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Abstract

Many important and interesting hypotheses about cultural evolution are evaluated using cross-cultural
correlations: if knowing one particular feature of a culture (e.g. environmental conditions such as tempera-
ture, humidity or parasite load) allows you to predict other features (e.g. language features, religious
beliefs, cuisine), it is often interpreted as indicating a causal link between the two (e.g. hotter climates
carry greater disease risk, which encourages belief in supernatural forces and favours the use of antimicro-
bial ingredients in food preparation; dry climates make the production of distinct tones more difficult).
However, testing such hypotheses from cross-cultural comparisons requires us to take proximity of cul-
tures into account: nearby cultures share many aspects of their environment and are more likely to be
similar in many culturally inherited traits. This can generate indirect associations between environment
and culture which could be misinterpreted as signals of a direct causal link. Evaluating examples of
cross-cultural correlations from the literature, we show that significant correlations interpreted as causal
relationships can often be explained as a result of similarity between neighbouring cultures. We discuss
some strategies for sorting the explanatory wheat from the co-varying chaff, distinguishing incidental cor-
relations from causal relationships.

Keywords: Galton’s problem; phylogenetic non-independence; spatial autocorrelation; parasites; cultural evolution; humidity;
tone

Social media summary: Causal claims are supported by correlations (e.g. parasites drive behaviour)
but similarity between neighbours creates correlations (e.g. parasites correlate with Olympic medals,
number of nurses, cheese consumption, traffic accidents).

Introduction

Everyone is familiar with the adage ‘correlation does not imply causation’. A more nuanced version of
that statement would be that correlation between two variables does not imply that one of the variables
has a direct causal impact on the other; instead it often reveals an indirect link between them.
Correlation analyses are often used to provide support for claims of causal relationships in cultural
evolution (Claessens & Atkinson, 2022). Recent examples include: ecological threat influences motiv-
ation to punish norm-violators catalysing punitive religious beliefs (Jackson et al., 2021); larger speaker
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population sizes drive a reduction in the morphological complexity of languages (Kauhanen et al.,
2023; Koplenig, 2019); women have stronger preference for men with more masculine faces under
conditions of high offspring survival (Marcinkowska et al., 2019); and that moral vitalism (a belief
in agentic spiritual forces of evil) is an adaptive cultural strategy that reduces rates of contagious dis-
ease (Bastian et al., 2019). While these studies do not rely wholly on the interpretation of statistical
significance of cross-cultural correlations as their only form of argument, they all present significant
correlations as providing valuable evidence for causal connections that supports a given hypothesis.
Even where the language used conforms to formal structures of predictive causality (knowing the
value of one variable allows you to predict the value of a second variable), the explanatory target of
these studies is framed not simply in terms of revealing predictive associations (which may be indirect)
but in inferring causality (the impact of one variable on the outcome of another).

Given that it is well understood that causality cannot be directly inferred from correlations, many
such studies use a battery of approaches to interrogate the data (e.g. Jackson et al., 2021; Marcinkowska
et al,, 2019). Yet one major cause of ‘spurious’ correlations (i.e. statistically significant correlations that
are not generated by a direct causal link between the tested variables) is either not addressed or inad-
equately countered: spatial autocorrelation of observations. Spatial autocorrelation is a critical factor in
testing causal claims using cross-cultural data, because one of the common indirect links that causes
‘spurious’ correlations is shared environment. Neighbouring cultures tend to have similar environ-
ments, so any cultural variables that tend to be more similar between neighbours will also tend to cor-
relate with environmental variables that are more similar between neighbours. Spatial autocorrelation
- non-random distribution of trait values in space - can generate significant correlations between
environmental and cultural variables, even when there is no direct causal connection between
them. We can interpret such relationship in terms of indirect causal relationships - that is, some factor
is causing the variables to covary, such as shared history or shared environments - but we may be led
astray if we interpret the correlations as evidence for a direct impact of one of the variables on the
other.

Recognising the influence of space on statistical inference is essential for developing and testing
hypotheses about the evolution of human cultural diversity. More specifically, many important and
interesting hypotheses about the influence of environment on cultural evolution are tested using cross-
cultural correlations, for example the influence of humidity on the tonality of languages (Everett et al.,
2015), the influence of parasite load on traditionalism (Tybur et al., 2016) and the influence of tem-
perature on the spiciness of cuisine (Billing & Sherman, 1998). These hypotheses suggest that the evo-
lution of particular cultural features is partly driven by the environment in which they arise. The focus
here is on claims about environmental factors influencing the evolution of cultural diversity, rather
than the influence of climate or environment on particular instances of human movement, population
expansion or contraction, or events such as violent conflicts (Hsiang et al., 2013).

Testing hypotheses about environmental drivers of cultural diversity requires us to take the prox-
imity of cultures into account. Nearby cultures share aspects of their environment and are also more
likely to be similar in culturally inherited traits and shared history (Dow & Eff, 2008). This can gen-
erate indirect associations between environment and culture which could be misinterpreted as signal of
a direct causal link, as we demonstrate in examples given below. People working in the field of cultural
evolution are well aware of this problem: indeed the problem was clearly described over 130 years ago
when Francis Galton suggested that to test a hypothesis about cultural evolution by comparing traits
across cultures, ‘full information should be given as to the degree in which the customs of the tribes
and races which are compared together are independent. It might be, that some of the tribes had
derived them from a common source, so that they were duplicate copies of the same original’
(Galton, 1889a). While the eponym ‘Galton’s problem’ is typically used to refer to the problem of
phylogenetic non-independence (similarity between relatives), Galton also clearly identified spatial
distribution as a potential source of statistical non-independence, and suggested that it would always
be useful to look at the distribution of cultures on a map when evaluating evidence for hypotheses
about cultural evolution (see also Loftin, 1972; Naroll, 1965). Yet, while the problem is widely
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recognised, spatial autocorrelation continues to complicate cross-cultural analyses, and compromises
many statements of causality based on associations between culture and environment (Claessens &
Atkinson, 2022).

Congruent spatial patterns of diversity

The association between language diversity and biodiversity illustrates the problem of observations
from nearby cultures being ‘duplicates’ rather than independent data points. Areas of high linguistic
diversity tend to occur in areas of high biodiversity (Gorenflo et al., 2012; Sutherland, 2003). One
explanation for this pattern is that the same environmental factors that support high species diversity
also support high cultural diversity: tropical climates provide longer growing seasons allowing smaller,
more localised cultural groups to persist, so more languages can be ‘packed’ into a given area (Hua
et al., 2019; Nettle, 1996). It has been suggested that similarities in the spatial distribution between
endangered species and endangered languages indicates that both biodiversity and cultural diversity
are threatened by the same factors (Sutherland, 2003) and should be targeted by unified programmes
to protect biocultural diversity (Loh & Harmon, 2005; Maffi, 2018). All things being equal, an area
with more languages will also tend to have more endangered languages, particularly if areas of high
language diversity support smaller speaker populations with smaller range sizes (Hua et al., 2019),
since population size and area are associated with endangerment. When the spatial patterns of lan-
guage endangerment and endangered species are taken into account, there is no significant association
between the two (Bromham, 2023). Spatial autocorrelation may also underlie the reported correlation
between language diversity and parasite diversity, which was interpreted as evidence that infection risk
drives the divergence of cultures (Fincher & Thornhill, 2008). The diversity of parasites that cause
human infectious diseases shows a latitudinal gradient (Dunn et al., 2010; Guernier et al., 2004), so
it will tend to correlate with any other cultural variables that have a latitudinal gradient including lan-
guage diversity (Bromham et al., 2018).

