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An asymptotic model for the flow of a highly viscous film coating the interior of a slippery,
flexible tube is developed and studied. The model is valid for the axisymmetric flow
of moderately thick films, and accounts for tube flexibility, wall damping, longitudinal
tension, slip length and strength of base flow due either to gravity or airflow. In the
absence of base flow, linear stability analysis shows the existence of one unstable mode;
the presence of base flow allows for multiple unstable modes arising due to the Plateau—
Rayleigh instability and elastic instability, with stronger base flow reducing the maximum
growth rate. Numerical solutions in the absence of base flow show that slip decreases the
amplitude of wall deformations and can significantly decrease the time to plug formation in
weakly flexible or strongly damped tubes. For falling films, the impact of model parameters
on the critical thickness required for plug formation was analysed by studying turning
points in families of travelling-wave solutions; this thickness decreases with slip, flexibility
and tension, while damping had a non-monotonic impact on critical thickness. In contrast
to model solutions in rigid tubes, for flexible tubes the critical thickness cannot be made
arbitrarily large through simply increasing the strength of the base flow. For air-driven
films, both slip and flexibility increase the rate of film transport along the tube.

Key words: thin films, lubrication theory

1. Introduction

Highly viscous film flows in tubes arise in several application areas, including human
lungs/airways in which airway walls are lined with airway surface liquid (Grotberg &
Jensen 2004; Hill et al. 2022). The free surface of such film flows in tubes is subject to

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article,

distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original

article is properly cited. 1020 A38-1


https://orcid.org/0000-0002-5848-834X
https://orcid.org/0000-0001-6219-7126
mailto:msschwitzerl@vcu.edu
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/jfm.2025.10659

https://doi.org/10.1017/jfm.2025.10659 Published online by Cambridge University Press

H.R. Ogrosky and M. Schwitzerlett

several instabilities such as the Plateau—Rayleigh instability (not present in flows along
a plane) arising due to surface tension and the curved geometry of a tube (see, e.g.
Goren 1962; Yih 1967; Hickox 1971; Joseph et al. 1997; Oron, Davis & Bankoff 1997;
Craster & Matar 2009). If the tube is flexible, the dynamics can also be driven — under
certain conditions — by an elastic instability, or a combination of the two (Halpern &
Grotberg 1992; Zhou et al. 2016). For moderate-Reynolds-number flows, the Kapitza
instability also plays a role in the film flow dynamics; as the focus in this paper will be on
low-Reynolds-number flows, the previous two instability mechanisms are in mind here.

The evolution of the film’s free surface driven by these instabilities has a number of
interesting dynamical outcomes, including chaotic dynamics, travelling-wave trains, wave
mergers and interactions and plug formation in which the film pinches off and occludes the
tube. The latter can have a significant impact in human airway health for multiple reasons,
including the increased wall stresses due to plug formation/rupture that are associated with
poor epithelial cell health (Bilek, Dee & Gaver 2003).

Asymptotic modelling studies for films inside tubes go back decades, and have provided
insight into these varied dynamical outcomes. A brief and admittedly incomplete review
of the most relevant studies is given here now. Hammond (1983) developed a nonlinear
model valid for thin films in a rigid tube that explored the evolution of the film’s free
surface. This approach was extended by Gauglitz & Radke (1988) who employed a long-
wave or ‘small-slope’ approximation that retained a more accurate representation of the
film’s curvature due to the tube wall; Quevedo Tiznado et al. (2018) used a similar method
to determine an upper limit for a capillary number that inhibits snap off (plug formation).

A model in a similar vein to that of Hammond (1983) was derived for a falling
film by Frenkel (1992); the interactions of free-surface waves in this model were
studied numerically by Kerchman & Frenkel (1994), self-similar solutions were found by
Kalliadasis & Chang (1994) and plug formation in the model was studied by Jensen (2000).
A long-wave model for this set-up was derived and studied by Camassa, Ogrosky &
Olander (2014) and Camassa et al. (2016) and was shown to have good agreement with
low-Reynolds-number experiments. Similarly, for air-driven flow along a tube, Kerchman
(1995) developed a model for the film’s free surface valid for thin films; this problem was
also studied by Camassa et al. (2012) who developed long-wave models for the case of
films driven by airflow using a simple ‘locally Poiseuille’ approach to incorporating shear
stresses exerted by the air on the film at the free surface. Dietze & Ruyer-Quil (2015),
Dietze, Lavalle & Ruyer-Quil (2020), Dietze (2024) developed and studied a weighted
residual integral boundary layer model that was found to have good agreement with
low-to-moderate-Reynolds-number experiments.

All of the above models were focused on film flows inside rigid tubes. Halpern &
Grotberg (1992) extended the modelling work of Hammond (1983) and Gauglitz & Radke
(1988) to film flow along a flexible wall in the absence of any base flow. A pair of
evolution equations was derived, and it was shown that an elastic instability due to tube
flexibility contributed to the overall growth of free-surface disturbances. If the flexibility
was great enough, this elastic instability became the dominant driver of the dynamics,
leading to *compliant collapse’ of the tube wall. This was further studied by Halpern &
Grotberg (1993), in which the impact of insoluble surfactant along the free surface was also
included. Zhou et al. (2016) studied the flow of a viscoelastic film falling down the inside
of a flexible tube, building off of earlier work in a rigid tube with surfactant (Zhou et al.
2014). Using an integral boundary layer method, a model was derived valid for moderate
Reynolds numbers. Travelling-wave solutions demonstrated the impact of tube flexibility
on the free-surface capillary ripples preceding a wave front, and numerical solutions to
the evolution equations demonstrated the impact of circumferential tension of the tube
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wall on the occurrence of plug formation. Linear stability analysis of viscoelastic film
flow with surfactant over a flexible surface was conducted by Patne (2021), who showed
the existence of several unstable modes, including a ‘solid elastic’ mode arising due to
shear flow above the film. The focus of the prior modelling studies — and the focus here —
is on axisymmetric flow and wall deformation, although it is important to note that non-
axisymmetric deformations can play a significant role in the dynamics through buckling
in tubes (see, e.g. Heil 1999; Heil, Hazel & Smith 2008; Whang et al. 2017).

For flows inside tubes with slip at the wall, Liu & Ding (2017) extended the model
of Camassa et al. (2014) to include slip at the wall; they documented how slip enhanced
growth rates (both temporal and spatio-temporal) — as it also does for film flow along
slippery fibres (Haefner ef al. 2015; Halpern & Wei 2017; Ji et al. 2019) — and promoted
plug formation through numerical simulations of the model equation. These studies build
on previous work demonstrating the impact slip has in promoting instability growth for
films along a plane (Samanta et al. 2011, 2013; Howell, Robinson & Stone 2013; Hossain &
Beherra 2022).

