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ASYMPTOTIC BEHAVIOR OF A FELLER
EVOLUTION FAMILY INVOLVED IN THE
FISHER–WRIGHT MODEL

ADAM BOBROWSKI,∗ Polish Academy of Sciences and Lublin University of Technology

Abstract

We study the evolution in time of the joint distribution of a pair of Feller processes,
related by the fact that some random time ago they were identical, evolving as a single
Feller process; from that time on, they began to evolve independently, conditional on
a state at the time of split, according to the same Feller transition probabilities. Such
processes are involved in the Fisher–Wright model: the distribution of the time counted
backwards from the present to the time of split in the past is a function of deterministic
but time-varying effective size 2N of the population from which the two processes are
sampled. In terms of a corresponding family of Feller operators, assuming asymptotic
stability or ergodicity of the process of mutation, we find the limit form of the distribution
of such pairs of processes sampled from decaying, asymptotically constant, and growing
populations. In the case where mutation is not asymptotically stable or ergodic, limit
distributions are found for the distribution of relative differences.
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1. Introduction

This paper is a continuation of the series [4], [6], [7], [9], and [10] devoted to a study of
the interplay between two of the main forces in population genetics, i.e. mutation and genetic
drift. As explained below, from the stochastic point of view, this study is about pairs of random
processes that evolved as a single random process, and from a certain time in the past on,
conditional on a state at the time of split, began to evolve independently. Joint distributions
of such processes are functions of the population size which influences the power of the drift
and, hence, the distribution of the time τ counted backwards from the present to the time of
the split in the past. In this paper we assume a Fellerian nature to these processes, and we
introduce the corresponding evolution family of operators that describes the evolution in time
of the distributions of these processes, and study the asymptotic behavior of the family.

Genetic drift is often defined as a random change of the frequency of a particular allele (i.e.
a variant of the way the chromosome may look at a particular place, this place being called the
locus) in a finite population; in virtually infinite populations this frequency is constant. Since
random events may result in not passing some part of the genetic material to the next generation,
if there are no mutations, all the members of a population eventually share one allele, and all
the other alleles become extinct: this is the case in the classical model due to Wright and Fisher
[20], [46], and this effect of genetic drift is particularly visible in small populations.
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Feller evolution family 735

In the presence of mutation these two forces compete, with mutation introducing new variants
to the population and drift striving to make the population uniform. Contemporary studies focus
on models involving, along with drift, other forces of population genetics: mutation, selection,
and recombination [13], [14], [15], [34], [42]. Such Fisher–Wright-type models are of growing
interest for both mathematicians and geneticists, but their ‘forward’ mathematical analysis is
quite complicated. Fortunately, as shown in the crucial papers by Kingman [31] and Tajima
[45], if no selection and recombination is involved, the ‘backward’ structure of these models is
quite simple [5], [20], [46]. In particular, in a large population of size 2N the time to the most
recent common ancestor of two individuals is approximately exponential with parameter 2N.

Kingman’s [31] approach allows analyzing selectively neutral loci. A locus is said to be
selectively neutral if it does not play any vital role for the organism, and, hence, it is not under
selective pressure. Well-known examples of such loci include some of the microsatellites and
sequences in the hypervariable regions 1 and 2 of mitochondrial DNA (see the references in [9]
and [10]). At such loci, it is reasonable to assume that the process of mutation is independent
of coalescence and, thus, may be superimposed on the ancestral lineages. This allows writing
explicit equations for the joint distributions of the attributes, such as the microsatellite length or
the number of substitutions in a DNA sequence, of two individuals sampled from a population.
These distributions are the main focus of our study. Generalizations of Kingman’s coalescent
include models with recombination, but in models involving drift, mutation, and recombination
it is difficult, if possible at all, to find an equation for the joint distributions [6], [34], [39], [42].

We are interested in the model where population size varies in time. We assume that, from a
time t0 in the past onwards, the evolution of the size of the population is known and given by a
function 2N : [t0,∞) → R

+.We assume that 2N is measurable and bounded away from 0 on
any finite interval. In applications, 2N is usually strictly positive and continuous, except maybe
for a finite number of points where it has left- and right-hand limits. ‘The population size’ 2N
is in fact the ‘relative limit population size’ and does not necessarily take even or integer values,
and the factor 2 is only conventional [24]. The time viewed backwards from time t > t0 to the
most recent common ancestor of two chromosomes is a generally improper random variable
τt ,

P(τt ∈ B) =
∫

B
g(t, t − s) ds, (1)

where B is a Borel subset of [0, t − t0) and

g(t, s) = 1

2N(s)
exp

(
−

∫ t

s

1

2N(u)
du

)
.

In particular, the probability that there will be no coalescence in the interval [t0, t) is

p(t) = 1 −
∫ t

t0

g(t, u) du = exp

(
−

∫ t

t0

1

2N(u)
du

)
. (2)

Such an approach, which is a variation of [24] and [46], allows treating populations that are
not clonal, having several unrelated ancestors (e.g. bacteria or viruses). Even though the time
interval [t0, t) in which such populations are observed may be long, it may happen that there is
no coalescence of ancestral lineages in it. Hence, the joint distribution of attributes of interest
to us observed at time t > t0 depends on the distribution at t0 (see (8), below).
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736 A. BOBROWSKI

2. Definition of the evolution family

2.1. Some functional analytic notions

2.1.1. The mutation semigroup and its tensor product. Let S be a locally compact Hausdorff
space; its points will be denoted by p, q, etc. Let {Pt , t ≥ 0} be a Feller semigroup on C0(S)
with generator A [22], [40]. The same symbol, i.e. {Pt , t ≥ 0}, denotes a transition family of
probability kernels on S associated with this semigroup, so that we have [40]

Ptf (p) =
∫

S
f (q)Pt (p, dq), p ∈ S, t ≥ 0, f ∈ C0(S). (3)

This semigroup models the process of mutation on a single individual (locus); a state (an allele)
of the locus is a point of S.

The completion C0(S)⊗̃εC0(S) of the algebraic tensor product C0(S) ⊗ C0(S) of two
copies ofC0(S) in the injective tensor norm is isometrically isomorphic toC0(S ×S); see [12].
Functions f ∈ C0(S × S) of the form

f (p, q) = f1(p)f2(q), (4)

where fi ∈ C0(S), i = 1, 2, are called elementary tensors and denoted by f1 ⊗ f2. The tensor
product semigroup {Ut, t ≥ 0}, Ut = Pt ⊗ Pt in C0(S × S), of two copies of {Pt , t ≥ 0} is
given by

Utf (p, q) =
∫

S×S
f (p′, q ′)Pt (p, dp′)Pt (q, dq ′).

This semigroup describes the evolution of two independent Markov processes, both with
transition probabilities governed by the semigroup {Pt , t ≥ 0}. The set D(A)⊗D(A), i.e. the
set of elementary tensors (4) with both fi in D(A), is a core for the generatorG of {Ut, t ≥ 0},
and we have Gf = Af1 ⊗ f2 + f1 ⊗ Af2 for f1, f2 ∈ D(A); see [2].

2.1.2. The space of symmetric functions. The map Z : S × S → S × S given by (p, q) �→
Z(p, q) = (q, p) is a homeomorphism. Let C0s(S × S) be the subspace of C0(S × S) formed
by symmetric functions, i.e. functions f satisfying f ◦Z = f, and let M(S×S) be the space of
finite regular Borel measures on S×S. In Appendix A we show thatC0s(S×S) is isometrically
isomorphic to the space of continuous functionsC0(S
) on a certain locally compact space S
,
and its dual is the space of symmetric measures, i.e. measures µ ∈ M(S × S) equal to their
transports via Z.

2.1.3. Two operators and a semigroup. Let � : C0(S × S) → C0(S) be given by �f =
f ◦φ, f ∈ C0(S ×S), where φ(p) = (p, p), p ∈ S.The dual operator�∗, mapping the space
M(S) of finite regular Borel measures on S into M(S × S), assigns to a measure its transport
via the map φ : S → S × S.

LetK∗ : Ms(S×S) → M(S) be given byK∗µ(B) = µ(B×S), where B is a Borel subset
of S (if µ is the joint distribution of a pair of exchangeable random variables then K∗µ is the
(marginal) distribution of both of them). The operatorK∗ is the dual toK : C0(S) → C0s(S×S)
given by (Kf )(p, q) = 1

2 (f (p)+ f (q)).