Spatial autocorrelation can generate significant correlations between cultures and environments at
any scale of observation, whether global, regional or local. For example, New Guinea is a hotspot of
both linguistic and biological diversity, but unlike the generally observed global pattern, there is a
negative correlation between number of threatened languages and threatened mammals across the
island (Turvey & Pettorelli, 2014). This correlation is driven (at least in part) by differences in history,
environment and culture between the highlands and lowlands. Rates of language endangerment are
highest in the lowlands of New Guinea, possibly owing to greater impact of colonisation or the influ-
ence of malaria, and lower in the highlands, where dense agriculture, lack of malaria and a more recent
history of colonial impact may have promoted and protected language diversity. Yet there are more
endangered mammals in the highlands, possibly because those areas support higher mammal diversity
or because of human population pressure and hunting practices (Bromham, 2022b). Even if there is no
causal connection between language endangerment and mammal species endangerment in New
Guinea, because human cultures and mammal species are responding to separate threats in different
areas, these distinct spatial patterns will generate a negative correlation between mammal endanger-
ment and language endangerment through ‘duplicate’ observations: every time you sample a location
from the lowlands, you will tend to find that it has high language endangerment and low mammal
endangerment, and whenever you sample a location in the highlands it will have high mammal endan-
germent and low language endangerment, generating a negative correlation between language and
mammal endangerment. When you take spatial proximity of observations into account, there is no
significant association between mammal endangerment and language endangerment in New
Guinea (Cardillo et al.,, 2015). In other words, knowing the level of mammal endangerment does
not give you additional predictive power on language endangerment for an area, beyond knowing
the location of the area and the values of language endangerment of its neighbours.

Spatial autocorrelation in cultural data could be interpreted in terms of ‘omitted variables bias’: if
we fail to include information on the spatial distribution of our observations, then we are omitting an
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important cause of variation in our data, and this may lead us to think that other variables are causally
related when they are only connected through the missing variable (sometimes referred to as a
‘back-door path’: Bulbulia et al., 2021; Pearl, 1993). However, the problem of spatial autocorrelation
is a special case for two reasons. Firstly, it is pervasive: spatial autocorrelation affects virtually all
cultural datasets. So, unlike canonical examples (e.g. Pear] & Mackenzie, 2018), spatial autocorrelation
will tend to add ‘back-door paths’ that connect every cultural and environmental variable included in
the analysis. Secondly, the problem of spatial autocorrelation is not simply that a key explanatory
factor has been omitted: more seriously, it violates a common fundamental assumption of statistical
tests, the independence of data points. Unlike an omitted variable, simply adding spatial information
as a factor in the analysis (e.g. region, latitude) is not guaranteed to fix this.

Is the presence of autocorrelation among data points an issue of statistical inference, that demands
technical solutions in the way we analyse our data, or an issue of causal inference, that requires a
re-evaluation of the way we interpret the patterns in our data? There has been a long and vigorous
debate about the relationship between statistical inference of significant associations in the data and
the ability to make causal claims based on these patterns (Greenland, 2017; Hubbard et al., 2019;
Rubin, 1991). Some researchers describe causal inference as a separate stage of data analysis from
descriptive and predictive statistical tests (e.g. Laubach et al.,, 2021), but others consider causal infer-
ence part of the practice of statistical analysis, not separate to it. For example, many statistical techni-
ques are described using causal terminology, such as analysis of time series (e.g. Oravecz &
Vandekerckhove, 2023; Yang et al., 2018) or randomised control trials (e.g. Rubin, 1991; Tchetgen
& VanderWeele, 2012). A recent report on data analysis from the US National Academies Research
Council considers ‘Causal inference from observational data’ to be one of seven ‘inferential giants’
of data analysis, listed alongside the assessment of sampling biases, inference about tails and the repro-
ducibility of analyses, suggesting that no fundamental distinction of type is made between the parts of
the analysis that relate to statistical assessment of associations and the inference of causal relationships
from those patterns (National Research Council, 2013).

In practice, many scientists do not draw a clear distinction between statistical inference and causal
inference. Indeed, the motivation for conducting correlation analyses typically appears to be not sim-
ply to report patterns in the data but to uncover causal relationships between cultural traits, or between
culture and environment. Because these tests function as both assessments of non-random patterns
and support for causal hypotheses, they must be evaluated both from a technical statistical point of
view (are the assumptions of the tests met by these data?) and from the viewpoint of causal inference
(what is the nature of the association between variables?). For cross-cultural correlations, the assump-
tions of the tests are frequently violated by the non-independence of data points, and this impacts on
the causal claims made on the basis of these analyses. The studies which are the focus of this paper -
those that use cross-cultural correlations to test hypotheses about the causes of cultural diversity — are
not solely aimed at description of statistical patterns in the data (e.g. association between the parasite
load reported for different countries and aspects of their culture), but in explaining those patterns in
terms of causes (for example, that the parasite load causes particular kinds of behaviours to evolve that
reduce infection risk). Statistical tests are used to extract meaning from data: while they may reveal
associations rather than causes, the results are routinely interpreted in terms of their support for
hypotheses about causes (Pearl & Mackenzie, 2018; Shipley, 2016). Indeed, significant statistical test
results (typically p <0.05) are generally taken as an essential step in supporting causal claims.
Therefore the application and interpretation of statistical tests are at the core of inferring causality
from cross-cultural data.

Inferring causal connections from cross-cultural correlations

Correlation analysis was invented to detect causal relationships. In the paper that introduced the pro-
cedure, using the example of correlation between the size of structures on the same individual, Galton
said: ‘It is easy to see that co-relation must be the consequence of the variations of the two organs

https://doi.org/10.1017/ehs.2023.23 Published online by Cambridge University Press


https://doi.org/10.1017/ehs.2023.23

Evolutionary Human Sciences 5

being partly due to common causes. If they were wholly due to common causes, the co-relation would
be perfect, as is approximately the case with the symmetrically disposed parts of the body. If they were
in no respect due to common causes, the co-relation would be nil. Between these two extremes are an
endless number of intermediate cases’ (Galton, 1889b). Correlation owing to ‘common causes’ can
include indirect causal relationships, where the values of different variables follow predictable relation-
ships owing to their covariation with another (hidden) variable.

Significant correlations between environment and culture are easy to find, yet the nature of the cau-
sal connection between correlated variables is not always obvious. For example linguistic diversity is
significantly positively correlated with fatal traffic accidents (Roberts & Winters, 2013), bird diversity
is significantly correlated with religiosity (Bromham et al., 2018), rainfall with individualism (Davis,
2012) and global CO, with homicides (Munshi, 2018). So many cultural traits show congruent spatial
patterns that it is not difficult to find significant correlations in cross-cultural datasets (Calude &
Longo, 2017). Naturally, a given study will include variables of interest, but will not exhaustively
check other variables have equivalent or greater predictive power. For example, a significant correl-
ation between the frequency of beards and parasite load across 25 countries has been interpreted as
evidence for a causal impact of environment on culture, such that beards may function in mate choice
as markers of relative health (Dixson & Lee, 2020; Pazhoohi & Kingstone, 2020). Beard frequency
shows an even stronger correlation with variables that were not included in the study, including popu-
lation size, the number of nurses and midwives per 1000 people, belief in the devil and per capita alco-
hol consumption (see Supplementary Information for details). Variable choice is subjective but shapes
interpretation of causal connections from significant correlations.

All correlations are caused by something, but not all (perhaps relatively few) reveal direct causal
relationships between the correlated variables. A decision to accept the correlation between beards
and parasites as evidence for a direct causal connection but not to interpret the association between
beards and nurses as indicating a causal relationship is not based on any difference in the quality of
evidence or the strength of the statistical test. It could be argued that we should preferentially accept
statistical evidence if it relates to a pre-existing hypothesis that predicts a particular association or if
there is a plausible explanation why such a correlation should exist. Nonetheless, we do not have
any statistical basis on which to interpret some significant correlations as indicating a causal relation-
ship (e.g. beards and parasites) while rejecting similarly significant correlations as spurious (e.g. beards
and nurses). Any such judgement on causality is not directly connected to the statistical test itself, but
is a statement of prior belief in the plausibility of particular relationships. In that case, it is the prior
belief rather than the statistical test per se that is being used to support one causal explanation over the
other. Yet statistical tests are widely considered to be essential tools for evaluating causal claims. Papers
that use cross-cultural correlations to test hypotheses about the causes of cultural diversity are aimed
not solely at description of statistical patterns in the data, but at explaining those patterns in terms of
causes (for example a high environmental parasite load causes the evolution of behaviours that reduce
infection risk, or favour the acquisition of traits that indicate relatively low individual parasite load).