In these asymptotic models, a critical film thickness required for plug formation may
be detected by successively repeating numerical simulations of the model equations with
a variety of mean film thickness values (e.g. using a bisection method approach), thus
narrowing down the thickness region in which the critical thickness lies. In the presence
of a base flow, a second way to identify the critical thickness is to study limit points
in families of travelling-wave solutions. These limit points serve as a proxy for the
critical thickness; through numerical continuation, the impact of model parameters on
the critical thickness may be found very efficiently, sweeping across parameter space in a
computationally inexpensive way. This method has been used in recent years to study the
impact of strength of base flow due to gravity (Camassa et al. 2014; Dietze et al. 2020),
wall heating (Ding et al. 2019), insoluble surfactant (Ogrosky, 2021a), airflow (Dietze
2024), wall slip (Schwitzerlett, Ogrosky & Topaloglu 2023) and viscosity ratio in two-
layer film flow (Ogrosky, 2021b) on this critical thickness. Information of this kind is
essential for development and parameterisation of reduced-order modelling of lungs and
airways (Halpern, Jensen & Grotberg 1998; Fujioka et al. 2016; Ryans et al. 2016).

The goal of the current paper is to build on these previous works and provide new
insights into the flow of viscous films inside slippery, flexible tubes, exploring the interplay
between tube flexibility and wall slip in enhancing instability growth, film transport and
plug formation. A long-wave asymptotic model will be derived for both the case of no
base flow and in the presence of base flow due either to gravity or pressure-driven core
flow; for the latter case, the ‘locally Poiseuille’ model of Camassa et al. (2012) will
be used. Linear stability analysis of the model will be used to identify the impact of
model parameters on the growth and speed of small disturbances to the free surface and
wall. The nonlinear evolution equations will be solved numerically, and travelling-wave
solution families will be found. For falling films, tracing the location of turning points in
these families through numerical continuation methods provides an approximate critical
thickness required for plugs to form; this thickness will be identified across a variety of
parameter values, including strength of base flow, slip length, flexibility, wall damping and
wall longitudinal tension. For air-driven films, the impact of parameters on the rate of film
transport will be shown.

The current paper is organised as follows. The model is derived — and parameter value
ranges discussed — in § 2. Linear stability analysis is conducted in § 3, first for the absence
of base flow (§ 3.1), and then with base flow (§ 3.2). Solutions to the evolution equations
are found in § 4. Conclusions are given in § 5.
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Figure 1. Sketch of the flow configuration and variable definitions.

2. Model derivation

The set-up considered here is an axisymmetric viscous film that lines the interior of a
flexible tube. A second, much less viscous fluid (here taken to be air) fills the core region of
the tube. Cylindrical coordinates are (7, 7) in the radial and axial directions, respectively.
The tube wall is taken to have unperturbed radius r = ag, and the free-surface separating
the unperturbed core and film sits at ¥ = Ro; see figure 1 for a sketch of the set-up. The free
surface will be denoted R(Z, f) and the tube wall position a(z, f) = ag + a; (z, ), where
aj is the perturbation from the undisturbed radius.

Several scenarios will be considered. First, the case where surface tension forces
dominate and there is negligible base flow due to gravity or core flow (e.g. in cylindrical
capillaries) will be considered. Second, base flow (i) arising in a falling film in a vertical
tube, or (ii) due to pressure-driven core flow with volume flux 0® will be considered.

2.1. Governing equations and boundary conditions

The flow of the fluid is governed by the incompressible, axisymmetric Navier—Stokes
equations

_ __ __ _ 1 _ u
o7 + uuy + wiz) = —pr + [ [;f#(l’uf) +uzz — F—z} (2.1a)
o __ _ _ N I _ _
p (W5 + uwy + wwz;) = —p; + i [;&(wa) + wz‘z] - 08, (2.1b)
1
-0 (riu) + wz =0, (2.1c)
=

where (i, w) are the velocity components in the (7, z) directions, respectively, and 7 is
time. Pressure is denoted p; i, p and g denote viscosity, density and acceleration due
to gravity, respectively. Letter subscripts denote partial derivatives, and overbars denote
dimensional quantities.

At the tube wall 7 = a(z, 1), there is a kinematic boundary condition i = a; + was. Only
radial disturbances to the tube will be considered here; thus in the case of no-slip boundary
conditions, one would prescribe w = 0 and u# = a; at the wall. Here, we explore the impact
of slip on the film flow using a Navier slip boundary condition with slip length A; due to
only radial wall deflection being considered, the resulting boundary conditions at the tube
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wall are
w=—A wy, (2.2a)
i =a; — A wras. (2.2b)
At the free surface, r = Ié(Z, t), there are three boundary conditions: a kinematic boundary
condition
i = R; + wR3; (2.3)
continuity of tangential stress

[L[(w; + 125)<1 - ég) 2 — wz)éz] —7®, 2.4)

with 7® = 2@ [@® +a®)(1 — RD) + 2@ — 1) R;] denoting the tangential stress
exerted by the gas flow on the film’s free surface; and jump in normal stress (according to
the Young—Laplace law)

(= = (o) [— _(0)==2 ()= [ _
ZM(ur + ngE) + ARz (Wr + uz) — Z/L(g) <u;g) + w;g)RE) - u(g)Rg<w;g) + u;g))
—(5_35® ) 45 R ! Rz
_<p_pg>(l+Rz>+a(l+RZ) ——n el D)
R(1+R)" (1+E)

with & the surface tension and superscripts of (g) denoting variables in the core gas flow.

The tube is assumed to consist of a thin, impermeable wall with density p,,, damping
coefficient ¢, circumferential tension 7y, longitudinal tension 7;, thickness /g and
dimensionless Poisson ratio y. Requiring equilibrium of normal forces at the wall yields
the equation

1

U RO S ]
podity iy + = (14@) " =Tz (1482) "= -T-dw. (26)

with T = —pI + i(Via + Va') and where 7, and 7, are the unit radial and normal
vectors at the tube wall. Equation (2.6) may be expressed as the following evolution
equation for a:

o A2 T, N-1/2  Ehy a—a 12
puhoad(1+a?) +30<1+a§) +1_—)(j2a—20<1+a22>
201

- - - -
W[” e - iz +inaz) Q)

_ N2

—Tlaiz(l‘f‘az) =D = Pext —
where we have used the linear version (n = 1) of the strain law of Elad, Foux & Kivity
(1988; Elad, Kamm & Shapiro 1988) to set the circumferential tension Ty = Tp + Eho
(a—ap)/[(A — y)zﬁ] with E the modulus of elasticity (similar to the approach of
Halpern & Grotberg (1992)). The first term_in (2.7) represents wall damping. The
circumferential tension term with coefficient Ehg/(1 — y?) (which will be the primary
one retained in what follows) provides a restoring force, acting to return the tube wall
to its mean radius ap. The longitudinal tension term (a diffusion-type term) provides a
restoring force in the axial direction. The strength of each of these terms depends on the
structural properties of the airways themselves as well as the intrapleural pressure and the
surrounding soft parenchymal tissue — which itself exhibits viscoelastic properties — to
which the airways are tethered. The magnitude of each of these terms can also be expected
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to be a function of airway generation and patient health; while precise values are not known

for every airway, it is known that healthy (diseased) airways tend to be more compliant

(stiff) and structurally stable (unstable) (Maghsoudi-Ganjeh, Sattari & Eskandari 2021).
There is a steady solution with constant a = ag and R = R given by

~(8) | == _ - _ -
1 =+ _ r 2A _ _ r A
o = ~ (pz—_pg) <f2 —a@’ = 2RjIn - — —(a’ - Ré)) + Ryt ® (m = - T>,

4 n a
(2.8a)
_ L & T
iip=0,  po=p® — R ben=ho— g (2.8b)
0

2.2. Model derivation

A long-wave asymptotic model for the evolution of the free surface and tube wall will
be derived next. Equations (2.1)-(2.7) may be made dimensionless using the following
reference scales:
u w tWo € ﬁ]éo TRo
— s P=——=—/, T=—=,

uwWo uWo

B (2.9)

where k is a typical wavelength of the perturbed free surface, € = R/« is an aspect ratio
and where Wy = o /1 and Uy = € W are reference velocity scales.