We check directly that

�Kf = f, f ∈ C0(S), K∗�∗µ = µ, µ ∈ M(S), (5)

and UtKf = KPtf, t ≥ 0, f ∈ C0(S). (6)
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We define the operators P�
t := KPt�, t ≥ 0, in C0(S × S). By (5), P�

t P
�
s = P�

s+t
and [0,∞) � t �→ P�

t is strongly continuous, yet {P�
t , t ≥ 0} is not a strongly contin-

uous semigroup in the usual sense, as P�
0 = K� �= I := IC0(S×S) (the identity operator in

C0(S × S)). In fact, K�f (p, q) = 1
2 (f (p, p)+ f (q, q)). By (6),

UtP
�
s = P�

s+t , s, t ≥ 0. (7)

2.2. The definition of the evolution family

Let us consider two exchangeable Feller processes {X1(t), t ≥ t0} and {X2(t), t ≥ t0} with
values in S. We assume that at each t > t0 we know that at time t − τt , these two processes
were identical and evolved as a single process with transition probabilities governed by a Feller
semigroup {Pt , t ≥ 0} on C0(S) with generator A; the distribution of τt is given by (1).
Furthermore, at time t0, the single process referred to above (which is the most recent common
ancestor of our processes) was distributed according to the marginal distribution calculated from
the joint distribution of the processes. Finally, we assume that from time σt = t − τt onward,
conditional on the state at the time of split, these processes began to evolve independently yet
with the same transition probabilities as before.

Suppose that at time t0 the joint distribution of the two processes was a measure µ ∈
Ms(S × S). What is their distribution µt,t0 at time t > t0? With probability (2), there was
no coalescence of ancestral lines in the time interval [t0, t] and the two processes evolved
independently from each other all this time. Conditionally on this event, µt,t0 equals U∗

t−t0µ
(U∗
u is the dual to Uu). If coalescence occurred at time s ∈ [t0, t), i.e. if τt = t − s, then at

time s the distribution of the processes was concentrated on the diagonal (p, p), p ∈ S, and
was given by�∗P ∗

s−t0K
∗µ, where P ∗

u is the dual to Pu. Indeed, up to time s, the two processes
evolved as a single Feller process with transition probabilities {Pt , t ≥ 0}, and this process at
time t0 had the distributionK∗µ. From the time s onward, the processes evolved independently.
Hence, conditional on coalescence at time s, the distribution is U∗

t−s�∗P ∗
s−t0K

∗µ. Therefore,

µt,t0 = p(t)U∗
t−t0µ+

∫ t

t0

g(t, s)U∗
t−s�∗P ∗

s−t0K
∗µ ds. (8)

The reasoning presented above is merely formal (it may be made rigorous, for example, if
S is denumerable [9]); in particular, existence of the above integral requires a proof. However,
in view of the assumption of the Fellerian nature of the processes involved, we are led to
introducing and studying the ‘dual’ operators S(t, s), t0 ≤ s ≤ t < ∞, in C0s(S × S) defined
by

S(t, s)f = ps(t)Ut−sf +
∫ t

s

g(t, v)KPv−s�Ut−vf dv

= ps(t)Ut−sf +
∫ t

s

g(t, v)P�
v−sUt−vf dv, (9)

where ps(t) = exp(− ∫ t
s

du/2N(u)), so that

∫ t

s

g(t, v) dv = 1 − ps(t). (10)

Since the function v �→ KPv−s�Ut−vf ∈ C0s(S ×S) is strongly continuous and v �→ g(t, v)

is measurable, the integral in (9) is well defined as a strong Bochner integral.
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738 A. BOBROWSKI

Although S is a family of operators in C0s(S × S), the above definition works well for
f ∈ C0(S × S), and S(t, s)f thus defined belongs to C0(S × S). In other words, we may treat
S as a family of operators in C0(S × S) leaving C0s(S × S) invariant.

Using (7), (9), (10), the semigroup property, and ps(t)g(s, w) = g(t, w), we check that S
is an evolution family of operators in the sense that

S(s, u)S(t, s) = S(t, u) for t0 ≤ u ≤ s ≤ t < ∞, (11)

S(s, s) = I , and (s, t) �→ S(t, s) is strongly continuous. It is a Feller family since it is
strongly continuous, and the operators map C0(S × S) into itself, while leaving the positive
cone invariant. We have ‖S(t, s)‖ ≤ 1. The reversed order in (11) should be noted: it is the dual
operators S∗(t, s), t0 ≤ s ≤ t , that satisfy the relation S∗(t, s)S∗(s, u) = S∗(t, u) appearing in
the definition of an evolution family common in operator theory [17], [33], [37]. The fact that
in general the continuity assumption is not satisfied for S∗ is precisely the reason why studying
Feller evolution families as defined above is important in probability [47, Chapter 8].

By (5), (6), and the semigroup property, KPv−s�Ut−vKf = KPt−sf , so that, by (9) and
(10),

S(t, s)Kf = KPt−sf, f ∈ C0(S). (12)

By (6), this expresses the fact that in the model with drift, marginal distributions of the processes
are the same as in the model without drift (compare [7, Equation (5)]).

2.3. S as a perturbation of U

In order to obtain more information concerning S let us define the operators

S�(t, s) := exp

(∫ t

s

du

2N(u)

)
S(t, s)

= Ut−sf +
∫ t

s

1

2N(u)
exp

(∫ u

s

dv

2N(v)

)
P�
u−sUt−uf du, t0 ≤ s ≤ t < ∞,

and note that they also form an evolution family.

Proposition 1. For t0 ≤ s ≤ t ,

S�(t, s) = Ut−s +
∫ t

s

1

2N(u)
Uu−sK�S�(t, u) du, (13)

and S�(t, s) = Ut−s +
∫ t

s

1

2N(u)
S�(u, s)K�Ut−u du. (14)

Proof. Relation (14) follows immediately from (12) and the definition of S�. By (5) and (7),
Uu−sK�P�

v−uUt−v = Uu−sP�
v−uUt−v = P�

v−sUt−v, and, by (6),Uu−sK�Ut−u = P�
u−sUt−u.

Hence,

Uu−sK�S�(t, u) = P�
u−sUt−u +

∫ t

u

1

2N(v)
exp

(∫ v

u

dw

2N(w)

)
P�
v−sUt−v dv.

Thus, changing the order of integration in the double integral obtained by inserting the definition
of S�(t, u) into (13) shows that the right-hand side of (13) is

Ut−s +
∫ t

s

1

2N(v)

(
1 +

∫ v

s

1

2N(u)
exp

(∫ v

u

dw

2N(w)

)
du

)
P�
v−sUt−v dv = S�(t, s),

proving (13).
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The interpretation of (13) and (14) is that S� is a perturbation of the evolution family
Ut−s , t0 ≤ s ≤ t < ∞, by bounded linear operators B�(u) = K�/2N(u) (compare
[17, p. 487]) or, what is the same, that S is the perturbation of Ut−s , t0 ≤ s ≤ t < ∞,
by bounded linear operators B(u) = (K� − I )/2N(u). As the next proposition shows, this
remark may be made more specific in the case where 2N is continuously differentiable. We
omit its straightforward but lengthy proof.

Proposition 2. For f ∈ D(G) and t at which 2N is continuous,

∂

∂t
S(t, s) = S(t, s)

(
Gf − 1

2N(t)
f + 1

2N(t)
K�f

)
, t ≥ s,

with right-hand derivative at t = s. Moreover, if 2N is continuously differentiable, for f ∈
D(G), S(t, s)f belongs to D(G) and

∂

∂s
S(t, s) = −

(
G− 1

2N(s)
+ 1

2N(s)
K�

)
S(t, s)f, t0 ≤ s ≤ t,

with left-hand derivative at s = t and right-hand derivative at s = t0.

By the classical result of Kato [29] (compare [17, p. 479] or [33, Chapter 2, Theorems 3.6
and 3.7]), if 2N is continuously differentiable then, for each t > t0, the Cauchy problem in
C0(S × S),

dx(s)

ds
= Gx(s)+ 1

2N(t − s)
K�x(s)− 1

2N(t − s)
x(s), (15)

0 ≤ s ≤ t − t0 and x(0) = f ∈ D(G), is well posed. The function [0, t − t0] � s �→ x(s) is a
solution to (15) if and only if [t0, t] � s �→ y(s) = x(t − s) solves the following (Kolmogorov
backward) problem:

dy(s)

ds
= −Gy(s)− 1

2N(s)
K�y(s)+ 1

2N(s)
y(s), (16)

t0 ≤ s ≤ t, y(t) = f ∈ D(G). Since x(s) = S(t, t − s) solves (15), y(s) = S(t, s) is the
solution to (16).

If the population size 2N(t) = 2N is constant, (15) and (16) are time homogeneous and
S(t, s) = S�t−s , where {S�t , t ≥ 0} is the semigroup generated byG+K�/2N − I/2N. Then
g(t, v) = e−(t−v)/2N/2N and (9) agrees with the form of {S�t , t ≥ 0} derived by means of the
Phillips perturbation theorem (compare [5, p. 325]).