There are three intertwined problems in using cross-cultural correlations to test hypotheses about
the causes of cultural differences. Firstly, neighbouring cultures tend to share many traits and this spa-
tially clustered distribution will generate significant correlations even in the absence of any direct cau-
sal connections. For example, there is a significant correlation between the number of Nobel prizes
awarded per country and the number of IKEA stores. It is unlikely that anyone would put forward
a direct causal explanation for this relationship, but they would instead explain this pattern in
terms of spatial autocorrelation: both Nobel prizes and IKEA stores are not randomly distributed
across the globe, but are historically biased towards northern Europe. Including many northern
European countries in the analysis, each of which has many Nobel prizes and many IKEA stores, gen-
erates the impression of a link between Nobel success and flat-packed furniture (Maurage et al., 2013).
Secondly, related cultures will be more similar in many, if not most, variables so failing to take phylo-
genetic non-independence into account can also generate correlations between variables that have no
direct causal connection. In practice, it is often difficult to clearly separate out patterns of similarity
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owing to proximity from patterns of similarity owing to shared ancestry, since neighbours are often
also relatives. In the example just given, Scandinavian countries share many aspects of their environ-
ment (low average temperature, low parasite load), but also share a cultural heritage (which influences
culture and commerce, e.g. lots of IKEA stores, high chocolate consumption). Thirdly, many cultural
traits and environmental traits covary, so connection between any of these traits will generate many
other significant correlations (e.g. Nobel prizes are significantly correlated to chocolate consumption;
Messerli, 2012). Owing to similarities between neighbouring and related cultures, these problems are
likely to be so common in cross-cultural analyses that its safest to assume that they are essentially uni-
versal. Furthermore, because these factors interact, it may be difficult to easily partition out the effects
of phylogenetic non-independence (relatedness), spatial autocorrelation (proximity) and co-variation.

In this paper, we focus on spatial autocorrelation, as it has received relatively less attention in the
cultural evolution literature than phylogenetic non-independence (e.g. Bromham, 2022b; Evans et al.,
2021; Mace & Holden, 2005; Mesoudi, 2016) and covariation (e.g. Bulbulia et al., 2021; Deffner et al.,
2022). Luckily, there are statistical techniques that can deal with all three problems, helping us sort the
explanatory wheat from the covarying chaff.

Spatial autocorrelation in cross-cultural analyses

Any variables that have spatially clustered values can lead to indirect correlations that could be mis-
interpreted as a sign of a causal relationship. If variables are plotted on a graph and the data points
cluster by region, or if the values of the variables are clustered when plotted on a map, then the
data points are spatially autocorrelated and do not satisfy the basic assumption of statistical independ-
ence. Any p-value from a correlation where the data points are clustered by location is meaningless,
because the assumptions of the test have been violated. As a simple illustration of the impact of non-
random spatial distribution on statistical tests, we can show that languages that use a single semantic
category for hand and finger (Brown, 2013) are significantly more likely to be endangered or no longer
spoken than languages that have separate words for hand and finger (see Supplementary Information).
Why? It is difficult to imagine that anyone would seriously invoke a causal connection between having
a single category for hand-finger and language loss, despite the significant p-value. If we plot lan-
guages on a map, the cause of the strong correlation is clear: most of the languages that are recorded
as having a single category for hand-finger are from North America and Australia, two continents that
have suffered particularly high rates of language loss owing to brutal colonial suppression of
Indigenous languages (Figure S4). However, if we fit a model which takes this spatial autocorrelation
into account, then the apparent relationship between language endangerment and having a single cat-
egory for hand and finger is no longer significant (see Supplementary Information).

Spatial distribution should always be considered in evaluating hypotheses about human cultural
evolution. For example, the observed correlation between tonality of languages and relative humidity
has been interpreted in terms of coevolution of human physiology, language and environment, based
on the observation that drier air presents challenges for the generation of precise differences in tone
(Everett et al., 2015). This is a critical case study with important implications for understanding the
evolution of human language, because it suggests that features of language can be shaped by environ-
mental variation (Everett et al., 2016a). More broadly, it is a key example of an adaptive hypothesis in
human cultural evolution (Lupyan & Dale, 2016).

Plotting tonal languages on a map shows that the majority are distributed in areas with relative high
humidity (Figure 1). This is not surprising, for two reasons. Firstly, language diversity shows a latitu-
dinal gradient, so there are more languages in tropical areas. Even if we sample languages by putting all
of the world’s languages in a hat and drawing them out at random, we would expect that more of the
languages we sample will be closer to the tropics, and therefore be in areas of relatively higher humid-
ity. Secondly, tonal languages tend to be related to other tonal languages, and related languages tend to
cluster in space (Collins, 2016). Any feature that is found in multiple members of some language fam-
ilies, but is absent in other language families, will probably cluster in space, and therefore also
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Figure 1. Global distribution of tonal languages. Language data from the World Atlas of Linguistic Structure (WALS) database for
the 527 languages with information on this variable (13A) (Maddieson, 2013). A triangle marks the geographic point associated with
a language recorded as having tonal features (220 languages), and a cross marks the geographic point associated with a language
recorded as having no tonal features (307 languages). The colour of the point represents the predicted mean humidity score at that
point. Logistic regression N =527, f=0.301, 95%Cl [0.123-0.483], OR = 1.351, 95%ClI [1.131-1.62], z=3.29, p =0.001, d.f. =525, AIC =
708.99. See Supplementary Information for details of data analysed. Map from South (2017).

potentially correlate with spatial patterns of environmental variation. Tonal languages predominately
cluster in sub-Saharan Africa, East Asia and South East Asia, areas that also have relatively high
humidity. Therefore, as the study’s authors note, the data should be analysed accounting for both
phylogenetic relationships and spatial distributions (Everett et al., 2016b).

There is a significant correlation between tonality and humidity (N =527, z=3.29, p=0.001; see
Supplementary Information for details of data and analysis). However, the residuals of this logistic
regression are significantly associated with distance (Moran’s I; N =527, observed = 0.152, expected
=-0.002, SD =0.007, p<0.001), indicating spatial autocorrelation in the data (for an explanation
of Moran’s I, see below). Is spatial autocorrelation alone enough to explain the higher representation
of tonal languages in areas of high humidity? Fitting a logistic regression model with tonality as the
outcome variable, mean humidity as a predictor variable and a structured variance-covariance matrix
constructed from the great circle distance between the languages with an exponential decay process
suggests that having information on humidity does not have any predictive power for tonality once
the spatial distribution of languages is taken into account.

It is important to emphasise that showing that the correlation between humidity and tone is not
significant once spatial autocorrelation is taken into account does not disprove the general hypothesis
that language may evolve in response to environment, nor the specific hypothesis that tonal languages
are more likely to arise in humid areas. These explanations might be plausibly supported by other lines
of evidence (Ladd, 2016). However, it does tell us that these cross-cultural data do not provide con-
vincing support for accepting the hypothesis that humid air promotes the evolution of tone in lan-
guage, because we can explain the observations without invoking any causal connection between
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tone and humidity. An alternative explanation - that a biased spatial distribution of related languages
can account for the co-occurrence of humidity and tone — provides an equally good explanation of
the data, so the data give us no cause to prefer an explanation involving humidity as a cause of
tonality.

Because related languages cluster in space, correlations between language features and environment
are not surprising; in fact they are very common. For example, employing logistic regression we get as
strong a p-value for the correlation between humidity and passive voice ( p < 0.001) as between humid-
ity and tonality (p=0.001). Languages in areas of low humidity are also significantly more likely to
have a past tense (p =0.017; see Supplementary Information). Similarly, tonal languages will correlate
with many other features of the environment, for example with amphibian species richness (p=
0.003), but this is unlikely to indicate a direct causal impact of frogs and salamanders on language
tonality (or vice versa). The challenge with using cross-cultural data to infer causal links between
environment and human cultural variables is that that we could continue to add variables that
show the same spatial distribution as humidity, tonal languages, passive voice and amphibians, and
it would be difficult to tell from those analyses which (if any) of the included variables were driving
the significant correlations. If our data has spatial patterning, but we do not know what the cause of
that spatial patterning is, there is no limit to the number of potential ‘back-door paths’ we could add to
our analysis (variables that form indirect links between our target variables).