A long-wave approximation, € < 1, will be employed to develop the model equation.
Given that the focus here is on highly viscous films, a further assumption that the Reynolds
number Re = pWoRy/iu is O(e) will be made. After substituting (2.9) into (2.1) and
truncating at O (€), the dimensionless governing equations are given by

1 1
pr=0, p; = —0,(rw;) — Bo, —0r(ru) +w; =0, (2.10)
r r

where Bo = ﬁgﬁ% /0. At the tube wall, r = a(z, t), the truncated dimensionless boundary
conditions are

w=—Aw,, u=a; — Aw,a,, (2.11)
where A = A / Ry. At the free surface, r = R(z, t), the boundary conditions are

€
u=R; +wR;, w, =1, p—p(g)z—E+€3RZZ. (2.12)

Note that one term of O(e?) has been included in (2.12). Despite not being strictly valid
to retain, this term is commonly kept in film flow models of this type as it has been shown
to provide the correct cutoff wavenumber in linear stability analysis and produces growth
rates in good agreement with the full governing equations.

The model equation for the dimensionless free surface R(z,t) may be found by
integrating the continuity equation from (2.1¢) across the fluid layer from R(z, t) to a(z, t)
and applying the necessary boundary conditions from (2.11) and (2.12) to produce

19 g [ran
——(a* =R+ — rwdr =0. (2.13)
2 ot 0z R(z,1)
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The velocity profile w may be found by solving the dimensionless w-momentum equation
subject to the remaining boundary conditions in (2.11) and (2.12), resulting in
w= ! (p. + Bo) |:r2 —d?—2R?m . - 2—A(a2 — R2)] + Rt® <1n r_ é) : (2.14)
4 a a a a
this is equivalent to (2.15) in Schwitzerlett et al. (2023) up to a choice of velocity scales
except that here the tube radius a(z, t) is no longer a constant.

There are several ways in which one could incorporate the effects of pressure-driven
airflow on the free surface. For small-amplitude disturbances, it is typical to specify a
constant shear stress at the free surface; here, in order to study the evolution of disturbances
beyond the linear regime, a variable shear stress will be considered. We elect to use what
has been referred to in prior studies as a ‘locally Poiseuille’ approximation in which the
airflow — presumed to be much faster than the highly viscous liquid flow — essentially

experiences the free surface as a rigid wall. This allows for a decoupled treatment of the

airflow in which the free-surface stresses pgg ) and 7(® may be estimated and incorporated

into (2.14). Briefly, the air is assumed to flow at a constant volume flux Q¢ through the
core region (though a constant pressure gradient could also be incorporated). Modelling
the (assumed laminar) airflow using Poiseuille flow with the long-wave assumption that
the free surface varies slowly in z produces the dimensionless local estimates of the
stresses

@ _ 4Ca® @ _ 2Ca®
Pz =~ R4 - R3

where Ca'® is the capillary number, defined as Ca® :2ﬂ(g)Q(g>ﬁTR(2)O_'. Additional
details of these calculations can be found in, e.g. Camassa et al. (2012) and Schwitzerlett
et al. (2023). Note that fully coupled dynamics could also be used as in, e.g. Dietze &
Ruyer-Quil (2015).

Substituting (2.14) into (2.13) results in the final governing equation for the film’s free
surface

, (2.15)

, T

1 1
5(a2 —R?), = [ca@) f1(R; a) + 1—6(30 R*+ R+ R*R..;) (R, a):| . (2.16)
Z
where
1
filRia)= [—a* +2a*R? — R* — 44a(a* - B?) ], (2.17a)
4 4A
f(R.@) = 25 +3R? —da? +4R% In () + 5 (a> = R?)’, (2.17b)

and where we have returned to the original aspect ratio by rescaling z and ¢ by €.
For the tube wall, substitution of (2.9) into (2.7) and truncating at O(e) (and again
returning to the original aspect ratio) gives

1a—ag a—ap 1
Wa,:TlaZZ—F (,12 +T0 dod +1—E+Rzz, (218)
where
bwho@ R T, T) 1—y?%6
g = PuoaRo o Toop T _UZv)o (2.19)
o o Ehg

The parameter i is a damping parameter proportional to the product of the wall-to-fluid
mass ratio and damping ratio, and I is the ratio of surface tension forces to elastic forces.
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Both the damping and longitudinal tension terms are of O(e?) (as well as the curvature
term R;;) but are retained here as in Halpern & Grotberg (1992) and Zhou et al. (2016)
in order to assess the impacts of flexibility on the film flow dynamics. Also note that the
pressure pey is assumed to satisfy (p — pexr)/€ =1 — (1/R) + R, + (Ty/ap).

Equations (2.16) and (2.19) comprise the model. In the case of no base flow (Ca'® =
Bo =0) and no slip (A = 0), the model could be termed a long-wave version of the thin-
film model studied by Halpern & Grotberg (1992); we will explore the impact of base
flow and slip on both thin and moderately thick films. In the case that Ca'®) = A =0,
the problem set-up is a Newtonian version of the problem studied by Zhou et al. (2016)
(viscoelastic film flow down a flexible tube); their model started from the same equation
for tube motion (2.7) but was derived using an integral boundary layer method. In the
case of a rigid tube, so that a = ag (which could be accomplished by, e.g. taking ¥ — oo
or I' — 0), the single-partial differential equation model of Schwitzerlett et al. (2023) is
recovered.

