026X

26 K. J. A. Andersen and I. Sergey

purpose of debugging and model checking, DPC allows to declare and check global invari-
ants of the entire system, which span the state of multiple concurrently operating nodes (as
in the case study from Section 4.3).

In the nomenclature by Ancona et al. (2016), DPC provide a top-down approach for
specification and implementation of correct-by-construction distributed systems, similarly
to multiparty session types and choreographies (Hiittel ez al., 2016). That is, once a global
description of the system’s behavior is specified the local implementations of individual
nodes are derived from it. An opposite bottom-up approach, in which the system’s proper-
ties are derived from the definitions of its individual components (Lange & Tuosto, 2012),
corresponds to deductive verification (Hawblitzel ez al., 2015), and is typically adopted for
the systems, whose implementation is, to the large extent fixed and is not evolving.

While the DISEL’s take on verification combines both top-down and bottom-up
approaches, DPC focuses on the former one as a way to ensure the resulting system’s
correctness by construction. Our rationale for following the top-down approach was to
encourage the system’s designers to think about the system’s properties and invariants
upfront, before implementing the low-level details. By taking a bottom-up approach for
our goals (by e.g., deriving specifications from implementations that are still in the devel-
opment) we would risk to introduce noticeable overheads due to the need to revise already
implemented components that do not compose well.

Relation to DISEL. DPC’s protlets adapt DISEL’s protocols, that are phrased exclusively
in terms of low-level send/receive commands, which should be instrumented with
protocol-specific logic for each new construction. While it is possible to derive DPC’s
protlets in DISEL, extracting them and ascribing them suitable types requires large anno-
tation overhead. To wit, only the protocol description for Two-Phase Commit in DISEL
takes nearly 400 LOC of Coq, while the entire protocol, implementation and invariant for
2PC in DPC take only 243 LOC of Haskell. We believe that providing a concise reusable
specification to advanced DPC protlets, such as Quorum, allowing for verification of, e.g.,
Paxos, would be an interesting research challenge by itself.

The idea of exploiting random exploration of process interleavings in asynchrounous
settings in general is not a new one. For instance, generating and controlling schedules
of execution have been central in lines of work surrounding concurrency errors in web
applications (Adamsen et al., 2017). We here similarly demonstrate the applicability of
the approach in a lightweight framework inspired by a program logic.

6 Conclusion and future work

Declarative programming over distributed protocols is possible and, we believe, can lead to
new insights, such as better understanding on how to structure systems implementations.
Even though there are several known limitations to the design of DPC (for instance, in
order to define new combinators, one needs to extend Protlet), we consider our approach
beneficial and illuminating for the purposes of prototyping, exploration, and teaching dis-
tributed system design. In the future, we are going to explore the opportunities, opened by
DPC, for randomized protocol testing and lightweight verification with refinement types.

https://doi.org/10.1017/5095679682000026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682000026X

Protocol combinators for modeling, testing, and execution of distributed systems 27

Acknowledgements

We thank the JFP referees for their many helpful suggestions that helped to improve the
presentation of the paper. Ilya Sergey’s work has been supported by the grant of Singapore
NRF National Satellite of Excellence in Trustworthy Software Systems (NSoE-TSS) and
by Crystal Centre at NUS School of Computing.

Conflict of Interests

None.

References

Adamsen, Christoffer Quist, Meller, Anders, Karim, Rezwana, Sridharam, Manu, Tip, Frank & Sen,
Koushik. (2017). Repairing event race errors by controlling nondeterminism. Pages 289-299 of:
ICSE. ACM.

Ancona, Davide, Bono, Viviana, Bravetti, Mario, Campos, Joana, Castagna, Giuseppe, Deniélou,
Pierre-Malo, Gay, Simon J., Gesbert, Nils, Giachino, Elena, Hu, Raymond, Johnsen, Einar Broch,
Martins, Francisco, Mascardi, Viviana, Montesi, Fabrizio, Neykova, Rumyana, Ng, Nicholas,
Padovani, Luca, Vasconcelos, Vasco T. & Yoshida, Nobuko. (2016). Behavioral types in
programming languages. Foundations and trends in programming languages, 3(2-3), 95-230.

Andersen, Kristoffer Just Arndal & Sergey, Ilya. (2019a). Distributed protocol combinators. Pages
169—-186 of: PADL. LNCS, vol. 11372. Springer.

Andersen, Kristoffer Just Arndal & Sergey, Ilya. (2019b). Distributed protocol combinators:
Implementation. https://doi.org/10.5281/zenodo.3902686.