Spatial autocorrelation will also complicate the search for links between genetic variants and
language diversity. As humans spread over the landscape, they take their languages and their genes
with them, and both accumulate changes over time and space. We should therefore expect many
different genetic variants to correlate with language variants. Genes associated with brain function
show correlation with tonal languages (Dediu, 2021; Dediu & Ladd, 2007). So do mitochondrial
genetic variants (Collins, 2017). While a plausible case has been made for the association between
the correlated brain genetic variants, mitochondrial genes (which are associated with basic cellular
metabolism) seem unlikely to have any causal association with tonality. Instead, mitochondrial
genes are common markers of population history which flow with the tide of people and cultures.
Any test of the significance of association between genes and language must do so by comparison
with the expected background level of covariation between genes, language and space, to discount
the expected relationships between genes and language that come ‘for free’ from human population
history (Barbieri et al., 2022; Dediu, 2021; Ladd et al., 2015).

Untangling links between cultural and environmental variables

If we wish to identify causal relationships between aspects of environment and culture, it is not suf-
ficient to identify variables that are significantly correlated. Many environmental and cultural variables
are strongly colinear, following the same general trends as each other, making it very easy to find sig-
nificant correlations in cross-cultural observations. We can illustrate the problem of covariation by
considering a well-known example of an adaptive cultural evolution hypothesis: that spicy food is pro-
moted by cultural selection in areas of high parasite load because spices have anti-microbial properties
that reduce the risk of food-borne disease (Sherman & Billing, 1999). This hypothesis has been sup-
ported by correlation between average temperature and average spice use from samples of recipes from
different countries, on the grounds that food spoilage is a greater problem in hotter climates, poten-
tially increasing the benefit of adding anti-microbial spices (Billing & Sherman, 1998). That there is a
relationship between average number of spices per recipe and temperature is not in doubt, but observ-
ing that relationship does not tell us that temperature itself has a direct causal role in driving patterns
of spice use. In fact, over half the variation in spice use can be explained by distance between cuisines
and by their relationship to other cuisines (Bromham et al., 2021). Once the association between spice,
temperature and parasite load that comes from having neighbours and relatives with similar cuisines
and similar environments is taken into account, there is no additional association between spice, tem-
perature and parasite load. In other words, we have as much power to predict average spices per recipe
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based on information about neighbouring cuisines as by knowing the temperature or parasite load of
the area.

Including spatial data in the analysis allows us to winnow some variables that have no additional
explanatory power compared with simply knowing the location of the observations, and focus on rela-
tionships that have addition predictive power. Average spices per recipe does correlate with reported
rates of foodborne illness and childhood diarrhea, above and beyond the covariation owing to prox-
imity and relatedness, which could be interpreted as supporting an association between spice and risk
of foodborne infection. However, poor health outcomes of many kinds tend to covary together, and
are strongly associated with relative wealth, which tends to be more similar between neighbouring
countries (Figure 2). Gross domestic product per capita (GDPpc) is a stronger predictor of average
spice use than foodborne illness, which means that any factors that are more similar between relatively
poorer countries will also correlate with spice use, including a wide range of poor health outcomes (e.g.
fatal traffic accidents are strongly correlated with average spice use; Bromham et al, 2021). Any
feature of cultures that correlates with GDPpc is also likely to correlate with everything else that cor-
relates with GDPpc, including pathogens, disease outcomes, life expectancy, education, environmental
modification and population density (Bonds et al., 2012; Kummu & Varis, 2011; Smith et al., 2003).
Because nearby cultures are more similar in many respects, including relative wealth, it is easy to find
correlations between GDPpc and cultural variables. For example, GDPpc is significantly correlated
with belief in the devil, cheese consumption and Olympic medals (see Supplementary Figure S3).

Drawing causal diagrams can help to explore proposed causal relationships between culture and
environment (Figure 3), building complicated ‘horrendograms’ of links between culture, environment,
populations and diversity based on cross-cultural correlations, prior knowledge or alternative hypoth-
eses (Barbrook-Johnson & Penn, 2022). We can then compare the explanatory power of variables. In
this example, we can conclude that the data give us no reason to attribute a causal link between spice
and temperature or parasite load, because we can explain that correlation with proximity and related-
ness: nearby and related cultures are more similar to each other in all three variables. We can also show
that only the socioeconomic variables have significant explanatory power above and beyond their
covariation with space, relationships and other cultural variables. Yet even after we have eliminated
most variables, we are unable to answer the question ‘what does explain variation in spice use’, because
there is no limit to the number of additional variables we could add that show congruent patterns.
If we continue to add variables, we would eventually find one that had a stronger relationship with
spice, above and beyond its covariation with relatedness, proximity and other socioeconomic,
environmental and cultural variables.

Interrogating the tangled web of cross-cultural correlations does not tell us about the reasonable-
ness of the underlying causal hypotheses (Roberts & Winters, 2013; Roberts et al., 2020), but it does
allow us to evaluate whether a hypothesis is well supported by particular datasets. There is nothing
inherently wrong with the hypothesis that human cultures have adapted their cuisines to respond
to local environments, and that ingredients with antimicrobial properties might be favoured where
risk of food-borne illness is high. And it may be that the analysis fails to capture the appropriate vari-
able, for example the average number of spices per recipe does not capture the amount of potentially
anti-microbial ingredients added to food (e.g. adding a lot of chilli might be more effective than add-
ing a small amount of many other spices), or that the measures of food-borne illness do not target all
forms of intestinal infection (Hagen et al., 2023). However, we can conclude that these cross-cultural
data do not provide convincing support for a causal link between spice use and infection risk because
the correlations between spice use, parasite load, temperature and foodborne disease can be explained
simply in terms of nearby countries sharing many factors in common including cuisine, climate,
wealth and health. An alternative approach to testing this hypothesis might be to make predictions
about other potentially antimicrobial ingredients: for example we should also expect to see that cul-
tures add other antimicrobial ingredients to their food, yet there is no association between parasite
load and vinegar or alcohol (Bromham et al., 2021). Or we could extend the test to other dietary prac-
tices that could be interpreted as providing a level of protection against foodborne infection, for
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(a) Gross Domestic Product per capita (GDPpc)
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Figure 2. Spatial patterns lead to significant correlations between cultural variables. (a) Values of gross domestic product per
capita (GDPpc) per country. Map from OurWorldinData.ora/economic-growth based on multiple sources compiled by World
Bank, 2019 figures expressed in international-$ at 2017 prices, published under CCBY licence. (b) Average number of spices per
recipe for national and sub-national regions plotted against GDPpc: reproduced from Bromham et al. (2021).
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Figure 3. Potential links between variables can be represented graphically. In this example, the (a) proposed causal link between
infection risk and spicy food (Sherman & Billing 1999) could also be explained by indirect paths through the covariation of popu-
lation, diversity and climate, but (b) indirect paths via socioeconomic variables provide significantly stronger support than any
other tested links between infection risk and spice. Redrawn from Bromham et al. (2021).

example forbidding high-risk foods; however, no correlation was found between food taboos from
many cultures or religions and pathogen prevalence (Wormley & Cohen, 2022).

Practical solutions for dealing with spatial autocorrelation

Spatial autocorrelation generates challenges for testing hypotheses in cultural evolution whenever the
value of a variable is clustered by location, so that nearby cultures tend to be more similar to each other
than they are to more distant cultures. It is not just a problem of global analyses, but can occur at any
scale; for example, associations between language endangerment and species endangerment occur at
both global and local scales, but both may be generated by spatial autocorrelation (Cardillo et al.,
2015; Hua et al.,, 2019). Methods for addressing spatial autocorrelation have been long discussed in
other fields, such as econometrics (e.g. Elhorst, 2010), ecology (e.g. Dale and Fortin, 2002) and geog-
raphy (e.g. Getis, 2008). There are many published guides to addressing the general problems of
covariation in cultural data when testing hypotheses in cultural evolution, for example books and
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online lectures by McElreath (2020), workflow suggestions by Bulbulia (2022) and a helpful online
tutorial by Scott Claessens (https://scottclaessens.github.io/blog/2022/crossnational/), although these
resources are not specific to dealing with spatial patterning in cultural variables. Alternatively, there
are many useful guides to analysis of spatially autocorrelated data from other fields, particularly ecol-
ogy (Dormann et al.,, 2007) and geography (Akbari et al., 2023). However, although the problem is
widely acknowledged in the field of cultural evolution studies, as yet there has been a lack of consistent
and effective methods for dealing with spatial autocorrelation applied in tests of cultural evolutionary
hypotheses from cross-cultural comparisons (Claessens & Atkinson, 2022; Pollet et al., 2014).