2.4. Examples

Example 1. (Two related standard Brownian motions.) In this case S = R,

Ptf (p) = 1√
2πt

∫ ∞

−∞
exp

(
−q

2

2t

)
f (p + q) dq, t > 0, p ∈ R,

and Af = 1
2 d2/dp2 with maximal domain. Then, see [41], G = 
 is the closure of 
0 =

1
2 (d

2/dp2 + d2/dq2) and problem (16) takes the following form. Given f0(p, q) ∈ D(
), we
are looking for an f such that f (p, q, t) = f0(p, q), f (·, ·, s) ∈ D(
) for each s ∈ [t0, t],
and, for t0 ≤ s ≤ t ,

∂f (p, q, s)

∂s
= −
f (p, q, s)− 1

4N(s)
(f (p, p, s)+ f (q, q, s))+ 1

2N(s)
f (p, q, s).
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Example 2. (Two related simple symmetric random walks.) In this caseA is a bounded operator
in C0(Z) given by Af (p) = 1

2f (p + 1)+ 1
2f (p − 1)− f (p). The operator G is bounded as

well, andGf (p, q) = 1
2 (f (p+1, q)+f (p−1, q)+f (p, q+1)+f (p, q−1))−2f (p, q).

Problem (16) takes the form

∂f (p, q, s)

∂s
= −1

2
(f (p + 1, q, s)+ f (p − 1, q, s)+ f (p, q + 1, s)+ f (p, q − 1, s))

− 1

4N(s)
(f (p, p, s)+ f (q, q, s))+

(
1

2N(s)
+ 2

)
f (p, q, s),

t0 ≤ s ≤ t, with ‘final condition’ f (p, q, t) = f0(p, q), where f0 ∈ C0(Z
2).

3. Asymptotic behavior

In this section we study the asymptotic behavior of S(t, s), t0 ≤ s ≤ t < ∞, as a function
of 2N . Cases of interest are (i) a decaying population, where limt→∞ 2N(t) = 0, (ii) an
asymptotically constant population, where limt→∞ 2N(t) = 2N0 > 0, (iii) slow growth to
∞, where limt→∞ 2N(t) = ∞ while

∫ ∞
t0

dt/2N(t) = ∞, and (iv) fast growth to ∞, where
limt→∞ 2N(t) = ∞ while

∫ ∞
t0

dt/2N(t) < ∞. Examples of (iii) and (iv), respectively, are
linear growth 2N(t) = t + a, where a > −t0, and exponential growth 2N(t) = Meωt , where
M,ω > 0. For importance of linear growth, see [3].

3.1. Convergence of S(t, s) as t → ∞
This subsection and the whole section is centered around Theorem 1, below. In the prelim-

inary Proposition 3, below, we show that, for convergence of S(t, s) as t → ∞, it is necessary
for {Pt , t ≥ 0} to be asymptotically stable in the sense of having a limit P∞ at ∞. (Sufficient
conditions for asymptotic stability are given in [35].) In Theorem 1 we show that in the main four
scenarios of population size behavior, asymptotic stability of {Pt , t ≥ 0} implies convergence
of S(t, s) as t → ∞, and we provide an explicit form of the limit in terms of population size.

Proposition 3. Suppose that the strong limit, limt→∞ S(t, s), exists for some s ≥ t0. Then the
limit

P∞ := lim
t→∞Pt (17)

exists.

Proof. By (5) and (12), �S(t, s)K = �KPt−s = Pt−s .

Lemma 1. Let µt , t > s, be the measure on [0, t − s) with density g(t, t − ·). Assume that
the population decays. Then, as t → ∞, µt converges weakly to the Dirac measure at 0.

Proof. We have g(t, t − v) = −(d/dv) exp(− ∫ t
t−v dw/2N(w)). Hence,

∫ t−s

0
g(t, t − v) dv = 1 − exp

(
−

∫ t

s

dw

2N(w)

)
→ 1 as t → ∞

and, for any δ ∈ (0, t − s),

∫ δ

0
g(t, t − v) dv = 1 − exp

(
−

∫ t

t−δ
dw

2N(w)

)
→ 1 as t → ∞.
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Lemma 2. Suppose that the population is asymptotically constant, and let λ = 1/2N0. Then
limt→∞

∫ t−s
0 |λe−λv − g(t, t − v)| dv = 0.

Proof. Since limt→∞ g(t, t − v) = λe−λv for all v ≥ 0 and limt→∞
∫ t

0 g(t, t − v) dv =
limt→∞ λ

∫ t−s
0 e−λv dv = 1, the lemma follows by Scheffé’s theorem.

Theorem 1. Suppose that limit (17) exists. Then the strong limit U∞ = limt→∞ Ut also
exists. Moreover, in the four main scenarios of population size behavior, the limit S(∞, s) :=
limt→∞ S(t, s) exists for all s ≥ t0. Finally, except in the case of fast growth, the limit S(∞) =
S(∞, s) does not depend on s and

(a) in the case of a decaying population, S(∞) = KP∞�;

(b) in the case of an asymptotically constant population, S(∞) = λKP∞�(λ − G)−1,

where λ = (2N0)
−1;

(c) in the case of slow growth to ∞, S(∞) = KP∞�U∞;

(d) in the case of fast growth to ∞,

S(∞, s) = exp

(
−

∫ ∞

s

dv

2N(v)

)
U∞ +

∫ ∞

s

1

2N(u)
exp

(
−

∫ ∞

u

dv

2N(v)

)
P�
u−s duU∞.

(18)

Proof. The limit U∞ exists because on elementary tensors f ⊗ g, where f, g ∈ C0(S), we
have limt→∞ Ut [f ⊗ g] = limt→∞ Ptf ⊗ Ptg = P∞f ⊗ P∞g, such tensors form a linearly
dense set in C0(S × S), and ‖Ut‖ ≤ 1, t ≥ 0.

(a) We omit this argument as it is a simpler version of the one used to prove Proposition 5,
below. The only difference is that here we use

S(t, s)f = ps(t)Ut−sf +
∫ t−s

0
g(t, t − v)P�

t−s−vUvf dv, (19)

which is a version of (9), instead of (23), below, used in Proposition 5.
(b) Since ‖ps(t)Ut−s‖ ≤ ps(t), the first term in (19) vanishes as t → ∞. By the dominated

convergence theorem, λKP∞�(λ−G)−1 = limt→∞ λ
∫ t−s

0 e−λvP�
t−v−sUv dv.However, the

distance between this last integral and the integral in (19) does not exceed
∫ t−s

0 |λe−λv−g(t, t−
v)| dv, which in Lemma 2 was proved to vanish as t → ∞.

(c) As in the proof of (b), the first term in (19) vanishes as t → ∞. On the other hand, as in
Lemma 1, limt→∞

∫ t−s
0 g(t, t − v) dv = 1. Moreover, for any δ ∈ (0, t − s),

∫ δ

0
g(t, t − v) dv = 1 − exp

(
−

∫ t

t−δ
dw

2N(w)

)
→ 0 as t → ∞

and
∫ t−s

t−s−δ
g(t, t − v) dv = exp

(
−

∫ t

s+δ
dw

2N(w)

)
− exp

(
−

∫ t

s

dw

2N(w)

)
→ 0 as t → ∞.

In other words, both the measuresµt of Lemma 1 and the measures νt , where νt is the transport
of µt via the map v �→ t − s − v, when considered as measures on [0,∞], converge to the
Dirac measure at ∞ (see Remark 3, below).
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Given f ∈ C0(S ×S) and ε > 0, we may choose a δ > 0 so that ‖Uvf −U∞f ‖ ≤ ε/3 and
‖Pv�U∞f − P∞�U∞f ‖ ≤ ε/3 for v > δ. Next, we may choose a large t1 > 2δ + s so that

∫ δ

0
g(t, t − v) dv +

∫ t−s

t−s−δ
g(t, t − v) dv ≤ ε

3‖f ‖ for t ≥ t1.

Then, for v ∈ [δ, t − s − δ],
‖KPt−s−v�Uvf −KP∞�U∞f ‖ ≤ ‖KPt−s−v�Uvf −KPt−s−v�U∞f ‖

+ ‖KPt−s−v�U∞f −KP∞�U∞f ‖
≤ 2

3ε.

Writing KP∞�U∞ as limt→∞
∫ t−s−δ
δ

g(t, t − v)KP∞�U∞ dv and splitting the integral in
(19) into two integrals over [0, δ] ∪ [t − s − δ, t − s] and [δ, t − s − δ], we see that, for t > t1,
the upper limit of the distance between KP∞�U∞ and the integral in (19) does not exceed
ε/3 + 2

3ε = ε.
(d) The first term in (9) converges to exp(− ∫ ∞

s
dv/2N(v))U∞. Moreover, the integral in

(9) may be written as

exp

(∫ ∞

t

dv

2N(v)

) ∫ t

s

1

2N(u)
exp

(
−

∫ ∞

u

dv

2N(v)

)
P�
u−sUt−u du.

This last integral converges, by the Lebesgue dominated convergence theorem, to the second
term in (18), while limt→∞ exp(

∫ ∞
t

dv/2N(v)) = 1.