Brady, Edwin. (2017). Type-driven development of concurrent communicating systems. Computer
science (AGH), 18(3).

Chandra, Tushar, Griesemer, Robert & Redstone, Joshua. (2007). Paxos made live: an engineering
perspective. Pages 398—407 of: PODC. ACM.

Claessen, Koen & Hughes, John. (2011). Quickcheck: a lightweight tool for random testing of
haskell programs. Acm sigplan notices, 46(4), 53—64.

Coq Development Team. (2020). The Cog Proof Assistant Reference Manual. Available from
http://coq.inria.fr.

Desai, Ankush, Gupta, Vivek, Jackson, Ethan K., Qadeer, Shaz, Rajamani, Sriram K. & Zufferey,
Damien. (2013). P: safe asynchronous event-driven programming. Pages 321-332 of: PLDI.
ACM.

Desai, Ankush, Phanishayee, Amar, Qadeer, Shaz & Seshia, Sanjit. (2018). Compositional
Programming and Testing of Dynamic Distributed Systems. PACMPL, 2(OOPSLA), 159:1—
159:30.

Dinsdale-Young, Thomas, Dodds, Mike, Gardner, Philippa, Parkinson, Matthew J. & Vafeiadis,
Viktor. (2010). Concurrent Abstract Predicates. Pages 504—528 of: ECOOP. LNCS, vol. 6183.
Springer.

Dragoi, Cezara, Henzinger, Thomas A. & Zufferey, Damien. (2016). PSync: a partially synchronous
language for fault-tolerant distributed algorithms. Pages 400—415 of: POPL. ACM.

Findler, Robert Bruce & Felleisen, Matthias. (2002). Contracts for higher-order functions. Pages
48-59 of: ICFP. ACM.

Garcia-Pérez, Alvaro, Gotsman, Alexey, Meshman, Yuri & Sergey, Ilya. (2018). Paxos Consensus,
Deconstructed and Abstracted. Pages 912—-939 of: ESOP. LNCS, vol. 10801. Springer.

Gommerstadt, Hannah, Jia, Limin & Pfenning, Frank. (2018). Session-typed concurrent contracts.
Pages 771-798 of: ESOP. LNCS, vol. 10801. Springer.

Gray, James N. (1978). Notes on data base operating systems. Pages 393—481 of: In Operating
Systems. Springer.

https://doi.org/10.1017/5095679682000026X Published online by Cambridge University Press

https://doi.org/10.5281/zenodo.3902686
http://coq.inria.fr
https://doi.org/10.1017/S095679682000026X

28 K. J. A. Andersen and I. Sergey

Hawblitzel, Chris, Howell, Jon, Kapritsos, Manos, Lorch, Jacob R., Parno, Bryan, Roberts,
Michael L., Setty, Srinath T. V. & Zill, Brian. (2015). IronFleet: proving practical distributed
systems correct. Pages 1—17 of> SOSP. ACM.

Hiittel, Hans, Lanese, Ivan, Vasconcelos, Vasco T., Caires, Luis, Carbone, Marco, Deniélou, Pierre-
Malo, Mostrous, Dimitris, Padovani, Luca, Ravara, Antonio, Tuosto, Emilio, Vieira, Hugo Torres
& Zavattaro, Gianluigi. (2016). Foundations of session types and behavioural contracts. 4CM
comput. surv., 49(1), 3:1-3:36.

Jones, Cliff B. (1983). Tentative steps toward a development method for interfering programs. Acm
transactions on programming languages and systems, 5(4), 596-619.

Killian, Charles Edwin, Anderson, James W., Braud, Ryan, Jhala, Ranjit & Vahdat, Amin M. (2007).
Mace: Language support for building distributed systems. Pages 179—188 of: PLDI. ACM.

Kleppmann, Martin. 2016 (Feb). How to do distributed locking. https://martin.kleppmann.
com/2016/02/08/how-to-do-distributed-locking.html.

Krogh-Jespersen, Morten, Timany, Amin, Ohlenbusch, Marit Edna, Gregersen, Simon Oddershede
& Birkedal, Lars. (2020). Aneris: A mechanised logic for modular reasoning about distributed
systems. Pages 336-365 of: ESOP. LNCS, vol. 12075. Springer.

Lamport, Leslie. (1998). The Part-Time Parliament. ACM toplas, 16(2), 133—169.

Lamport, Leslie. (2001). Paxos made simple.

Lamport, Leslie & Schneider, Fred B. (1985). Formal foundation for specification and verifica-
tion. Pages 203-285 of: Distributed Systems: Methods and Tools for Specification, An Advanced
Course. LNCS, vol. 190. Springer.