A useful first step is to diagnose the problem by asking whether your data is spatially patterned. If
you plot your variables on a map, do they cluster in space (Figures 1 & 2)? Are two nearby cultures
likely to have more similar values for this variable than two cultures chosen at random? Another quali-
tative diagnostic is to plot all of the data and label them by culture, region or country (e.g Figures S1
and S2). Are the data points randomly scattered with respect to location or do they cluster by region?
Are neighbouring countries more likely to occur in similar regions of the co-ordinate space? If data are
not randomly distributed with respect to location, then this violates the assumption of any standard
statistical test that the residuals should be randomly distributed. Examining residuals is another
approach to diagnosing spatial autocorrelation in data: if a model is fitted to the data, but there is
a clearly biased distribution of the residuals from that model, this suggests that the data violate
assumptions of statistical independence. Drawing causal diagrams, where relationships between vari-
ables are represented by arrows (e.g. Figure 3), can be a useful guide to hypothesis testing, whether
these are used informally to represent and clarify the relative support for proposed links (Bromham
et al., 2021; Roberts & Winters, 2013; Roberts et al., 2020) or more formally, for example as the
basis for Bayesian networks or path analysis (McElreath, 2020; Pearl & Mackenzie, 2018; Shipley,
2016). Directed Acyclic Graphs could be applied to modelling the component of variation owing to
spatial distribution (Akbari et al., 2023), although as yet there are few, if any, examples of its applica-
tion to accounting for spatial autocorrelation in cross-cultural data.

There are a number of more formal tests for spatial autocorrelation within a dataset. A Mantel test
is often used to detect spatial patterning in data, by looking for a correlation between a matrix of pair-
wise differences between observations and a matric representing the pairwise spatial distances between
those observations (e.g. Passmore & Jordan, 2020; Roberts et al., 2015; Saslis-Lagoudakis et al., 2014),
although application of partial Mantel tests may not be a reliable solution to analysing spatially non-
random data (Nunn et al., 2006). Moran’s I can also be used to test whether the values of a set of
spatially distributed observations are more dispersed or clustered than would be expected if the values
were distributed randomly among the observations. A significant p-value and positive z-score suggest
that the null hypothesis that data points are randomly distributed with respect to space can be rejected,
because observations are more spatially clustered than would be expected by chance. If the p-value is
significant but the z-score negative, then the observations are more spatially dispersed than expected.
Moran’s I can be calculated for individual variables but is also routinely applied to the residuals of
multivariate linear and generalised linear models. The test can be easily implemented in R using
packages such as _DHARMa (Hartig, 2022) and ape (Paradis & Schliep, 2019).

A common approach to dealing with spatial autocorrelation in cross-cultural data is to add spatial
data to the analysis by assigning data points to regional groups or ‘bands’ and adding this as a factor in
the analysis. An alternative approach has been to select sparse samples of spatially distributed cultures,
for example sampling one per region or drawing from the Standard Cross-Ccultural Sample (SCCS).
Yet neither of these approaches will solve the problem of spatial autocorrelation of variables if cultures
within each group, band or region still show evidence of clustering by location (Bromham, 2022a; Eff,
2004; Loftin, 1972; Mace and Pagel, 1994; Pollet et al., 2014). We expect cultures within each SCCS
region to be more similar to each other than to cultures in other regions; for example, Bau Fijians
and Western Samoans are likely to have more similar values of many aspects of culture and environ-
ment than either does to Copper Eskimo and Aleut, and vice versa. Including any form of location
information as a factor in an analysis (e.g. latitude and longitude) is effectively adding a ‘hidden
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variable’ to capture spatial patterns in the data, by standing in for some unknown spatially patterned
variable that causes indirect links between environment and culture. This approach assumes that auto-
correlation will decline linearly with distance, although extra terms - such as quadratic terms for loca-
tion information - can be added to model non-linear relationships between outcome variables and
space, but this will exacerbate model complexity. However, adding spatial information as covariates
in a model does not mitigate the underlying assumption of the test that data points are independent
so that that the residuals should not show any bias. Conley standard errors are increasingly being used
as a mitigation of spatial autocorrelation in analyses of cross cultural data (e.g. Schulz et al., 2019);
however, they may not have sufficient impact on reducing the false positive rate (Claessens &
Atkinson, 2022) and do not address the related problem of phylogenetic non-independence.

One common approach is to implement simultaneously autoregressive models (SAR). SARs
assume that the value of a variable at a particular site is in part influenced by the value of that
same variable at neighbouring sites. By providing a spatial weights matrix — some measure of the con-
nectivity between sites - SARs estimate the relative contribution of spatial autocorrelation to values of
the outcome variable in a generalised least-square regression (see Kissling & Carl, 2008). One of the
advantages of this approach is that spatial weights matrices can be produced using different covariance
functions — models for how autocorrelation changes with distance — such as an exponential or Matérn
process function. These missing models can then be compared using standard model selection
techniques, like the Akaike information criterion to identify the covariance process which best explains
the autocorrelation present in the data. SARs can also be implemented in path analysis, by being
incorporated into the paths of structural equation models (Skeels et al., 2020), which may provide a
useful tool for modelling phenomena where there are complex interdependences between predictor
variables and potentially multiple outcome variables. By utilising variance/covariance matrices calcu-
lated across a range of lag distances, spatially explicit structural equation models can show how path
coefficients change across different spatial scales (e.g. using the R package ‘sesem’; Lamb et al., 2014).

An analytical solution that deals with all three interrelated problems of relatedness, proximity and
covariation has been successfully applied to cross-cultural analyses (Bromham et al., 2018, 2021, 2022;
Hua et al., 2019; Skirgérd et al., 2023). Phylospatial analysis that incorporates a covariance matrix for
both spatial and phylogenetic distance between observations offers the opportunity to explore patterns
in the data (Dinnage et al., 2020; Freckleton & Jetz, 2009; Hua et al., 2019). Such an analysis estimates
the amount of signal owing to both space and relationships, and if there is no autocorrelation in the
data then that covariation matrix will be set to zero and the analysis is equivalent to statistical inde-
pendence between datasets. Estimating the covariance owing to proximity and relationships allows the
data to speak: if patterns of variation do not correspond to proximity or relationships then the covari-
ance matrices owing to phylogeny and distribution will not influence the analysis. It is not necessary to
assume, a priori, either that cultures represent independent data points owing to separate instances of
adaptation to shared environmental conditions (Thornhill & Fincher, 2013) or that observations are
confounded by non-independence owing to descent or shared environment. The need to incorporate
information on relatedness and proximity does not need to be settled by argument alone, but by test-
ing for evidence of spatial autocorrelation (e.g. Dobson & Gelade, 2012) or phylogenetic signals in the
data (e.g. Roberts et al., 2015). The degree to which variation is explained by spatial distribution or
phylogenetic relationships can be an interesting outcome of such an analysis in its own right.
Analysis packages that allow for linear, generalised linear and mixed models to be fitted with a variety
of covariance functions can be used to model spatial autocorrelation (e.g. ‘glmmTMB ‘R package:
Brooks et al., 2017). Alternatively, many published studies provide custom code for phylospatial ana-
lysis of cross-cultural data (e.g. Bromham et al., 2022; Hua et al.,, 2019; Skirgérd et al., 2023).