Example 3. A probabilistic interpretation of (17) is that distributions of the process of mutation
converge weakly to an invariant distribution [21]. A typical example here is the Ornstein–
Uhlenbeck process [40], where the invariant distribution is normal. In this context Theorem 1(d)
says that in the case of a rapidly growing population the joint distribution of a pair of Ornstein–
Uhlenbeck processes related via family ties converges weakly to the distribution of a pair of
independent normal random variables. Theorem 1(a) says that if the population decays, the
limit distribution is that of a pair of two exact copies of a single normal random variable. In
Theorem 1(c) and (d), the limit distribution is a distribution of a pair of two related normal
random variables with correlation decreasing as 2N increases. It is interesting that even for 2N
growing to ∞, but slowly, some correlation of the processes involved is still visible.

3.2. Convergence of averages

In applications, not many mutations may be modeled by asymptotically stable semigroups.
Hence, in this subsection we consider a more general case where the semigroup is ergodic [1],
[17], [22] to study strong convergence in C0(S × S) of averages

As,t = 1

t − s

∫ t

s

S(t, u) du, t0 ≤ s ≤ t < ∞, (20)

and

A�
s,t = 1

t − s

∫ t

s

S(u, s) du, t0 ≤ s ≤ t < ∞. (21)
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In Proposition 4, below, we show that, for convergence of any of these averages, it is necessary
that {Pt , t ≥ 0} is ergodic. In Propositions 5 and 6, below, we show that in the case of
decaying and asymptotically constant populations ergodicity of the semigroup is sufficient for
convergence of As,t . In Proposition 7, below, we show that in the fast growth case ergodicity
of the semigroup {Ut, t ≥ 0} implies convergence of A�

s,t . It is still an open problem what
happens to As,t in the case of an expanding population and what happens to A�

s,t in the cases
of a decaying, asymptotically constant, and slowly growing population. Our Remark 3, below,
explains why it is difficult to treat these cases.

For t > 0, let P̄t := (1/t)
∫ t

0 Pu du.We have P̄t ∈ L(C0(S)) with ‖P̄t‖ ≤ 1. (The converse
is also true [16]: if P̄t are contractions then so are Pt .)

Proposition 4. Suppose that one of the strong limits limt→∞As,t and limt→∞A�
s,t exists for

some s ≥ t0. Then {Pt , t ≥ 0} is ergodic in that the strong limit

lim
t→∞ P̄t =: P̄∞ (22)

exists.

Proof. By (5) and (12), �As,tK = �A�
s,tK = �KP̄t−s = P̄t−s .

Our next two propositions are devoted to averages As,t . In order to obtain a more explicit
formula for these operators, we use (19) with s = u, integrate from u = s to u = t , and change
the order of summation in the double integral. This gives

As,t = 1

t − s

∫ t

s

pu(t)Ut−u du+
∫ t−s

0
g(t, t − v)K

t − s − v

t − s
P̄t−s−v�Uv dv. (23)

If limit (20) exists for some s ≥ t0 then it exists for all s ≥ t0, and all these limits are equal.
The limit operator is then denoted A∞.

Proposition 5. Suppose that limit (22) exists and that the population decays. Then the limit
A∞ exists and

A∞ = KP̄∞�. (24)

Proof. The first integral in (23) converges to 0, for pu(t) converges to 0 and ‖Ut−u‖ ≤ 1.
Given f ∈ C0(S × S) and ε > 0, we choose δ > 0 so that ‖Uvf − f ‖ ≤ ε/3 for v ∈ [0, δ].
Next, we choose t1 so large that

∫ t−s
δ

g(t, t − v) dv ≤ ε/3‖f ‖ and ‖P̄t�f − P̄∞�f ‖ ≤ ε/3
for all t > t1 − s − δ (this is possible by Lemma 1). For such t and v,

∥∥∥∥K t − s − v

t − s
P̄t−s−v�Uvf −K

t − s − v

t − s
P̄∞�f

∥∥∥∥ < 2ε

3
,

and so ∥∥∥∥K t − s − v

t − s
P̄t−s−v�Uvf −KP̄∞�f

∥∥∥∥ < 2ε

3
+ δ

t − s
‖f ‖.

Writing the right-hand side of (24) as limt→∞
∫ δ

0 g(t, t − v)KP̄∞� dv and splitting the second
integral in (23) into integrals over [0, δ] and [δ, t − s], we see that, as t → ∞, the upper
limit of the distance between this integral and the right-hand side of (24) does not exceed
lim supt→∞[2ε/3 + (δ/(t − s))‖f ‖ + ε/3] = ε.
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Proposition 6. (Compare [7, Proposition 3].) Suppose that limit (22) exists and that the
population is asymptotically constant. Then the limit A∞ exists and

A∞ = λKP̄∞�(λ−G)−1, where λ = (2N0)
−1. (25)

Proof. As in Proposition 5, the first integral in (23) converges to 0 as t → ∞, for pu(t)
converges to 0 and ‖Ut−u‖ ≤ 1. In view of ‖((t − s− v)/(t − s))P̄t−v−s‖ ≤ ‖P̄t−s−v‖ ≤ 1 for
v ∈ [0, t − s] and the Lebesgue dominated convergence theorem, the right-hand side of (25) is
the limit of

λ

∫ t−s

0
e−λvK t − s − v

t − s
P̄t−s−v�Uv dv as t → ∞.

Consequently, it suffices to show that the distance between this integral and the second integral
in (23) converges to 0. This distance, however, does not exceed

∫ t−s
0 |g(t, t − v)− λe−λv| dv.

Lemma 2 completes the proof.

Remark 1. Propositions 5 and 6 agree in the sense that (24) may be obtained from (25) by
letting λ → ∞.

We turn to the averages A�
s,t . Let s̃ ≥ s ≥ t0 be given. Using (11), we write

A�
s,t = 1

t − s

∫ s̃

s

S(u, s) du+ t − s̃

t − s
S(s̃, s)

1

t − s̃

∫ t

s̃

S(u, s̃) du,

to see that if A�
s̃,∞ := limt→∞A�

s̃,t
exists (strongly) then so does A�

s,∞ := limt→∞A�
s,t and

A�
s,∞ = S(s̃, s)A�

s̃,∞.
For Proposition 7, below, we would like to know that ergodicity of {Pt , t ≥ 0} implies

ergodicity of {Ut, t ≥ 0}, i.e. that the existence of limit (22) implies the existence of the
(strong) limit

lim
t→∞ Ūt := Ū∞, where Ūt = 1

t

∫ t

0
Uu du. (26)

Even though this conjecture seems to be a natural one, its proof has so far eluded us. (Szucs’[44]
result concerns the two-parameter semigroup {Pt ⊗ Ps, s, t ≥ 0} and not the one-parameter
semigroup {Ut = Pt ⊗ Pt , t ≥ 0}, and shows that the strong limit lims,t→∞(1/st)

∫ s
0

∫ t
0Pu ⊗

Pv du dv exists.) Hence, in Proposition 7, instead of assuming the existence of limit (22) we
assume the existence of limit (26). (If S is compact, 1S belongs toC0(S). Then taking a simple
tensor f ⊗ 1S , we check that ergodicity of {Ut, t ≥ 0} implies ergodicity of {Pt , t ≥ 0}.)
Proposition 7. Suppose that limit (26) exists and that the population grows rapidly to ∞. Then
A�
s,∞ exists for all s ≥ t0 and

As,∞ = exp

(
−

∫ ∞

s

dv

2N(v)

)
Ū∞ +

∫ ∞

s

1

2N(u)
exp

(
−

∫ ∞

u

dv

2N(v)

)
P�
u−s duŪ∞. (27)

Proof. Substituting (9) with t = u into (21) and changing the order of integration in the
resulting double integral, we obtain

A�
s,t = 1

t − s

∫ t−s

0
ps(u+ s)Uu du

+
∫ t

s

(
1

2N(v)
P�
v−s

t − v

t − s

1

t − v

∫ t−v

0
exp

(
−

∫ u+v

v

dw

2N(w)

)
Uu du

)
dv. (28)
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The second integrand does not exceed exp(
∫ ∞
t0

dw/2N(w))φ(v), where φ(v) = (1/2N(v))×
exp(− ∫ ∞

v
dw/2N(w)) is integrable in [s,∞] with

∫ ∞

s

φ(v) dv = 1 − exp

(
−

∫ ∞

s

dw

2N(w)

)
.

Hence, by the dominated convergence theorem, we need to prove that, for any v ≥ s, the strong
limit, as t → ∞, of

Vt,v := 1

t − v

∫ t−v

0
exp

(
−

∫ u+v

v

dw

2N(w)

)
Uu du

exists and equals exp(− ∫ ∞
v

dw/2N(w))Ū∞. To this end, given ε > 0, we choose k so large
that u + v ≥ k implies that exp(− ∫ u+v

v
dw/2N(w))− exp(− ∫ ∞

v
dw/2N(w)) < ε. Then,

splitting Vt,v and Ūt−v into two integrals over [0, k] and [k, t − v], respectively, we see that
‖Vt,v − exp(− ∫ ∞

v
dw/2N(w))Ūt−v‖ ≤ 2k/(t − v)+ ε, proving convergence of the second

integral in (28) to the second term in (27). The rest is done similarly.