2.3. Parameter values

Here, we briefly discuss the range of parameter values which will be considered. There
are a total of fifteen parameters to be specified: eight describing the tube: 17, Ty, E, &, puw,
hg, ag, y; three parameters describing the fluid: [, o, p; two parameters describing the
airflow: 1®, 0®; and two corresponding to the film thickness and boundary condition:
Ry and A, respectively. The final model contains eight dimensionless parameters — Ca'®,
Bo, ag, v, Ty, T;, I, A —that govern the film flow; this reduction in number of parameters
is not only the result of non-dimensionalisation but also simplifying assumptions (e.g.
small Re, ‘locally Poiseuille’ airflow) and the way in which the original parameters were
grouped in the tube wall equation (2.7). Our parameter choices will largely fall in a
range roughly corresponding to those considered by Halpern & Grotberg (1992) and Zhou
et al. (2016). Parameter values that motivated Halpern & Grotberg (1992) for the tube
wall were, e.g. E = 60 000 dynecm=2, 5y, =1 gem™>, T) =25 dynem™, y =0.5, To =0
dyn/cm, o = 10 s ho = 0.0025 cm,; for the film, we will take p =1 gcm*3 and surface
tension & =20 dyncm™'. Similar to Halpern & Grotberg (1992), a range of dimensionless
parameter values — which is motivated by the above choices but also recognises the wide
variety of tube and fluid properties possible — will be considered: 7; € [0, 1], Tp =0 and
I [0, 1].

As the focus here is on situations where gravity may play a non-negligible role
in the film’s evolution, we will consider a range of tube radii and film thicknesses:
ap €10.025, 0.5] cm, Ry € [0.0225, 0.4] cm; here the lower bounds correspond to values
considered by Halpern & Grotberg (1992) appropriate for the bronchioles in which gravity
may be neglected, and the upper end of the range reasonable for upper airways. As the
viscosity of mucus is a property that varies widely (especially in the presence of shear
stress created by airflow considered here), a wide range of viscosities may be appropriate,
e.g. n € [0.01, 100] P. Given these uncertainties, a wide range of dimensionless parameters
will be used: ag € [1.05, 1.5], Bo €0, 10], ¥ € [0, 1077, although values outside these
ranges may be considered briefly in order to make a point about the model solutions.

For the airflow, 18’ = 1.81 x 107%; in previous experiments designed to model upper
airways, volume fluxes of 0® €110 1000] cm? s~ were used Kim ez al. (1986), Camassa
et al. (2012), Kim, Iglesias & Sackner (1987). For lower airways this value may be expected
to be much smaller. In an effort to capture the range of values possible, we will consider
Ca'® € [0, 1]. Finally, for slip length, (Brochard-Wyart ez al. 1994) note that a slip length
of 1—10 wm may be appropriate for silicone oils in experiments like those of Camassa
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Parameter Reference value (§ 3) Description

Bo 0 Bond number, ,égléf) /L

Ca'® 0 Capillary number, 2/1®) 0(®) /7 Iég&

ap 1.1 Film thickness parameter, ag/ Ry

A 0 Slip length, A/Rq

4 2000 Damping parameter, /0 Ro/ i

r 0.5 Tube flexibility parameter, (1 — y2)& /Ehq
T; 0 Longitudinal tension, Tl/ o

To 0 Circumferential tension, Tp /o

X 0.5 Modified tube flexibility, I"/(1 — I"Tp)

Table 1. Reference values used in § 3.

Parameter Standard values (§ 4.3)
Bo 0.125

Ca® 0

ap 1.15

A 0

W 16 000

r 0.5

T 0

Ty 0

Table 2. Standard case values used in § 4.3.

et al. (2012), leading to values of A as high as 0.01; other modelling studies with slip
have investigated higher dimensionless slip lengths (e.g. Liu & Ding (2017), who study
up to A~ 0.1 using the scalings here). We note that apparent wall slip depends not only
on fluid and polymer properties but on properties of the tube wall, and that while slip
boundary conditions have been found to aid in addressing discrepancies between models
and experiments in a wide variety of problems, there is some debate over the validity
of their use in some settings (see, e.g. Lauga et al. 2005; Bdumchen & Jacobs 2009;
Kavokine, Netz & Bocquet 2021 and references therein). Motivated by these previous
studies, we will consider A € [0, 0.1].

A set of reference parameter values is given in table 1 for § 3, and a second set is given
in table 2 for § 4.3.

3. Linear stability analysis

Linear stability analysis of the model equations is conducted next. In order to study the
evolution of small disturbances to a constant solution, let R =1 + Ae!®2=®) and g =
ag + Bet*=D where it is assumed that A <« 1 and B < 1. Substituting these into (2.16)
and (2.19) produces an eigenvalue problem with a quadratic characteristic equation

aliw)? +b(iw)+¢=0, 3.1
1020 A38-9
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with
51 = w’ (32(1)

b=ao(1 —k*) — K*T; — Lz—w [(Ca(g)gl + Bo )ik + gs(k* — kz)], (3.2b)
X4

&= (Ca g1 + Bo )ik + gs(k* - kz)] (szl n Lz)
X
+[Ca'es + Bo ga]ik(1 7). (3.20)

where we have adopted the notation of x = I'/(1 — I"Tp) from Halpern & Grotberg (1992)
and where

g1 =ag — aj +2Aap(2a5 — 1), (3.3a)
1 5 24, ,
gzzi<l—a0+21nao—%(a0—l)), (3.3b)
g3 = —aj+ap — A(3ag — 1), (3.3¢)
ga=-\ay—2a0+ —+A 3410—2——2 , (3.3d)
4 aop agy
1 4A
85=1¢ (ag—4a§+3+41nao+—(ag—l)z). (3.3¢)
ag

Note that the effect of Tp in the linear stability can thus be incorporated through a modified
value of I'; as a result (and due to the reference value of Ty = 0), in what follows we set
x = I and focus on how I" impacts the dynamics.

In the case of an undamped tube, i.e. ¥ =0, (3.1) is linear and has solution iw = —E/l;.
When ¢ > 0, there are two solutions; in the limit of infinite damping, i.e. ¥ — 00: iw =
0, (Ca'® g1 4+ Bo g2)ik + g5(k* — k?), with the second solution corresponding to the rigid
tube model growth rate as in Schwitzerlett er al. (2023). This rigid tube limit may also be
recovered in the limit I" — 0, achieved by taking E — oo, e.g. as noted by Halpern &
Grotberg (1992).

3.1. No base flow
In the case of no base flow (Ca'®) = Bo = 0), the growth rate without damping is

io=|gs(k — k) (1 +KTixad) | /[ xad (1 = k) =1 = K*Tixad]. G4

Note that in the rigid tube case (¥ = 0) these growth rates are iw = g5 (k% — k%), leading
to the wavenumber of maximum growth rate k;;;qx = 1/ /2. In the other extreme, as noted
by Halpern & Grotberg (1992), if x is sufficiently large, here x > l/ag, then there is an
infinite growth rate for finite k£ given by

1 T
koo = (1——3> / (l—i——). 3.5)
Xag ao

In the case of damping, with y > 0, there are two solutions to (3.1); one of these
is unstable for 0 < k < 1, with k. =1 the cutoff wavenumber. Note that at k =0, these
solutions are
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Figure 2. (a) Value of I' = l/aS (solid line) and smallest I" for which k;,, = 0 (dashed line) as a function
of ap. The x symbols correspond to growth rate plots in (b). (b)—(c) Growth rates for a variety of I" values;
(b) A =0;(c) A =0.02. Unless otherwise mentioned, parameter values are the reference values in table 1; thick
red line denotes reference value growth rates. Thick black line denotes the rigid tube case (I" = 0). Dotted black
line denotes maximum growth rate with A =0 as I" varies.