There is no single analytical solution to analysing cross-cultural data to extract meaningful infor-
mation about causal relationships (McElreath, 2020). However, failure to account for relationships and
proximity may lead researchers down unhelpful explanatory paths. When the observations in an ana-
lysis come from entities that are related by descent (such as species, languages or cultures) then the
relationships between observations will confound our ability to identify causal connections, whether
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we have a phylogeny or not (Felsenstein, 1985; Mace & Holden, 2005; Mace & Pagel, 1994). If cultures
tend to be more similar to their relatives and neighbours than they are to randomly selected cultures,
then failing to incorporate information on location relies on the implicit assumption that knowing
about the state of a variable in nearby cultures gives you no predictive power for the state of their
neighbours. Any form of spatial data is better than none, just as any information on relationships
will be better than assuming there are no patterns of similarity by descent in the data. Information
on similarity owing to descent does not necessarily require a resolved bifurcating tree (Bromham,
2022a); for example, it may be possible to use hierarchical language classification as a way of estimating
covariation owing to relationships between cultures (Hua et al., 2019). Similarly, point locations for
cultures or languages may not be a perfect representation for proximity, but they are a lot better
than an implicit assumption that all cultures are equidistant. Accounting for spatial distribution
does not by itself tell us about the veracity of any causal relationships among variables, but it can pro-
vide a plausible alternative explanation for the association between variables, by demonstrating that we
could get the same relationship simply by neighbours being more similar to each other in many ways,
even if there was no causal connection between the variables. Alternatively approaches using networks
(Evans et al., 2021) or directed acyclic graphs to make explicit the potential causal connections
between variables (Bulbulia, 2022; Deffner et al., 2022) may also help researchers to formulate
hypotheses (Roberts et al., 2020) and find the signal of causal connections between culture and
environment.

Conclusions

Anyone who is interested in investigating possible environmental drivers of cultural variation cannot
afford to ignore spatial autocorrelation, because it can create strong correlations between variables that
have no direct causal connection. Incorporating spatial distribution in any tests of cultural evolution
hypotheses is essential to avoid being led astray by indirect associations between variables. Showing
that the relationship can be explained by phylogeny or proximity does not disprove a hypothesis.
These relationships may well be pointing to important drivers of cultural evolution, but a cross-
cultural correlation does not add meaningful support to causal hypothesis if it can be explained by
the correlation that comes ‘“for free’ from proximity and/or relatedness alone. Given the high degree
of covariation between aspects of cultural diversity and environment, we have to work harder to
prove causality above and beyond the explanation that neighbours tend to be similar in many aspects
of their cultures, whether or not those factors are causally related.

Supplementary material. To view supplementary material for this article, please visit https:/doi.org/10.1017/ehs.2023.23

Acknowledgements. We thank Scott Claessens and Sam Passmore for valuable feedback on the manuscript, Alexander
Skeels for his assistance with the spatial analyses and Simone Blomberg for insightful discussions.

Author contributions. LB and KY gathered data, KY performed statistical analyses and LB wrote the article.
Financial support. This research received no specific grant from any funding agency, commercial or not-for-profit sector.
Competing interest. Authors declare none.

Research transparency and reproducibility/data availability. All data is from public or previously published sources (see
Table S1) and is analysed using freely available software, as cited in the text. The tables of variables analysed and their sources
are included in the Supplementary Information. Custom code and data required to repeat the analyses is available at: https:/
github.com/keaghanjames/relatives_and_neighbours/tree/main

References

Akbari, K., Winter, S., & Tomko, M. (2023). Spatial causality: A systematic review on spatial causal inference. Geographical
Analysis, 55, 56-89.

https://doi.org/10.1017/ehs.2023.23 Published online by Cambridge University Press


https://doi.org/10.1017/ehs.2023.23
https://doi.org/10.1017/ehs.2023.23
https://github.com/keaghanjames/relatives_and_neighbours/tree/main
https://github.com/keaghanjames/relatives_and_neighbours/tree/main
https://github.com/keaghanjames/relatives_and_neighbours/tree/main
https://doi.org/10.1017/ehs.2023.23

Evolutionary Human Sciences 15

Barbieri, C., Blasi, D. E., Arango-Isaza, E., Sotiropoulos, A. G., Hammarstrom, H., Wichmann, S., ... Bickel, B. (2022). A
global analysis of matches and mismatches between human genetic and linguistic histories. Proceedings of the National
Academy of Sciences, 119(47), €2122084119.

Barbrook-Johnson, P., & Penn, A. S. (2022). Causal loop diagrams. In Systems mapping: How to build and use causal models
of systems (pp. 47-59). Springer.

Bastian, B., Vauclair, C.-M., Loughnan, S., Bain, P., Ashokkumar, A., Becker, M., ... Eastwick, P. W. (2019). Explaining illness
with evil: Pathogen prevalence fosters moral vitalism. Proceedings of the Royal Society B, 286(1914), 20191576.

Billing, J., & Sherman, P. W. (1998). Antimicrobial functions of spices: Why some like it hot. The Quarterly Review of Biology,
73(1), 3-49.

Bonds, M. H., Dobson, A. P., & Keenan, D. C. (2012). Disease ecology, biodiversity, and the latitudinal gradient in income.
PLoS Biology, 10(12), €1001456.

Bromham, L. (2022a). Meaning and purpose: Using phylogenies to investigate human history and cultural evolution.
Biological Theory. https://doi.org/10.1007/s13752-022-00401-5.

Bromham, L. (2022b). Solving Galton’s problem: Practical solutions for analysing language diversity and evolution. psyarXiv
10.31234/osf.io/c8vIr.

Bromham, L. (2023). Language endangerment: Using analytical methods from conservation biology to illuminate loss of lin-
guistic diversity. Cambridge Prisms: Extinction, 1, e3.

Bromham, L., Dinnage, R., Skirgard, H., Ritchie, A., Cardillo, M., Meakins, F, ..., Hua, X. (2022). Global predictors of lan-
guage endangerment and the future of linguistic diversity. Nature Ecology and Evolution, 6(2), 163-173.

Bromham, L., Hua, X, Cardillo, M., Schneemann, H., & Greenhill, S. J. (2018). Parasites and politics: Why cross-cultural
studies must control for relatedness, proximity and covariation. Royal Society Open Science, 5(8), 181100.

Bromham, L., Skeels, A., Schneemann, H., Dinnage, R., & Hua, X. (2021). There is little evidence that spicy food in hot coun-
tries is an adaptation to reducing infection risk. Nature Human Behaviour, 5(7), 878-891.

Brooks, M. E., Kristensen, K., Van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., ... Bolker, B. M. (2017).
glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R
Journal, 9(2), 378-400.

Brown, C. H. (2013). Finger and Hand. In M. S. Dryer & M. Haspelmath (eds) WALS Online (v2020.3). https://doi.org/10.
5281/zenodo.7385533.

Bulbulia, J., Schjoedt, U., Shaver, J. H., Sosis, R., & Wildman, W. J. (2021). Causal inference in regression: advice to authors.
Religion, Brain & Behavior, 11(4), 353-360.

Bulbulia, J. A. (2022). A workflow for causal inference in cross-cultural psychology. Religion, Brain ¢ Behavior.

Calude, C. S., & Longo, G. (2017). The deluge of spurious correlations in big data. Foundations of Science, 22(3), 595-612.

Cardillo, M., Bromham, L., & Greenhill, S. J. (2015). Links between language diversity and species richness can be con-
founded by spatial autocorrelation. Proceedings of the Royal Society B: Biological Sciences, 282(1809), 20142986.

Claessens, S., & Atkinson, Q. (2022). The non-independence of nations and why it matters. psyarxiv 10.31234/osf.io/m6bsn.

Collins, J. (2016). Commentary: The role of language contact in creating correlations between humidity and tone. Journal of
Language Evolution, 1(1), 46-52.

Collins, J. (2017). Real and spurious correlations involving tonal languages. In N. J. Enfield (Ed.), Dependencies in Language
(pp- 129-140). Berlin: Language Sciences Press.

Dale, M. R., & Fortin, M.-]. (2002). Spatial autocorrelation and statistical tests in ecology. Ecoscience, 9(2), 162-167.

Davis, L. (2012). Individualism and economic development: Evidence from rainfall data. Manuscript, Union College.

Dediu, D. (2021). Tone and genes: New cross-linguistic data and methods support the weak negative effect of the ‘derived’
allele of ASPM on tone, but not of microcephalin. PLoS ONE, 16(6), €0253546.

Dediu, D., & Ladd, D. R. (2007). Linguistic tone is related to the population frequency of the adaptive haplogroups of two
brain size genes, ASPM and microcephalin. Proceedings of the National Academy of Sciences, 104(26), 10944-10949.
Deffner, D., Rohrer, J. M., & McElreath, R. (2022). A causal framework for cross-cultural generalizability. Advances in

Methods and Practices in Psychological Science, 5(3), 25152459221106366.