Remark 2. As a by-product of the proof, we see that if limit (26) exists in the operator topology
(i.e. if the semigroup is uniformly mean ergodic [17]) then so does limit (27).

Remark 3. The proofs presented in the previous and present subsections are given in the spirit
of [9]. A somewhat different approach is presented in [4]. To explain this approach in more
detail, we note that the limiting behavior of S(t, t0) is closely related to weak convergence,
as t → ∞, of the pair of random variables (τt , σt ), where σt = t − t0 − τt and τt is a
generally improper random variable τt with distribution given by (1). In fact, by (9), S(t, t0)f =
p(t)(Ut−sf −K�Ut−sf )+EKPσt�Uτt f,where E stands for the expected value. As t → ∞,

the pairs (τt , σt ) converge weakly to a pair (τ, σ ) distributed in [0,∞] × [0,∞] according to
Table 1 (see [4]). This fact may be used to offer another proof of Theorem 1, and sheds further
light on the results of the present section. For example, the key to the proofs of Propositions 5
and 6 is (23); the second integral in this equation is almost the same as EK((t − s − τt )/(t −
s))P̄σt�Uτt . This allows calculating the limit, as t → ∞, if τ is finite (the first two rows in the
table); when τ is infinite, this formula is of no help. The key to the proof of Proposition 7 is
(28), which allows calculating the limit only in the case where σ is finite.

Table 1.

Behavior of N(t) Random variable τ Random variable σ

limt→∞N(t) = 0 0 ∞
limt→∞N(t) = N , Exponential with

0 < N < ∞ parameter 2N ∞
limt→∞N(t) = ∞,∫ ∞

t0
du/2N(u) = ∞ ∞ ∞

limt→∞N(t) = ∞, Finite∫ ∞
t0

du/2N(u) < ∞ ∞ P(σ > w) = 1 − exp(− ∫ ∞
t0+w du/2N(u))

P(σ = 0) = exp(− ∫ ∞
t0

du/2N(u))
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4. Coherence

For the (unrestricted, symmetric) simple random walk or the standard Brownian motion,
the semigroup {Pt , t ≥ 0} is neither asymptotically stable nor ergodic. Although a pair of
simple random walks related via family ties has no stationary distribution, these processes
are coherent. This has been observed by Moran [36]. Inspired by Moran, Kingman [30]
considered a discrete-time Fisher–Wright model with constant population size 2N and mutation
in the form of a random walk, and showed that, as n → ∞, the vector Xn,2 − Xn,1, Xn,3 −
Xn,1, . . . , Xn,2N − Xn,1 converges in distribution; here Xn,i is the ith member of the nth
generation of the population, i = 1, . . . , 2N , and n ≥ 1. In this section we want to prove a
similar result in the case where the population varies in time and its individuals are represented
as random processes with values in a locally compact group. We assume that mutation follows
a Lévy process in this group. At each instant of time, we draw a pair of processes from such
a population and study the asymptotic behavior of the distribution of the difference between
these processes, with the difference taken in the sense of the underlying group.

4.1. Mutations in the form of a Lévy process

We assume that S is a topological group and that the process of mutation is modeled as a Lévy
process in S. Specifically, we assume that we are given a continuous convolution semigroup
{mt, t ≥ 0} of probability measures on S. This, by definition, means that (a) mt ∗ ms =
mt+s , s, t ≥ 0, (b) m0 = δe, where e is the neutral element of S and δe is the corresponding
Dirac measure, and (c) limt→0+mt = m0 in the weak∗ topology. We recall that m ∗ n is the
transport of the product measure m⊗ n on S × S via the map S × S � (p, q) �→ pq ∈ S. The
corresponding semigroup {Pt , t ≥ 0} on C0(S), given by

Ptf (p) =
∫

S
f (pq)mt ( dq), t ≥ 0, f ∈ C0(S), (29)

is strongly continuous [26]. Equation (29) is a special case of (3) with Pt(p, B) = mt(p
−1B),

whereB is a Borel subset of S andp−1B = {q;pq ∈ B}. If S is a Lie group then the generator of
{Pt , t ≥ 0} is described by Hunt’s theorem [26]. The corresponding tensor product semigroup
{Ut, t ≥ 0} is given by

Utf (p, q) =
∫

S

∫
S
f (pp′, qq ′)mt ( dp′)mt ( dq ′), t ≥ 0, f ∈ C0(S × S). (30)

4.2. The difference operator D

Let {X1(t), t ≥ t0} and {X2(t), t ≥ t0} be two S-valued processes sampled from the
Fisher–Wright population. Since S is not assumed to be abelian, there are four ways in which a
difference between these processes may be defined: (a) (X1(t))

−1X2(t), (b) X2(t)(X1(t))
−1,

(c) (X2(t))
−1X1(t), or (d) X1(t)(X2(t))

−1. Since the processes are exchangeable, though,
the distributions of (a) and (c) are the same, and so are the distributions of (b) and (d). Also,
definition (b) does not agree well with (29). We could work with (b), but then we would need
to replace (29) with Ptf (p) = ∫

S f (qp)mt ( dq); the results would be analogous. Hence, in
what follows we will consider only (a).

In order to find the distribution of (X1(t))
−1X2(t), we would need to apply an operator D∗

to the joint distribution ofX1(t) andX2(t); given a symmetric probability measurem on S ×S,
D∗ maps it into the transport of m via the map S × S � (p, q) �→ p−1q. Hence, we would
like to consider S(t, s)D, where D : C0(S) → C0s(S × S) is a predual to D∗. For a bounded

https://doi.org/10.1239/aap/1222868184 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1222868184


Feller evolution family 747

measurable f on S, let

Df (p, q) = 1
2 (f (p

−1q)+ f (q−1p)), p, q ∈ S.

ThenDf is symmetric and
∫
S×S Df dm = ∫

S f dD∗m. However,D does not map C0(S) into
C0(S × S); for example, if f ∈ C0(R) with f (0) �= 0 then Df (p, p) = f (0) �= 0, p ∈ R.
Fortunately, as Lemma 3, below, shows, if the left and right uniform structures on S are
equivalent, D maps the space Cu(S) of bounded, uniformly continuous functions on S into
Cu(S × S). Furthermore, see [26], (29) defines a strongly continuous semigroup in Cu(S).
Since (30) may be seen as a particular case of (29) (with S replaced by S × S and mt replaced
by mt ⊗ mt ), the tensor product semigroup {Ut, t ≥ 0} maps Cu(S × S) into itself. (Here,
S×S is a group with componentwise multiplication and product topology.) Hence, we consider
S(t, s)D as operators on Cu(S).

We recall that the left or right uniform structure on a locally compact group is the family of
sets LN or, respectively, RN , where N is a neighborhood of the neutral element e of S, LN

is the set of all (p, q) ∈ S × S such that p−1q ∈ N , and RN is the set of all (p, q) ∈ S × S
such that qp−1 ∈ N (see [25]). A real- or complex-valued function f on S is said to be
uniformly continuous with respect to the left or right uniform structure if, for any ε > 0,
there exists a neighborhood N such that (p, q) ∈ LN or, respectively, (p, q) ∈ RN implies
that |f (p) − f (q)| < ε. The space C0(S) is a subspace of Cu(S), the space of real bounded
functions that are uniformly continuous with respect to left (or right) uniform structures.

Lemma 3. Suppose that the left and right uniform structures on S are equivalent. Then D
maps Cu(S) into Cu(S × S).

Proof. Let f ∈ Cu(S). Since f is uniformly continuous with respect to the left uniform
structure, given ε > 0, we may find a neighborhood N of e such that |f (p) − f (q)| < ε

whenever p−1q ∈ N . Next, the left and right structures being equivalent, we may choose N ′
such that p−1q ∈ N ′ implies that qp−1 ∈ N . Since the map (p, q) �→ pq is continuous, there
is a neighborhood N ′′ of e such that p, q ∈ N ′′ implies that pq ∈ N ′. Moreover, N ′′ may be
assumed to have the property that p ∈ N ′′ implies that p−1 ∈ N ′′ (otherwise we may define a
new N ′′ as N ′′ ∩ (N ′′)−1). Finally, there exists a neighborhood N ′′′ of e such that qp−1 ∈ N ′′
whenever p−1q ∈ N ′′′. For p1, p2, q1, and q2 in S, we have

p−1
1 p2 ∈ N ′′′ and q−1

1 q2 ∈ N ′′′ �⇒ p2p
−1
1 ∈ N ′′ and q2q

−1
1 ∈ N ′′

�⇒ p1p
−1
2 ∈ N ′′ and q2q

−1
1 ∈ N ′′

�⇒ p1p
−1
2 q2q

−1
1 ∈ N ′

�⇒ q−1
1 p1p

−1
2 q2 ∈ N

�⇒ |f (p−1
1 q1)− f (p−1

2 q2)| < ε.