1 1
in=0, —|—= —ap ], (3.6)
v \xap )

so that for y > 1 /ag the kK =0 mode is also unstable. This can lead to the ‘compliant
collapse’ scenario observed by Halpern & Grotberg (1992) in simulations of a thin-
film model, in which the Plateau—Rayleigh instability becomes subdominant to this wall
collapse in driving the dynamics. In their thin-film model, I" > 1 was required for the
k =0 mode to be unstable, although they noted that, in nonlinear simulations, smaller
values of I" were sufficient to trigger this compliant collapse.

Here, film thickness is also seen to lower the value of I" required for the £k = 0 mode to
be linearly unstable. Figure 2(a) shows the region of ap—I" space (i) for which the growth
rate at k = 0 is positive, and (ii) for which the growth of I" is largest at k = 0, i.e. kyqx = 0.
Figure 2(b) shows the growth rates for ap = 1.1 and several values of I" corresponding
to the x symbols in (a). Increasing I increases growth rates for all k and decreases the
wavenumber of maximum growth rate k. which eventually reaches O for sufficiently
large I". Note that the curve with I" = 0 represents the rigid tube growth rate curve, while
the red curve represents the parameter values in table 1.

Figure 2(c) shows growth rates with identical parameters to (b) but with A =0.02.
While slip leaves the k = 0 growth rates unchanged, it has the impact of promoting the
Plateau—Rayleigh instability, leading to larger values of &y, for all I" shown here.

How does the magnitude of wall damping parameter i affect the growth rates?
Figure 3(a) shows the growth rate curves for various values of ¥, with I"=0.5.
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Figure 3. Growth rates for various parameter values. Unless otherwise mentioned, parameter values are the
reference values in table 1; thick red lines denote reference value growth rates. Thick black lines denote the
rigid tube case (1" = 0). Growth rates are shown for various (a) ¥, (b) T; and (c) A.

Increasing v decreases the growth rates and increases kjqy. In the limit ¥ — oo, the
growth rates approach those of the rigid tube. In the limit ¢ — 0, the growth rates
approach some curve with reduced k4, and a maximum growth rate roughly 40 % larger
than that of the rigid tube case for these parameter values. Note that, if x > 1/ ag, kmax
may be again reduced all the way to zero (not shown here). The impact of 7; is shown in
figure 3(b). Increasing 7; has a similar impact on growth rates as increasing v does, with
the rigid tube approached as 7; — oo.

In rigid tubes, slip has been shown previously to increase growth rates in film flow
models by allowing liquid to flow more readily into a growing wave, promoting the
Plateau—Rayleigh instability (e.g. Halpern & Wei 2017; Liu & Ding 2017), as seen earlier
in figure 2(c). This is also the case for fixed I" = 0.5 in figure 3(c), in which increasing the
slip length A results in increased growth rates without modifying k4. In the case where
r=1/ ag, slip does modify k., (not shown here), with the value of k4 closer to its rigid

tube value of 1/+/2 the larger the values of slip lengths.

3.2. Base flow

Next, the impact of base flow, i.e. with either Ca'® > 0 or Bo > 0, on the linear stability
is examined. Note that, in the absence of damping, base flow does not change the growth
rates, as positive values for Ca'®) and Bo only modify the imaginary part of the solution
iw = —&/b, creating non-zero phase speed.

Figure 4(a) shows the impact of varying Bo on growth rates in the presence of
damping (¢ >0) for x <1/ ag. Increasing Bo decreases the maximum growth rates,
while increasing growth rates for the smallest values of k. The wavenumber of maximum
growth rate k., increases with increasing Bo.

For x > l/ag, varying Bo has a more complicated impact on growth rates. As shown
in figure 4(b), for sufficiently large Bo, there is a second unstable mode (e.g. Bo = 0.075);
if Bo is large enough, these two branches of the growth rate curve meet and pinch off
(e.g. Bo=0.1). Also note that the value of k. changes abruptly from a value near 0.5 to
kmax = 0 as Bo increases from O to 0.075.

The presence of base flow also introduces a non-zero phase speed, shown in
figure 4(c,d), for various values of Bo and Ca'®), respectively. In figure 4(c), the phase
speed shows dependence on k only for very small k. As expected, increasing Bo results in
waves falling down the tube faster. Similarly, as Ca'® increases in figure 4(d), the phase
speed increases as free-surface waves move up the tube. Again only weak dependence on
k is seen.
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Figure 4. (a)-(b) Growth rates are shown for various Bo: (a) I' =0.5; (b) I" = 1. (c)—(d) Phase speed for
various values of Bo and Ca‘®; thick red lines denote speeds with parameter values in table 1. (¢) Profile of free
surface and wall for k£ and Bo values corresponding to dots in (a), (c¢). Note that the magnitude of disturbances
is arbitrary, although relative magnitude is meaningful, determined by the eigenvalues and eigenvectors. Unless
otherwise mentioned, parameter values are those of table 1.

The profile of the wall and free surface are shown in figure 4(e) for solutions
corresponding to the dots in (a), (¢). In all cases the disturbance to the free surface is
larger than the disturbance to the wall. Increasing Bo slows the growth in the free-surface
disturbance and, more noticeably, in the wall disturbance. A phase shift between free
surface and wall is introduced by increasing Bo, with the free-surface disturbance leading
the wall disturbance.

We close this section by mentioning that increasing the film thickness increases
growth rates.

4. Solutions to nonlinear equation

Next, we explore solutions to the model equations (2.16) and (2.19). Some details of the
numerical methods used are given in § 4.1; solutions in the absence or presence of base
flow are given in §§ 4.2 and 4.3, respectively.
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4.1. Numerical methods

Equations (2.16) and (2.19) are solved on a domain of length L using periodic boundary
conditions. A pseudospectral method was used, in which spatial derivatives were
calculated in Fourier space and nonlinearities were calculated in physical space. An
explicit second-order predictor—corrector method for time integration was used. As the
quantity a®> — R? is a conserved quantity, conservation of film volume was monitored
throughout each simulation; when the change in film volume between successive time
steps exceeded some chosen threshold (set to be 10~8 or smaller in all simulations), the
update to the free surface and tube wall were recalculated with the time step decreased
by a factor of two. Initial conditions consisted of a constant solution plus a series of
small-amplitude perturbations (with random amplitude and phase shift) with varying
wavenumber

N N
R=1+4) RicosQmkz/L+c1p), a=ao+ »  daxcosQmkz/L+cp). (4.1)
k=1 k=1

Travelling-wave solutions were also found by seeking steady solutions in a moving refer-
ence frame with speed c, i.e. seeking functions Q(Z) = R(z — ct) and b(Z) = a(z — ct),
where Z =z — ct. Substituting this ansatz into the model equations results in a fourth-
order ordinary differential equation (ODE) and a second-order ODE. The equation for O
may be integrated once, yielding a third-order equation (with a constant of integration K);
the resulting equations are