Dinnage, R., Skeels, A., & Cardillo, M. (2020). Spatiophylogenetic modelling of extinction risk reveals evolutionary distinct-
iveness and brief flowering period as threats in a hotspot plant genus. Proceedings of the Royal Society B, 287(1926),
20192817.

Dixson, B. J., & Lee, A. J. (2020). Cross-cultural variation in men’s beardedness. Adaptive Human Behavior and Physiology, 6,
490-500.

Dobson, P., & Gelade, G. A. (2012). Exploring the roots of culture using spatial autocorrelation. Cross-Cultural Research, 46
(2), 160-187.

Dormann, C. F,, McPherson, J. M., Aratjo, M. B, Bivand, R., Bolliger, J., Carl, G,, ... Kissling, W. D. (2007). Methods to
account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography, 30(5), 609-628.
Dow, M. M., & Eff, E. A. (2008). Global, regional, and local network autocorrelation in the standard cross-cultural sample.

Cross-Cultural Research, 42(2), 148-171.

https://doi.org/10.1017/ehs.2023.23 Published online by Cambridge University Press


https://doi.org/10.1007/s13752-022-00401-5
https://doi.org/10.5281/zenodo.7385533
https://doi.org/10.5281/zenodo.7385533
https://doi.org/10.5281/zenodo.7385533
https://doi.org/10.1017/ehs.2023.23

16 Lindell Bromham and Keaghan J. Yaxley

Dunn, R. R,, Davies, T. J., Harris, N. C., & Gavin, M. C. (2010). Global drivers of human pathogen richness and prevalence.
Proceedings of the Royal Society B: Biological Sciences, 277(1694), 2587-2595.

Eff, E. A. (2004). Spatial and cultural autocorrelation in international datasets. MTSU Department of Economics and
Finance, Working Paper.

Elhorst, J. P. (2010). Applied spatial econometrics: Raising the bar. Spatial Economic Analysis, 5(1), 9-28.

Evans, C. L., Greenhill, S. J., Watts, ], List, ].-M., Botero, C. A., Gray, R. D., & Kirby, K. R. (2021). The uses and abuses of tree
thinking in cultural evolution. Philosophical Transactions of the Royal Society B, 376(1828), 20200056.

Everett, C., Blasi, D. E., & Roberts, S. G. (2015). Climate, vocal folds, and tonal languages: Connecting the physiological and
geographic dots. Proceedings of the National Academy of Sciences, 112(5), 1322-1327.

Everett, C., Blasi, D. E., & Roberts, S. G. (2016a). Language evolution and climate: The case of desiccation and tone. Journal of
Language Evolution, 1(1), 33-46.

Everett, C., Blasi, D. E., & Roberts, S. G. (2016b). Response: Climate and language: has the discourse shifted? Journal of
Language Evolution, 1(1), 83-87.

Felsenstein, J. (1985). Phylogenies and the comparative method. The American Naturalist, 125(1), 1-15.

Fincher, C. L., & Thornhill, R. (2008). A parasite-driven wedge: infectious diseases may explain language and other biodiver-
sity. Oikos, 117(9), 1289-1297.

Freckleton, R. P., & Jetz, W. (2009). Space versus phylogeny: Disentangling phylogenetic and spatial signals in comparative
data. Proceedings of the Royal Society B: Biological Sciences, 276(1654), 21-30.

Galton, F. (1889a). Comment on ‘On a method of investigating the development of institutions; Applied to laws of marriage
and descent’ by E. B. Tylor. The Journal of the Anthropological Institute of Great Britain and Ireland, 18, 245-272.

Galton, F. (1889b). I. Co-relations and their measurement, chiefly from anthropometric data. Proceedings of the Royal Society
of London, 45(273-279), 135-145.

Getis, A. (2008). A history of the concept of spatial autocorrelation: A geographer’s perspective. Geographical Analysis, 40(3),
297-309.

Gorenflo, L. ]., Romaine, S., Mittermeier, R. A., & Walker-Painemilla, K. (2012). Co-occurrence of linguistic and biological
diversity in biodiversity hotspots and high biodiversity wilderness areas. Proceedings of the National Academy of Sciences,
109(21), 8032-8037.

Greenland, S. (2017). For and against methodologies: Some perspectives on recent causal and statistical inference debates.
European Journal of Epidemiology, 32(1), 3-20.

Guernier, V., Hochberg, M. E., & Guégan, ].-F. (2004). Ecology drives the worldwide distribution of human diseases. PLoS
Biology, 2(6), el41.

Hagen, E. H., Blackwell, A. D., Lightner, A. D., & Sullivan, R. J. (2023). Homo medicus: The transition to meat eating
increased pathogen pressure and the use of pharmacological plants in Homo. American Journal of Biological
Anthropology, 180(4), 589-617.

Hartig, F. (2022). _DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version
0.4.6. https://CRAN.R-project.org/package=DHARMa

Hsiang, S. M., Burke, M., & Miguel, E. (2013). Quantifying the influence of climate on human conflict. Science, 341(6151),
1235367.

Hua, X., Greenhill, S. J., Cardillo, M., Schneemann, H., & Bromham, L. (2019). The ecological drivers of variation in global
language diversity. Nature Communications, 10(1), 2047.

Hubbard, R, Haig, B. D., & Parsa, R. A. (2019). The limited role of formal statistical inference in scientific inference. The
American Statistician, 73(supl), 91-98.

Jackson, J. C., Caluori, N., Abrams, S., Beckman, E., Gelfand, M., & Gray, K. (2021). Tight cultures and vengeful gods: How
culture shapes religious belief. Journal of Experimental Psychology: General, 150(10), 2057.

Kauhanen, H., Einhaus, S., & Walkden, G. (2023). Language structure is influenced by the proportion of non-native speakers:
A reply to Koplenig (2019). Journal of Language Evolution, 8(1), 90-101.

Kissling, W. D., & Carl, G. (2008). Spatial autocorrelation and the selection of simultaneous autoregressive models. Global
Ecology and Biogeography, 17(1), 59-71.

Koplenig, A. (2019). Language structure is influenced by the number of speakers but seemingly not by the proportion of
non-native speakers. Royal Society Open Science, 6(2), 181274.

Kummu, M., & Varis, O. (2011). The world by latitudes: A global analysis of human population, development level and envir-
onment across the north-south axis over the past half century. Applied Geography, 31(2), 495-507.

Ladd, D. R. (2016). Commentary: Tone languages and laryngeal precision. Journal of Language Evolution, 1(1), 70-72.

Ladd, D. R, Roberts, S. G., & Dediu, D. (2015). Correlational studies in typological and historical linguistics. Annual Review
of Linguistics, 1(1), 221-241.

Lamb, E. G., Mengersen, K. L., Stewart, K. ., Attanayake, U., & Siciliano, S. D. (2014). Spatially explicit structural equation
modeling. Ecology, 95(9), 2434-2442.

Laubach, Z. M., Murray, E. J., Hoke, K. L., Safran, R. J., & Perng, W. (2021). A biologist’s guide to model selection and causal
inference. Proceedings of the Royal Society B, 288(1943), 20202815.

https://doi.org/10.1017/ehs.2023.23 Published online by Cambridge University Press


https://CRAN.R-project.org/package=DHARMa
https://CRAN.R-project.org/package=DHARMa
https://doi.org/10.1017/ehs.2023.23

Evolutionary Human Sciences 17

Loftin, C. (1972). Galton’s problem as spatial autocorrelation: Comments on Ember’s empirical test. Ethnology, 11(4),
425-435.

Loh, J., & Harmon, D. (2005). A global index of biocultural diversity. Ecological indicators, 5(3), 231-241.

Lupyan, G., & Dale, R. (2016). Why are there different languages? The role of adaptation in linguistic diversity. Trends in
Cognitive Sciences, 20(9), 649-660.

Mace, R., & Holden, C. J. (2005). A phylogenetic approach to cultural evolution. Trends in Ecology ¢ Evolution, 20(3),
116-121.

Mace, R., & Pagel, M. (1994). The comparative method in anthropology. Current Anthropology, 35(5), 549-564.

Maddieson, I. (2013). Tone. In M. S. Dryer, & M. Haspelmath (Eds.), WALS Online (v2020.3). https://doi.org/10.5281/
zenodo.7385533.