Lampson, Butler W. (1996). How to build a highly available system using consensus. WDAG.

Lange, Julien & Tuosto, Emilio. (2012). Synthesising Choreographies from Local Session Types.
Pages 225-239 of: CONCUR. LNCS, vol. 7454. Springer.

Leonini, Lorenzo, Riviere, Etienne & Felber, Pascal. (2009). SPLAY: distributed systems evaluation
made simple (or how to turn ideas into live systems in a breeze). Pages 185-198 of: NSDI.
USENIX Association.

Liang, Sheng, Hudak, Paul & Jones, Mark P. (1995). Monad transformers and modular interpreters.
Pages 333-343 of: POPL. ACM Press.

Liu, Yanhong A., Stoller, Scott D., Lin, Bo & Gorbovitski, Michael. (2012). From clarity to
efficiency for distributed algorithms. Pages 395—410 of: OOPSLA. ACM.

Melgratti, Hernan C. & Padovani, Luca. (2017). Chaperone contracts for higher-order sessions.
Proc. ACM program. lang., 1(ICFP), 35:1-35:29.

Nanevski, Aleksandar, Morrisett, Greg, Shinnar, Avi, Govereau, Paul & Birkedal, Lars. (2008).
Ynot: Dependent types for imperative programs. Pages 229-240 of: ICFP.

Newcombe, Chris, Rath, Tim, Zhang, Fan, Munteanu, Bogdan, Brooker, Marc & Deardeuff,
Michael. (2015). How Amazon web services uses formal methods. Commun. ACM, 58(4).

O’Hearn, Peter W., Reynolds, John C. & Yang, Hongseok. (2001). Local reasoning about programs
that alter data structures. CSL. LNCS, vol. 2142. Springer.

Padon, Oded, McMillan, Kenneth L., Panda, Aurojit, Sagiv, Mooly & Shoham, Sharon. (2016). Ivy:
safety verification by interactive generalization. Pages 614—630 of- PLDI. ACM.

Pfenning, Frank & Elliott, Conal. (1988). Higher-order abstract syntax. Pages 199-208 of:
PLDI. ACM.

Pirlea, George & Sergey, Ilya. (2018). Mechanising blockchain consensus. Pages 7890 of:
CPP. ACM.

Sergey, Ilya, Nanevski, Aleksandar, Banerjee, Anindya & Delbianco, German Andrés. (2016).
Hoare-style Specifications as Correctness Conditions for Non-linearizable Concurrent Objects.
Pages 92110 of: OOPSLA. ACM.

Sergey, Ilya, Wilcox, James R. & Tatlock, Zachary. (2018). Programming and proving with
distributed protocols. PACMPL, 2(POPL), 28:1-28:30.

van Renesse, Robbert & Altinbuken, Deniz. (2015). Paxos made moderately complex. ACM comp.
surv., 47(3), 42:1-42:36.

https://doi.org/10.1017/5095679682000026X Published online by Cambridge University Press

https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html
https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html
https://doi.org/10.1017/S095679682000026X

Protocol combinators for modeling, testing, and execution of distributed systems 29

Weikum, Gerhard & Vossen, Gottfried. (2002). Transactional information systems: Theory,
algorithms, and the practice of concurrency control and recovery. Morgan Kaufmann.

Wilcox, James R., Woos, Doug, Panchekha, Pavel, Tatlock, Zachary, Wang, Xi, Ernst, Michael D.
& Anderson, Thomas E. (2015). Verdi: a framework for implementing and formally verifying
distributed systems. Pages 357-368 of: PLDI. ACM.

Wilcox, James R., Sergey, Ilya & Tatlock, Zachary. (2017). Programming Language Abstractions
for Modularly Verified Distributed Systems. Pages 19:1-19:12 of: SNAPL.

https://doi.org/10.1017/5095679682000026X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682000026X

	Protocol combinators for modeling, testing, and execution of distributed systems
	Introduction
	Specifying and implementing systems with DPC
	Describing distributed interaction
	Specifying the protocol
	Executing the specification
	Interactive exploration with GUI
	Protocol-aware distributed implementations
	Introducing randomized testing to distributed systems
	Multiple semantics for distributed systems executions

	Framework internals
	The specification language
	The implementation language

	Evaluation
	More examples
	Case Study: Constructing and Running Paxos Consensus
	Case Study 2: Specifying and model checking Two-Phased Commit

	Related work
	Conclusion and future work
	References