By symmetry, p−1
1 p2 ∈ N ′′′ and q−1

1 q2 ∈ N ′′′ imply that |f (q−1
1 p1)−f (q−1

2 p2)| < ε.Hence,
|Df (p1, q1) − Df (p2, q2)| < ε whenever p−1

1 p2 ∈ N ′′′ and q−1
1 q2 ∈ N ′′′. This shows that

Df ∈ Cu(S × S).

4.3. The evolution family T (·, ·)
LetP 
t f (p) = ∫

S f (qp)m


t ( dq) = ∫

S f (q
−1p)mt( dq).Then, sincePt commutes withP 
t ,

P
♦
t := PtP



t defines a strongly continuous semigroup. We have

P
♦
t f (p) =

∫
S

∫
S
f (r−1pq)mt( dq)mt ( dr). (31)

https://doi.org/10.1239/aap/1222868184 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1222868184


748 A. BOBROWSKI

Moreover, A♦f = Af + A
f, f ∈ D(A) ∩ D(A
), where A,A
, and A♦ are generators of
{Pt , t ≥ 0}, {P 
t , t ≥ 0}, and {P♦

t , t ≥ 0}, respectively.

Proposition 8. We have S(t, s)D = DT (t, s), t0 ≤ s ≤ t < ∞, where

T (t, s)f = ps(t)P
♦
t−sf +�D

∫ t

s

g(t, v)P
♦
t−vf dv. (32)

Moreover, T (t, s), t0 ≤ s ≤ t < ∞, is an evolution family in C0(S).

Proof. The following two properties of D are the key to the proof:

�Df (p) = f (e), p ∈ S, (33)

UtD = DP
♦
t , t ≥ 0.

The first of these is immediate, while the second follows by (31) and

UtDf (p, q) = 1

2

∫
S

∫
S
(f ((p′)−1p−1qq ′)+ f ((q ′)−1q−1pp′))mt ( dp′)mt ( dq ′).

Now, by (33), Pt�D = �D and KPt�Df (p, q) = f (e) = D�Df (p, q) for f ∈ Cu(S)
and t ≥ 0. This implies the first part of the proposition by (9). The rest is straightforward (use
P

♦
t �D = �D, t ≥ 0).

We see in particular that the distribution of (X1(t))
−1X2(t) depends on the distribution of

(X1(t0),X2(t0)) only via the distribution of (X1(t0))
−1X2(t0). The operators T (t, s) describe

the evolution of the distribution of the relative differences in time.

Proposition 9. Let A♦ be the generator of the semigroup {P♦
t , t ≥ 0}. Suppose that 2N(·) is

continuously differentiable. Then, for f ∈ D(A♦) and t > t0, x(s) = T (t, s)f is the solution
to the following (Kolmogorov backward) problem:

dx(s)

ds
= −A♦x(s)− 1

2N(s)
�Dx(s)+ 1

2N(s)
x(s), t0 ≤ s ≤ t, x(t) = f. (34)

Proof. For f ∈ D(A♦), the first term in (32) belongs to D(A♦). The second term, say
T1(t, s)f , is a constant function and so belongs to D(A♦) as well, and A♦T1(t, s)f = 0.
Moreover, direct differentiation gives

dT (t, s)f

ds
= 1

2N(s)
ps(t)P

♦
t−sf − ps(t)A♦P♦

t−sf − 1

2N(s)
�Dps(t)P

♦
t−sf

= −A♦T (t, s)f + 1

2N(s)
ps(t)(I −�D)P

♦
t−sf.

On the other hand, (33) gives �DT1(t, s) = T1(t, s). Hence, by (32), (I − �D)T (t, s) =
ps(t)(I −�D)P

♦
t−s . This shows that y(s) = T (t, s)f solves (34). Uniqueness of solutions is

proved as in Subsection 2.2 (immediately after Proposition 2).

By (33), (34) shows that genetic drift may be interpreted as a tendency to concentrate
the distribution of relative differences around the neutral element. We illustrate this fact and
Proposition 9 by the following examples.
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Example 4. (Two related Brownian motions with constant drift.) Let b > 0 and c ∈ R be
given constants. Also, let S = R and let

dmt := 1√
2πbt

exp

(
− (q − ct)2

2

)
dq, t > 0, m0 = δ0.

In this case

Ptf (p) = 1√
2πbt

∫ ∞

−∞
exp

(
−q

2

2

)
f (p + q + ct) dq, t > 0, p ∈ R,

and, since R is abelian, P 
t is given by the same formula with c replaced by −c. Thus,

A = b

2

d2

dp2 + c
d

dp
and A
 = b

2

d2

dp2 − c
d

dp

with common maximal domain in Cu(R), and so A♦ = A + A
 = b d2/ dp2 with the same
domain. Therefore, (34) becomes

dx(s, p)

ds
= −b d2x(s, p)

dp2 − 1

2N(s)
x(s, 0)+ 1

2N(s)
x(s, p), t0 ≤ s ≤ t, p ∈ R,

with final condition x(t, ·) = f, f ∈ D(A♦).

Example 5. (Two related telegraph processes.) Let a and v be given positive constants, and
let {M(t), t ≥ 0} be a Poisson process with EM(t) = at . The process

pt =
(
v

∫ t

0
(−1)M(s) ds, (−1)M(t)

)
, t ≥ 0,

is referred to as the telegraph process since, as shown by Kac [28], who was inspired by
Goldstein [23], the solutions to the telegraph equation may be expressed by means of its
expected values [5], [19], [38]. Its state space is a noncommutative locally compact group
S = R × {−1, 1} with the topology induced from R

2 and the multiplication rule (τ, k)(ξ, l) =
(lτ + ξ, kl). The left and right uniform structures on S are equivalent. The distributions mt of
pt , t ≥ 0, form a continuous convolution semigroup of probability measures on S [5], [32],
and their explicit form is known [5], [27], [38], [43], but will not be used here. The space
Cu(S) is isometrically isomorphic to the Cartesian product of two copies of Cu(R) with the
norm ‖(f1, f2)‖ = maxi=1,2 ‖fi‖Cu(R).

Let D be the set composed of pairs (f1, f2) ∈ Cu(R) × Cu(R) such that both fi are
differentiable and f ′

i ∈ Cu(R), i = 1, 2. We claim that D is the domain of the generator A
of {Pt , t ≥ 0}, and A(f1, f2) = v(f ′

1, f
′
2)+ a(f̃2, f̃1)− a(f1, f2) for (f1, f2) ∈ D, where

f̃ (τ ) = f (−τ). Since (τ, k)(vt, 1) = (τ + vt, k),D is the domain of the generator A� of the
semigroup {P�

t , t ≥ 0}given byP�
t f (p) = f (p(vt, 1)), and we haveA�(f1, f2) = v(f ′

1, f
′
2)

for (f1, f2) ∈ D . Moreover, eat E 1{M(t)=0} f (ppt ) = P�
t f (p). Hence,

t−1(eatPtf (p)− P�
t f (p)) = t−1eat E 1{M(t)=1} f (ppt )+ t−1eat E 1{M(t)≥2} f (ppt ) (35)

for f ∈ Cu(S), p ∈ S, and t > 0. The second term on the right-hand side converges to 0,
as t → 0+, uniformly in p ∈ S. On the set where M(t) = 1, the distance between pt and
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(0,−1) does not exceed vt. Hence, by continuity of f , the first term converges to f (p(0,−1))
uniformly in p ∈ S. Therefore, (35) shows that f belongs to the domain of A if and only if it
belongs to the domain of A� and Af (p) = A�f (p)+ af (p(0,−1))− af (p) for p ∈ S and
f in the domain, as claimed.

The same argument shows that D is the domain of the generator A
 of {P 
t , t ≥ 0} and
A
(f1, f2) = v(−f ′

1, f
′
2)+ a(f2, f1)− a(f1, f2) for (f1, f2) ∈ D .

Since A♦f = Af + A
f, f ∈ D(A) ∩ D(A
), D is contained in the domain D(A♦) of
A♦ and A♦(f1, f2) = (2a(f2)e − 2af1, 2vf ′

2 + 2a(f1)e − 2af2), where fe(τ ) = 1
2 (f (τ ) +

f (−τ)). The operator given by the right-hand side here, with domain D ′ composed of pairs
(f1, f2) ∈ Cu(R) × Cu(R), where f2 is differentiable with f ′

2 ∈ Cu(R), is a bounded
perturbation of the generator of the Feller semigroup {P�

t , t ≥ 0}, whereP�
t f (τ, 1) = f (τ, 1)

and P�
t f (τ,−1) = f (2vt + τ,−1), τ ∈ R. Hence, by Phillips’ perturbation theorem [5],

[17], [37], it generates a Feller semigroup. On the other hand, by the Dynkin–Reuter lemma
(see, e.g. [41, p. 237] ), it cannot be a proper extension ofA♦ and we must have D(A♦) = D ′.
Hence, (34) becomes

dx1(s, p)

ds
= −a(x2(s, p)+ x2(s,−p))+ 2ax1(s, p)+ 1

2N(s)
(x1(p)− x1(0)),

dx2(s, p)

ds
= −2vx′

2(s, p)− a(x1(s, p)+ x1(s,−p))+ 2ax2(s, p)

+ 1

2N(s)
(x2(p)− x1(0)),

for t0 ≤ s ≤ t , with x(t, ·) = (f1, f2) ∈ D ′.