Maffi, L. (2018). Sustaining biocultural diversity. In K. L. Rehg, & L. Campbell (Eds.), The Oxford Handbook of Endangered
Languages, Oxford Handbooks (online edn). Oxford Academic. https://doi.org/10.1093/0xfordhb/9780190610029.013.32,
accessed 14 September 2023.

Marcinkowska, U. M., Rantala, M. J., Lee, A. J., Kozlov, M. V., Aavik, T., Cai, H., ... Dixson BJW (2019). Women’s prefer-
ences for men’s facial masculinity are strongest under favorable ecological conditions. Scientific Reports, 9(1), 3387.

Maurage, P., Heeren, A., & Pesenti, M. (2013). Does chocolate consumption really boost Nobel award chances? The peril of
over-interpreting correlations in health studies. The Journal of Nutrition, 143(6), 931-933.

McElreath, R. (2020). Statistical rethinking: A Bayesian course with examples in R and Stan. CRC Press.

Mesoudi, A. (2016). Cultural evolution: A review of theory, findings and controversies. Evolutionary Biology, 43, 481-497.

Messerli, F. H. (2012). Chocolate consumption, cognitive function, and Nobel laureates. New England Journal of Medicine,
367(16), 1562-1564.

Munshi, J. (2018). The Charney sensitivity of homicides to atmospheric CO,: A parody. SSRN 3162520.

Naroll, R. (1965). Galton’s problem: The logic of cross-cultural analysis. Social Research, 32(4), 428-451.

National Research Council (2013). Frontiers in massive data analysis (p. 190). The National Academies Press.

Nettle, D. (1996). Language diversity in West Africa: An ecological approach. Journal of Anthropological Archaeology, 15(4),
403-438.

Nunn, C. L., Mulder, M. B., & Langley, S. (2006). Comparative methods for studying cultural trait evolution: A simulation
study. Cross-Cultural Research, 40(2), 177-209.

Oravecz, Z., & Vandekerckhove, J. (2023). Quantifying evidence for - and against — Granger causality with Bayes factors.
Multivariate Behavioral Research, 1-11.

Paradis, E., & Schliep, K. (2019). ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R.
Bioinformatics, 35(3), 526-528.

Passmore, S., & Jordan, F. M. (2020). No universals in the cultural evolution of kinship terminology. Evolutionary Human
Sciences, 2, e42.

Pazhoohi, F., & Kingstone, A. (2020). Parasite prevalence and income inequality positively predict beardedness across 25
countries. Adaptive Human Behavior and Physiology, 6, 185-193.

Pearl, J. (1993). [Bayesian analysis in expert systems]: Comment: graphical models, causality and intervention. Statistical
Science, 8(3), 266-269.

Pearl, J., & Mackenzie, D. (2018). The book of why: The new science of cause and effect. Basic Books.

Pollet, T. V., Tybur, J. M., Frankenhuis, W. E., & Rickard, I. J. (2014). What can cross-cultural correlations teach us about
human nature? Human Nature, 25, 410-429.

Roberts, S., & Winters, J. (2013). Linguistic diversity and traffic accidents: Lessons from statistical studies of cultural traits.
PloS ONE, 8(8), €70902.

Roberts, S. G, Killin, A., Deb, A., Sheard, C., Greenhill, S. J., Sinnemiki, K., ... Humphreys-Balkwill, A. (2020). CHIELD: The
causal hypotheses in evolutionary linguistics database. Journal of Language Evolution, 5(2), 101-120.

Roberts, S. G., Winters, J., & Chen, K. (2015). Future tense and economic decisions: Controlling for cultural evolution. PLoS
ONE, 10(7), e0132145.

Rubin, D. B. (1991). Practical implications of modes of statistical inference for causal effects and the critical role of the assign-
ment mechanism. Biometrics, 47(4), 1213-1234.

Saslis-Lagoudakis, C. H., Hawkins, J. A., Greenhill, S. J., Pendry, C. A., Watson, M. F, Tuladhar-Douglas, W., ... Savolainen,
V. (2014). The evolution of traditional knowledge: environment shapes medicinal plant use in Nepal. Proceedings of the
Royal Society B,: Biological Sciences, 281(1780), 20132768.

Schulz, J. F.,, Bahrami-Rad, D., Beauchamp, J. P., & Henrich, J. (2019). The Church, intensive kinship, and global psycho-
logical variation. Science, 366(6466), eaau5141.

Sherman, P. W, & Billing, J. (1999). Darwinian gastronomy: Why we use spices: Spices taste good because they are good for
us. BioScience, 49(6), 453-463.

Shipley, B. (2016). Cause and correlation in biology: A user’s guide to path analysis, structural equations and causal inference
with R. Cambridge University Press.

https://doi.org/10.1017/ehs.2023.23 Published online by Cambridge University Press


https://doi.org/10.5281/zenodo.7385533
https://doi.org/10.5281/zenodo.7385533
https://doi.org/10.1093/oxfordhb/9780190610029.013.32
https://doi.org/10.1017/ehs.2023.23

18 Lindell Bromham and Keaghan J. Yaxley

Skeels, A., Esquerré, D., & Cardillo, M. (2020). Alternative pathways to diversity across ecologically distinct lizard radiations.
Global Ecology and Biogeography, 29(3), 454-469.

Skirgard, H., Haynie, H. J., Blasi, D. E., Hammarstrém, H., Collins, J., Latarche, J. J., ... Passmore, S. (2023). Grambank
reveals the importance of genealogical constraints on linguistic diversity and highlights the impact of language loss.
Science Advances, 9(16), eadg6175.

Smith, R. J., Muir, R. D. J., Walpole, M. J., Balmford, A., & Leader-Williams, N. (2003). Governance and the loss of biodiver-
sity. Nature, 426(6962), 67-70.

South, A. (2017). rnaturalearthdata: World Vector Map Data from Natural Earth Used in ‘rnaturalearth’. R package version
0.1.0, https://CRAN.R-project.org/package=rnaturalearthdata

Sutherland, W. J. (2003). Parallel extinction risk and global distribution of languages and species. Nature, 423(6937), 276-279.

Tchetgen, E. J. T., & VanderWeele, T. J. (2012). On causal inference in the presence of interference. Statistical Methods in
Medical Research, 21(1), 55-75.

Thornhill, R., & Fincher, C. L. (2013). The comparative method in cross-cultural and cross-species research. Evolutionary
Biology, 40, 480-493.

Turvey, S. T., & Pettorelli, N. (2014). Spatial congruence in language and species richness but not threat in the world’s top
linguistic hotspot. Proceedings of the Royal Society B: Biological Sciences, 281(1796), 20141644.

Tybur, J. M., Inbar, Y., Aaree, L., Barclay, P., Barlow, F K., De Barra, M,, ..., Choi, J. A. (2016). Parasite stress and pathogen
avoidance relate to distinct dimensions of political ideology across 30 nations. Proceedings of the National Academy of
Sciences, 113(44), 12408-12413.

Wormley, A. S., & Cohen, A. B. (2022). Pathogen prevalence and food taboos: A cross-cultural analysis. Current Research in
Ecological and Social Psychology, 3, 100056.

Yang, A. C,, Peng, C.-K,, & Huang, N. E. (2018). Causal decomposition in the mutual causation system. Nature
Communications, 9(1), 3378.

Cite this article: Bromham L, Yaxley KJ (2023). Neighbours and relatives: accounting for spatial distribution when testing
causal hypotheses in cultural evolution. Evolutionary Human Sciences 5, €27, 1-18. https://doi.org/10.1017/ehs.2023.23

https://doi.org/10.1017/ehs.2023.23 Published online by Cambridge University Press


https://CRAN.R-project.org/package=rnaturalearthdata
https://CRAN.R-project.org/package=rnaturalearthdata
https://doi.org/10.1017/ehs.2023.23
https://doi.org/10.1017/ehs.2023.23

	Neighbours and relatives: accounting for spatial distribution when testing causal hypotheses in cultural evolution
	Introduction
	Congruent spatial patterns of diversity
	Inferring causal connections from cross-cultural correlations
	Spatial autocorrelation in cross-cultural analyses
	Untangling links between cultural and environmental variables
	Practical solutions for dealing with spatial autocorrelation
	Conclusions
	Acknowledgements
	References