1
K= g(b2 — 0%) +Cd® f1(Q, b) + R(B" 0%+ Q' +020") f2(0,b), (4.2a)

, , la—a a—ag 1 ”
—cya' =Tia" — = + To +{l1——=4+0" . (4.2b)
r a apa ( 0 )

Equation (4.2) were solved by first identifying an equilibrium solution Q = Q¢ and b = by.
By varying the wave speed, a Hopf bifurcation in the solution family may be identified. The
numerical continuation package XPP/AUTO was used for this task; XPP is a numerical
package for analysing dynamical systems (Ermentrout 2002) that provides a convenient
way to access AUTO (Doedel et al. 2008). Moving onto a branch of periodic solutions
from the Hopf bifurcation, families of travelling-wave solutions may be found while
varying any model parameter, including period size. The mean value of b> — Q2 was held
fixed throughout these continuations. Details of this numerical approach can be found
in Camassa et al. (2016), including the addition (and subsequent removal) of a small
viscosity-like term to the model. This aids in finding Hopf bifurcations by avoiding zero-
Hopf bifurcations which can be more difficult to identify numerically; this viscosity term
was set to zero after moving onto a branch of periodic solutions.

4.2. No base flow

For the case of no base flow, i.e. Ca'® = Bo =0, simulations were first conducted for a
period of L ~ 2.867. This choice for the domain matches that used by Halpern & Grotberg
(1992) as linear stability analysis shows it to be the most unstable wave. As has been
discussed in previous studies, e.g. Hammond (1983), Halpern & Grotberg (1992), when
the film is thinner than some critical thickness, the growth in amplitude of a wave saturates
with the free surface approaching some steady-state profile. When the film is thicker than
this critical thickness, enough fluid drains into the wave from the surrounding substrate to
allow the wave to undergo accelerated growth with min, R — 0 in finite time.
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Figure 5. Evolution of min; R(z, t) and min; a(z, t) for three simulations with ag = 1.1, ¥ = 16, 000,
Bo=Ca® =Tj =Ty =0.

Figure 5 shows the values of min, R(z, ) and min; a(z, t) for three simulations; one
for a rigid tube (I" =0, A =0), one for a flexible tube (I"=0.5, A =0) and one for
a flexible tube with slip (I" =0.5, A =0.02). The beginning stages of this accelerated
growth are evident for the flexible tube solutions, while in the rigid tube case the film
thickness parameter ag = 1.1 is (barely) sufficiently small to prevent the formation of a
plug, with min, R(z, t) approaching a constant value.

Snapshots of the free surface are shown for these three simulations in figure 6. In
the second case, flexibility enhances the Plateau—Rayleigh instability, resulting in faster
growth and the eventual formation of a plug. The inclusion of slip further promotes plug
formation, with a plug forming quicker than in the no-slip case. The tube wall deformation
is slightly less in the presence of slip.

Figure 7(a) shows the closure time (here approximated as the time needed for min R to
reach 0.55) for a variety of I', ¥ and A values. The chosen values of ¥ and I" produce
the same phenomenon observed by Halpern & Grotberg (1992) in which the closure time
decreases with decreasing I"; for large damping (¥ =16 000), this decrease is particularly
pronounced for values of I" between 0.5 and 1, which corresponds to I" crossing the 1 /ag
threshold. The impact of slip is seen as well; for small damping and large I”, the impact
of slip is minimal as flexibility provides the main enhancement to the Plateau—Rayleigh
instability, leading to plug formation. For large damping or for small I" —i.e. for tubes that
are ‘weakly’ flexible — the contribution of slip is more significant. For each value of ¢,
figure 7(c) shows the ratio of closure times found with slip to no-slip. For ‘weakly’ flexible
tubes, slip can cut the closure time by a factor of 4 or more. We note that a threshold
value is a common way in thin-film modelling studies to estimate the closure time (see,
e.g. Cassidy et al. (1999)) as the model cannot be run all the way to min R =0 due to
the inverse powers and logarithms of R in (2.16). While the chosen threshold value of
min R = 0.55 results in a slight underestimate of the closure time, extended simulations
run for some cases show that every time min R decreases below 0.55, a plug is formed
very soon afterwards.

How does the film thickness parameter affect the closure time? Figure 7(b) shows the
closure time for a variety of a values and several combinations of A and I". It appears
that for thin films, closure time is more sensitive to the change in I (flexibility), while for
thicker films, the closure time is more sensitive to the change in A (slip). This is confirmed
in figure 7(d), which shows the ratio of each of the three curves with markers in panel (b)
(namely rigid tube with slip, flexible tube with slip and flexible tube without slip) to the
closure time found for a rigid tube with no slip. In all cases, the greatest drop in closure
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Figure 6. (a)—(c) Snapshots of the free-surface profile and tube wall corresponding to the I" =0, A =0 case
from figure 5. (d)-(f) Snapshots corresponding to the I" = 0.5, A =0 case. (g)—(i) Snapshots corresponding
to the I" = 0.5, A =0.02 case.

time occurs when both slip and flexibility are present, but the relative impact of these two
traits depends on the film thickness.

4.3. Base flow

The case of base flow due to gravity is examined next. In the case of a rigid tube, it has been
shown that base flow due to gravity, although not contributing to linear instability, provides
a nonlinearly stabilising force that inhibits plug formation and increases the critical thick-
ness required for plug formation (Dietze et al. 2020; Ogrosky, 2021a; Camassa, Ogrosky &
Olander 2024). How do tube flexibility and slip impact the evolution of falling films?

Simulations for a variety of parameter value combinations were run; the ‘standard’ case
parameter values used throughout this section are shown in table 2. Figure 8(a) shows a
waterfall plot of the free surface with these values; as it turns out, these values correspond
to a critical thickness very near ap = 1.12. The film settles into a series of waves which fall
down the tube; wave coalescence occurs between several of the waves, with the largest of
the waves eventually becoming large enough that during a wave merger, R — 0 in finite
time, indicating the formation of a plug.

How does each parameter — such as I, ¥/, A and T; — impact whether plugs form, and
the time until a plug is formed? Model solutions were found for the standard case in table 2,
as well as cases in which a single parameter value is changed from those standard values.
Figure 9 shows the evolution of min, R(z, ¢) and min;, a(z, t) for each case with a domain
length of 477, which is of sufficient width to produce a single wave in each case. Identical
initial conditions were used in each simulation.
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Figure 7. (a) Closure time 7. as a function of I" for various ¥ and A; ap=1.1, Ca® =Bo=T; =Ty =0.
(b) Closure time as a function of ag for various I, ¥ and A; Ca'® =Bo =T, =Ty =0. (¢) Ratio of closure
time with slip to closure time without slip for two values of ¥ as a function of I"; marker symbols correspond
to those in (a). (d) Ratio of closure time with slip and/or flexibility to closure time of rigid tube with no slip;
marker symbols correspond to those in (b).