Example 6. (Two related Lévy processes on the Klein group.) Let S be the (commutative) Klein
group with four elements p1, . . . , p4 (neutral element p1, and multiplication rules p2p3 =
p4, p2p4 = p3, and p3p4 = p2) endowed with the discrete topology. Any finite measure m
on S may be identified with a four-dimensional column vector with nonnegative coordinates,
and any continuous convolution semigroup of probability measures on S is of the form (see
[5, pp. 291–292])

mt = 1

4
G

⎡
⎢⎢⎣

1
rt1
rt2
rt3

⎤
⎥⎥⎦ , where G =

⎡
⎢⎢⎣

+1 +1 +1 +1
+1 −1 −1 +1
+1 −1 +1 −1
+1 +1 −1 −1

⎤
⎥⎥⎦ , (36)

and r2 = exp(− 1
2 (α2 + α3)), r3 = exp(− 1

2 (α2 + α4)), and r4 = exp(− 1
2 (α3 + α4)) for

some nonnegative constants α2, α3, and α4. The left canonical representation R : m �→ Rm

of the convolution algebra of measures on S maps a measure represented by numbers ai, i =
1, 2, 3, 4, into the matrix Rm with rows (a1, a2, a3, a4), (a2, a1, a4, a3), (a3, a4, a1, a2), and
(a4, a3, a2, a1) so that m ∗ n is the matrix product of Rm and n. Moreover, if members of
Cu(S) = C0(S) = C(S) are identified with row vectors then Ptf is the matrix product
of f and Rmt . Also, A is bounded and may be represented by the matrix of the form of
Rm with ai replaced by αi, i = 1, . . . , 4, where α1 = − ∑4

i=2 αi. Since S is abelian and
p−1
i = pi, i = 1, . . . , 4, P 
t = Pt and so P♦

t = P2t . Therefore, A♦f = 2fA (the matrix
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product) and (34) becomes

dx1(s)

ds
= −2α1x1(s)− 2α2x2(s)− 2α3x3(s)− 2α4x4(s),

dx2(s)

ds
= −2α2x1(s)− 2α1x2(s)− 2α4x3(s)− 2α3x4(s)+ 1

2N(s)
(x2(s)− x1(s)),

dx3(s)

ds
= −2α3x1(s)− 2α4x2(s)− 2α1x3(s)− 2α2x4(s)+ 1

2N(s)
(x3(s)− x1(s)),

dx4(s)

ds
= −2α4x1(s)− 2α3x2(s)− 2α2x3(s)− 2α1x4(s)+ 1

2N(s)
(x4(s)− x1(s)),

for t0 ≤ s ≤ t , with xi(t) = fi ∈ R, i = 1, . . . , 4.

4.4. Asymptotic behavior of relative differences

4.4.1. Asymptotically constant population. Proposition 8 reduces the problem of studying the
asymptotic behavior of the distribution of relative differences to that of studying the asymptotic
behavior of T (t, s), t0 ≤ s ≤ t, as t → ∞. The main result of this subsection says that, as
t → ∞, regardless of the form of the initial distribution, the distribution of the difference of
two Lévy processes related via family ties in a population of asymptotically constant size 2N0
converges weakly to the measure represented via the functional f �→ λ(λ−A♦)−1f (e),where
λ = (2N0)

−1 and e is the neutral element in S.

Theorem 2. Suppose that the population size is asymptotically constant. Then

lim
t→∞ T (t, s)f = λ�D(λ− A♦)−1f = (λ(λ− A♦)−1f (e)) 1S, f ∈ Cu(S).

Proof. Rewriting (32), T (t, s)f = ps(t)P
♦
t−sf +�D

∫ ∞
0 1[0,t−s)(v)g(t, t − v)P♦

v f dv.
The first term here is bounded by ps(t)‖f ‖ and, hence, converges to 0 as t → ∞. Since
the integrand in the second term is bounded by (constant)e−(constant)v‖f ‖ and converges, for
all v, to λe−λvP♦

v f, the claim follows by the dominated convergence theorem.

A similar theorem was obtained in [9] in the case where S was the group of integers.

Example 7. (Two related Brownian motions (continued).) We come back to the situation of
Example 4 and recall that [5], [40], [41], [47]

Rλf (p) := (λ− A♦)−1f (p) = 1

2
√
bλ

∫ ∞

−∞
exp(−

√
λb−1|q|)f (p + q) dq. (37)

Hence,

λ(λ− A♦)−1f (0) = 1

2

√
λ

b

∫ ∞

−∞
exp(−

√
λb−1|q|)f (q) dq.

This means that the distance between two Brownian motions with diffusion coefficient b, drawn
from a Fisher–Wright population of approximately constant size 2N0, has bilateral exponential
distribution (see [21, p. 49]) with parameter α = (2N0b)

−1/2.

Example 8. (Two related telegraph processes (continued).) In Example 5, (g1, g2) = (λ −
A♦)−1(f1, f2), where λ := 1/2N0 solves

λg1 − 2a(g2)e + 2ag1 = f1,

λg2 − 2vg′
2 − 2a(g1)e + 2ag2 = f2.
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Substituting

g1 = 2a

λ+ 2a
(g2)e + 1

λ+ 2a
f1

into the second equation, we obtain

(λ+ 2a)g2 − 2vg′
2 − 4a2

λ+ 2a
(g2)e = 2a

λ+ 2a
(f1)e + f2.

By the main result of [8],

g2 = 1

4v
(Rµf2)

′ + a

2v(λ+ 2a)
(Rµ(f1)e)

′ + λ+ 2a

8v2 Rµf2

+ a

4v2Rµ(f1)e − 4a2

8v2(λ+ 2a)
Rµ(f2)o,

where µ = (λ2 + 4aλ)/8v2, Rµ is given by (37) with b = 1
2 and ho(τ ) := 1

2 (h(τ )− h(−τ))
for h ∈ Cu(R). Hence,

g1 = 1

λ+ 2a
f1 + a

2v(λ+ 2a)
(Rµ(f2)o)

′ + a

4v2Rµ(f2)e + a2

2v2(λ+ 2a)
Rµ(f1)e.

Moreover,

(Rµho)
′(0) = (Rµh)

′(0) =
∫ ∞

0
e−√

2µh(τ) dτ −
∫ 0

−∞
e
√

2µh(τ) dτ

and

Rµhe(0) = Rµh(0) = 1√
2µ

∫ ∞

−∞
e−√

2µ|τ |h(τ) dτ, h ∈ Cu(R).

Hence, λg1(0) = λ(λ− A♦)−1(f1, f2)((0, 1)) equals

ρ1f1(0)+ ρ2

√
µ

2

∫ ∞

−∞
e−√

2µ|τ |f1(τ ) dτ

+ ρ3
√

2µ
∫ ∞

0
e−√

2µτf2(τ ) dτ + ρ4
√

2µ
∫ 0

−∞
e
√

2µτf2(τ ) dτ, (38)

where ρ1 = λ/(λ+ 2a), ρ2 = a2λ/2v2µ(λ+ 2a), ρ3 = aλ/8v2µ+ aλ/2v√2µ(λ+ 2a), and
ρ4 = aλ/8v2µ− aλ/2v

√
2µ(λ+ 2a) are positive with

∑4
i=1 ρi = 1.

This means that the limit distribution of the difference of two telegraph processes related
via family ties in a population of asymptotically constant size is a convex combination of two
probability measures on R×{1} and two probability measures on R×{−1}.On R×{1}, these
are the point mass at (0, 1) and the bilateral exponential distribution with parameter α = √

2µ,
and on R × {−1}, these are the exponential distribution with parameter α = √

2µ and its
mirrored distribution (see [21, p. 49]).

Remark 4. For v = √
a, letting a → ∞ in (38), we obtain (λ/4)Rλ/2f1(0)+(λ/4)Rλ/2f2(0);

if f1 = f2 = f , this is the quantity obtained in Example 7 (with b = 1
2 ). This is a reflection of

the fact that, as a → ∞,
√
a

∫ t
0 (−1)M(s) ds converges in distribution to a standard Brownian

motion [5], [19], [38].
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Example 9. (Two related Lévy processes on the Klein group (continued).) The neutral element
of the Klein group is p1, and λ(λ − A♦)−1f (p1) is the scalar product of the row vector f
and the first column of the matrix λ(λ− 2A)−1 = (λ/2)(λ/2 − A)−1. In other words, the
distribution of the difference between two exchangeable Lévy processes with values in the
Klein group drawn from the Fisher–Wright population of asymptotically constant size 2N0 is
the first column of (λ/2)(λ/2 − A)−1. On the other hand, by (36), (λ/2)(λ/2 − A)−1 equals

λ

2

∫ ∞

0
e−(λ/2)tRmt dt = R(λ/2)

∫ ∞
0 exp(−(λ/2)t)mt dt = R(λ/8)Gv̄� ,

where v̄ = ∫ ∞
0 e−(λ/2)t (1, rt2, rt3, rt4) dt = (2/λ, 2/(λ− 2 ln r2), 2/(λ− ln r3), 2/(λ− ln r4)).