The only solution in which a plug did not form was the rigid tube (1" = 0) solution;
a=agp is a constant in this case, and min, R(z, t) approaches a fixed value. Of the
flexible tube simulations, the standard case took the greatest amount of time to produce
a plug; increasing 7; to one had little impact on the solution. Increasing I" to one — past
the value 1 /a(3) — resulted in a plug forming faster due to the kK =0 mode of the wall
decreasing. Increasing slip reduces the plug formation time considerably, while resulting
in the smallest wall deviations. Decreasing damping results in the greatest deviation of
min; a(z, t) from ap, and plugs form fastest in this case.

In order to assess the impact of varying each parameter on the critical thickness required
for plug formation, simulations could be repeatedly run for each parameter value with a
variety of film thicknesses known to be near the critical thickness; the critical thickness
would then be in a range between the largest thickness for which plugs did not form and
the smallest thickness for which plugs formed. Based on figure 9, agp = 1.15 appears to be
below the critical thickness for the rigid tube case, but above the critical thickness for all
other cases considered here.

A second way to assess the impact each parameter has on this critical thickness is
to examine turning points in families of travelling-wave solutions, as in, e.g. Camassa
et al. (2014), Ding et al. (2019), Dietze et al. (2020) and Dietze (2024). Figure 10 shows
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Figure 8. (a) Time snapshots of 7 =ap — R in a solution to model equations (2.16) and (2.19) with domain
length L =24m and with standard base flow parameter values in table 2; gravity acts right to left. Snapshots
shown every At ~ 7.2 in a frame of reference moving with the linearly most unstable wavenumber. (») Snapshot
in a tube corresponding to final snapshot in (a), zoomed in around largest wave; plug forms prior to next
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Figure 9. Evolution of min; R(z, t) and min; a(z, t) for simulations with base flow and domain L =4r.
Standard case (thick cyan line) refers to values in table 2. All other cases have identical parameter values
except those indicated by text labels.

families of travelling-wave solutions for each of the cases shown in figure 9 (except I" = 1)
as a function of ag. Each point on a solid curve represents a travelling-wave solution
with minz R(Z); the corresponding value of minz a(Z) lies on the corresponding dashed
curve. Each family contains a turning point at some value of ag, in which a lower branch
and upper branch merge. Upper branch solutions in the rigid tube case are unstable with
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Figure 10. Travelling-wave solution families with period L =4x. Standard case (thick cyan line) refers to
values in table 2. All other cases have identical parameter values except those indicated by text labels. Colours
correspond to parameter values in figure 9.
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Figure 11. Turning-point thickness dependence on (a) V¥, (b) A and (c) I". All other parameter values
correspond to the standard case in table 2. The x symbols denote parameter values in figure 9. (¢) Shading
denotes region where I" > 1/a;.

a single large positive real eigenvalue (Camassa et al. 2016); waves with these amplitudes
in all cases are never seen in solutions to the evolution equations, and are not explored
further here. As has been shown in previous studies the value of ap . corresponding to
each turning point provides a proxy for the critical thickness required for plugs to form.
Note that ag = 1.15 lies to the left of this turning-point thickness for the rigid tube, but to
the right of all other cases, consistent with figure 9; it is only slightly to the right of the
standard and 7; = 1 cases, helping to explain the long time for plug formation to occur in
those cases.

There is no deflection in the wall for the rigid tube case, as shown by the straight line for
minz a(Z) in the I' =0 case. The largest deflection again occurs for the small-damping
case Y = 16. The amplitude of the turning-point wave is much less in all flexible tube
cases than in the rigid tube case.

One benefit of this approach to identifying the critical thickness is that it is possible
to explore the dependence of ag . on parameter values very quickly. Figure 11 shows this
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Figure 12. Travelling-wave solutions corresponding to x symbols in figure 11.

dependence of ag on ¥, A and I". This proxy thickness ag . decreases with increasing
slip (A) and increasing flexibility (I"). As was noted in Schwitzerlett et al. (2023), there
appears to be a limiting value of ap . > 1 as A gets arbitrarily large. The dependence of ay .
on ¥ is non-monotonic, with some minimal value for ap . obtained at finite v (roughly
Y ~ 44 in figure 11a).

One caveat is that in the case of large I', in which I" > 1 /ag, the travelling-wave
solutions seen in figure 11(c) are not observed in solutions to the evolution equations.
Instead, growth of the £ = 0 mode overtakes all other features, as described by Halpern &
Grotberg (1992) for the ‘compliant collapse’ case. These turning points thus cannot
necessarily be taken as a proxy for the critical thickness.

The waves corresponding to each turning point in figure 10 (also denoted by x symbols
in figure 11) are shown in figure 12. Note the shape of the wall profile in each case: the rigid
tube case in (a) has no displacement, while the standard case (b) and slip case (f) show
very little deviation from ag other than a small £ = 0 perturbation. In the large I case, there
is marked deviation in the kK =0 mode of a, along with asymmetric displacement of a in
the wave support region. In the small-damping case (e), the wall exhibits an asymmetric
ripple in the wall at the leading edge of the wave; for moderate damping (g) a combination
of the asymmetry seen in (c) and (e) is visible. The free surface in (a), (b), (c) and (f)
displays a capillary ripple on the leading edge of the wave, as is typical in falling film
flows. In (e) and (g), however, there is no such ripple visible in the free surface, although
one is visible in the wall profile. The free surface (wall) profiles are plotted on top of one
another in figures 12(d) and 12(h); the reduced amplitude (relative to the rigid tube case)
is visible in all cases, and the k = 0 mode deviations are apparent in (/).

How does the value of Bo impact ap . in a flexible tube? In a rigid tube, the presence
of base flow due to gravity plays a nonlinearly stabilising role, suppressing plug formation
and increasing ag .

The impact of Bo on ap . in a flexible tube is explored in figure 13. As with the rigid tube
case, increasing Bo results in larger ag ., inhibiting plug formation. In the case of strong
damping (¢ = 16 000), the impact of increasing I” has a moderate impact for small Bo
(Bo £ 0.02 for I = 0.5), perhaps the least impact for a ‘transition’ region 0.02 S Bo < 0.2
(for I = 0.5) and the most significant impact for higher Bo (Bo £, 0.2). For weak damping,
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Figure 13. Turning-point thickness dependence on Bo for various values of ¢ and I".

there still appears to be a similar type of transition region, 0.6 < Bo < 2. For both small
or large damping, the values of ag . are nearly identical in the case of either very small
or very large Bo; to say the same thing another way, the damping has the most noticeable
effect on ag . for intermediate values of Bo.

It was shown in Ogrosky (2021a) and Camassa et al. (2024) that the critical thickness
can be made arbitrarily thick by increasing the value of Bo far enough. This is not the
case for flexible tubes; there appears to be some ag .~ that ap . approaches as Bo gets
arbitrarily large, with this thickness (horizontal asymptote) decreasing with I".

To summarise, figures 11 and 13 demonstrate the efficiency of this alternate way of
identifying the critical thickness required for plug formation to occur. In the traditional
approach, one would repeatedly run simulations for a single set of parameter values to
sufficiently narrow down the region in which ag . lies. This would then need to be repeated,
varying each parameter one at a time in small increments, to provide figures like figures 11
and 13. The alternate approach provides a shortcut; through numerical continuation of
turning points, each of the curves in these plots can be found in a matter of seconds or
minutes.

One caveat, however, is that all of the simulations above were conducted with a domain
of L =4m. How accurate is the critical thickness identified by turning points in predicting
plug formation in larger domains, in which plugs may not only form through uninhibited
growth of a single wave, but also through the merger of two waves?

Figure 14 shows the values of min, R(z, t) and min; a(z, t) for the same cases as in
figure 9, but with domain length L = 247 and thickness ag = 1.12. Each simulation again
began with identical initial conditions. In the rigid tube case (I" = 0), plugs were not seen
to form in the simulation, with wave growth saturating and wave trains progressing down
the tube.

On the other extreme, the case of decreasing damping (y = 1) provides the only case in
which a plug formed through growth of an individual wave, rather than through wave
mergers. For the remaining cases, wave mergers occur in the simulation, with most
mergers marked by a sharp drop in min; R(z, t), followed by a slow partial rebounding
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Figure 14. Evolution of min, R(z, t) and min; a(z, t) for simulations with base flow. Standard case (cyan)
parameters are those of table 2 except that agp = 1.12; domain length L = 247w . Other cases have all parameters
identical to the standard case, with the exception of ag = 1.12 and the parameter value indicated by the text.

of min; R(z, t) to some new quasi-steady value (seen most clearly in the first few mergers
in the standard case). But for all cases except the rigid tube and small-damping case, a plug
eventually formed through the coalescence of two waves, with the standard case taking the
longest amount of time for a plug to form. This possibility of plug formation through wave
mergers in longer tubes results in a decrease in the film thickness required for plugs to
form.

For both the ¥ =16 and I' =1 cases, the tube wall pinched in noticeably (i.e.
min; a(z, t) decreased noticeably prior to plug formation), demonstrating how increased
flexibility and decreased damping promote the Plateau—Rayleigh instability through tube
constriction. Increasing slip (A =0.02) and longitudinal tension (7; = 1) also promoted
faster plug formation than the standard case, with slip noticeably promoting growth in the
waves at early times, consistent with the increased growth rates that slip produces; in both
these cases, wall deformations remained minimal.

It is interesting to note that the standard and 7; = 1 cases are virtually identical until
t &~ 375, at which point a wave merger occurs in the 7; =1 case, but does not for the
standard case. Note that the 7; case leads to significantly shorter closure time than the
standard case, in contrast to the L = 4 simulations. Also note that the I" = 1 case again
corresponds to a case of ‘compliant collapse’ in the tube wall, seen by the significantly
reduced value of min, a(z, ).

Before concluding, we briefly explore the case of core-driven film flow in which
Ca'® > 0. Much of the dynamics is similar to that of Bo > 0: long-wave growth saturates
in a series of waves which interact and propagate in the direction of Q‘¢). One notable
difference: in the ‘locally Poiseuille’ model used here plug formation does not occur in
simulations due to the assumed constant volume flux Q¥ and assumed large viscosity
gradient in the model derivation.

How do tube flexibility and slip impact the transport of the film along the tube? The
volume flux

1
0z, 1) =27 [Ca(g)fl(R; a) + ¢ (Bo R2+ R + R2R...) f2(R, a)], (4.3)
may be averaged over the domain
~ 1 (L
o) = Z/ Q(z, 1) dz. 4.4)
0
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simulations with base flow due to core flow; domain length L =24, Ca'® =0.00625, ap=1.1,Bo=T; =
To=0.

A=0 A=0.02
I'=0 6.7 % 12.8 %
=05 Y = 1000 10.3 % 18.8 %
=05 ¥ =500 15.0% 27.4 %

Table 3. Per cent increase in film flux Q from beginning to end of simulation, calculated by dividing the mean
of Q from ¢t =500 to r = 623 by the mean of Q from ¢ =0 to r = 50 in figure 15 and subtracting 1.

Figure 15(a) shows Q(t) for six simulations with various combinations of I", i and A;
figure 15(b) shows the value of min; R(z, #). In each case, much of the film transport
comes from the leading-order velocity profile corresponding to perfect core—annular flow
with a constant free surface; the value of this leading-order flux can be seen in the initial
period of the simulation (¢ 5 100). Slip plays a large role in promoting film transport as
can be expected due to its impact on this leading-order velocity profile.

In all cases, the growth of waves also contributes to the flux, enhancing film transport.
While tube flexibility does not impact the leading-order velocity, it does enhance film
transport through larger wave growth and higher-amplitude waves. Table 3 shows the
percent increase in film transport over the duration of each simulation in figure 15,
calculated by averaging O from 7 =500 to the end of the simulation, dividing this by

the mean of Q from t =0 to t = 50, and subtracting 1.
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5. Conclusions

Viscous film flow inside a slippery, flexible tube has been studied via a two-equation long-
wave asymptotic model derived here. The model is valid for moderately thick films, and
accounts for tube flexibility, wall damping, longitudinal tension, slip length and strength
of base flow due either to gravity or airflow.

Linear stability analysis of the model shows that, in the absence of base flow, there is
one unstable mode, and that there is a critical value of I' =1/ ag; above this value, the tube
has a combined Plateau—Rayleigh/elastic instability for the X = 0 mode which can trigger
compliant collapse due to the tube’s flexibility. Growth rates increase with flexibility and
slip, and decrease with damping and tension. In the presence of base flow, it is possible for
two unstable modes to exist; increasing the strength of the base flow reduces the maximum
growth rate in all cases explored here.

Numerical solutions of the nonlinear evolution equations were used to study plug
formation (and time to closure). In the absence of base flow, slip was found to have a
pronounced impact on closure time (decreasing it up to a factor of 4) in tubes with small-
to-moderate flexibility and strong damping; wall deformations were reduced when slip
was present. For more flexible or weakly damped tubes, the elastic instability drove the
evolution, and slip had little impact on closure time. For falling films, the critical thickness
required for plugs to form was shown to decrease with slip, flexibility and tension. The
impact of damping was non-monotonic, with some finite ¥ producing the smallest critical
thickness over all values. For flexible tubes, given a fixed value of I', there is a largest
critical thickness that cannot be exceeded regardless of strength of base flow; this is in
contrast to the rigid tube case, in which the critical thickness may be made arbitrarily large
by sufficiently increasing the strength of the base flow. For air-driven films, both slip and
flexibility were shown to increase the rate of film transport along the tube.

One benefit of the travelling-wave approach used here to identify the critical thickness
is its efficiency when studying large regions of parameter space.

The model was derived under a number of simplifying assumptions which may not
be valid in all physical applications. The model assumed axisymmetric flow; non-
axisymmetric flow and wall deformations are likely significant, particularly in the case of
compliant collapse. Only radial deformations of the wall were included; axial deflections
may be important in some applications.
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