Since, for anym, the first column of Rm is simplym, the searched-for distribution is (λ/8)Gv̄�.

4.4.2. Expanding population. For most of the theory developed in this paper, it has been
convenient to focus on spaces of real functions. However, in turning to the Fourier transform,
a step we are to take in this subsection, we need to work with complex, uniformly continuous
functions on R. Fortunately, all the results from the previous subsections translate to the case of
complex functions, with possible cosmetic changes. Hence, we may and will consider Cu(R)
as the space of complex, bounded uniformly continuous functions on R.

It is the genetic drift that is the reason for the existence of a stationary distribution of relative
differences found in Theorem 2, and in the absence of this force, there is no hope for a similar
result. In rapidly growing populations, the joint distributions of attributes of pairs of individuals
behave essentially as if they were independent. However, if the population size does not grow
to infinity sufficiently fast, there may remain subtle dependencies between them. We illustrate
this by considering the case where S = R and mutation is modeled by a real Lévy process
of bounded variance σ 2(t) = bt and expected value ct , where b > 0 and c ∈ R are given
constants [21, Chapter IX.4]. In terms of the semigroup {Pt , t ≥ 0}, this means that (compare
[21, Chapter XVII])

Pteτ = eτ etψ(τ), (39)

where eτ (p) = eiτp,

ψ(τ) = b

∫ ∞

−∞
eiτp − 1 − iτp

p2 M( dp)+ icτ,

and M is a probability measure. (This is the Lévy–Khintchine formula in the case of finite
variances.)

Theorem 3. Suppose that (39) holds and that the population size grows to infinity rapidly,
so that

∫ ∞
t0

dt/2N(t) =: κ < ∞. For t ≥ t0, let X(t) = (X1(t), X2(t)) be a random vector
such that S(t, t0)f (p, q) = E f (p + X1(t), q + X2(t)), f ∈ Cu(R2). Then, as t → ∞, the
vectors Y (t) = (Y1(t), Y2(t)) = (1/

√
t ′)(X1(t)− ct ′, X2(t)− ct ′), where t ′ = t − t0, tend in

distribution to a normal vector with characteristic function exp(−b(τ 2 + σ 2)/2).

Proof. Introducing eτ,σ (p, q) = eτ (p)eσ (q) for τ, σ, p, q ∈ R we obtain Uteτ,σ =
et (ψ(τ)+ψ(σ))eτ,σ , t ≥ 0. Since �eτ,σ = eτ+σ , a straightforward calculation shows that

KPv−t0�Ut−veτ,σ = e(v−t0)ψ(τ+σ)e(t−v)(ψ(τ)+ψ(σ))Keτ+σ , v ∈ [t0, t].
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Therefore, by (9), E exp(iτX1(t)) exp(iσX2(t)) = S(t, t0)eτ,σ (0, 0) equals

pt0(t)e
t ′(ψ(τ)+ψ(σ)) +

∫ t

t0

g(t, v)e(v−t0)ψ(τ+σ)e(t−v)(ψ(τ)+ψ(σ)) dv,

and so
E exp(iτY1(t)) exp(iσY2(t)) = pt0(t) exp

(
t ′
(
ψ0

(
τ√
t ′

)
+ ψ0

(
σ√
t ′

)))

+ exp

(∫ ∞

t

ds

2N(s)

) ∫ t

t0

1

2N(v)
exp

(
−

∫ ∞

v

ds

2N(s)

)

× exp

(
(v − t0)ψ0

(
τ√
t ′

+ σ√
t ′

))

× exp

(
(t − v)

(
ψ0

(
τ√
t ′

)
+ ψ0

(
σ√
t ′

)))
dv,

whereψ0(τ ) = ψ(τ)− icτ.We have limt→∞ tψ0(τ/
√
t) = limh→0+(ψ0(hτ)−ψ0(0))/h2 =

(τ 2/2)ψ ′′
0 (0) = −(τ 2/2)b.Hence, all the moduli of the exponents involvingψ0 being bounded

by 1, by the dominated convergence theorem, we have

lim
t→∞ E exp(iτY1(t)) exp(iσY2(t))

= e−κ exp

(
−b τ

2 + σ 2

2

)
+

∫ ∞

t0

1

2N(v)
exp

(
−

∫ ∞

v

ds

2N(s)

)
dv exp

(
−b τ

2 + σ 2

2

)

= exp

(
−b τ

2 + σ 2

2

)
.

This completes the proof.

Example 10. This example shows that the assumption of fast growth is crucial for Theorem 3
to hold. We consider simple linear growth: 2N(t) = t ′ + a, where a > 0. Then g(t, v) =
1/(t ′ + a), pt0(t) = a/(a + t ′), and

E exp(iτY1(t)) exp(iσY2(t))

= a

t ′ + a
exp

(
t ′
(
ψ0

(
τ√
t ′

)
+ ψ0

(
σ√
t ′

)))

+ 1

t ′ + a

∫ t

t0

exp

(
(v − t0)ψ0

(
τ√
t ′

+ σ√
t ′

))

× exp

(
(t − v)

(
ψ0

(
τ√
t ′

)
+ ψ0

(
σ√
t ′

)))
dv

= a

t ′ + a
exp

(
t ′
(
ψ0

(
τ√
t ′

)
+ ψ0

(
σ√
t ′

)))

+ 1

t ′ + a

× exp((t − t0)ψ0(τ/
√
t ′ + σ/

√
t ′))− exp((t − t0)(ψ0(τ/

√
t ′)+ ψ0(σ/

√
t ′)))

ψ0(τ/
√
t ′ + σ/

√
t ′)− ψ0(τ/

√
t ′)− ψ0(σ/

√
t ′)

dv

→ exp

(
−b τ

2 + σ 2

2

)
1 − e−τσb

τσb
as t → ∞.

Clearly, the limit vector has normal, but correlated coordinates.
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Appendix A

Proposition 10. The dual to C0s(S ×S) is (isometrically isomorphic to) the space Ms(S ×S)
of finite regular symmetric Borel measures on S × S.

Proof. A symmetric Borel measure µ induces a bounded functional f �→ ∫
S×S f dµ on

C0s(S × S). On the other hand, by the Hahn–Banach and the Riesz representation theorems,
a bounded functional F on C0s(S × S) may be extended to the functional f �→ ∫

S×S f dν on
C0(S × S) with the same norm, where ν is a finite regular Borel measure on S × S. Let νZ be
the transport of ν via Z.We have

∫
S×S

f dνZ =
∫

S×S
f dν for f ∈ C0s(S × S).

Hence,Ff = ∫
S×S f dµ, whereµ = 1

2 (ν+νZ) is a regular, finite, symmetric Borel measure on
S×S.Moreover, an f ∈ C0(S×S)may be written as f = fs+fas, where fs = 1

2 (f +f ◦Z) is
symmetric and fas = 1

2 (f −f ◦Z) is asymmetric, so that
∫
f dµ = ∫

fs dµwhile ‖fs‖ ≤ ‖f ‖.
Hence,

‖F‖(C0s(S×S))∗ = sup
f∈C0(S×S),‖f ‖≤1

∣∣∣∣
∫

S×S
f dµ

∣∣∣∣ = ‖µ‖Ms(S×S).

Let R be the equivalence relation in S × S given by

(p, q)R(p′, q ′) ⇐⇒ Z(p, q) = Z(p′, q ′).

The quotient space S
 = (S × S)/R is equipped with the natural topology, termed quotient
topology [11], defined as the family of all sets B in S
 such thatM−1B is an open set in S ×S,
where M is the canonical map assigning the class [(p, q)] ∈ S
 to a point (p, q) ∈ S × S.
This topology is the strongest in which M is continuous.

Lemma 4. The map M is both open and closed. Moreover, for a compact set K ⊂ S
, the
counterimage M−1K of K is compact.

Proof. Suppose that O is an open set in S ×S. ThenM−1MO = O ∪ZO is open, and so is
MO. Similarly, suppose that C is closed in S × S. Then M−1((MC)c) = (C ∪ ZC)c is open,
C ∪ ZC being closed. Thus, (MC)c is open in S
, whence MC is closed.

Let a nonempty K ⊂ S
 be compact. A subset A of S × S is said to be antisymmetric if

A ∩ ZA ⊂ {(p, p) ∈ S × S;p ∈ S}.
The family of antisymmetric subsets ofM−1K is partially ordered by the relation of inclusion,
and nonempty, as it contains at least one singleton. Also, any linearly ordered subfamily of this
family has an upper bound, namely the union of all elements of this subfamily. Hence, by the
Kuratowski–Zorn lemma, there exists a maximal antisymmetric subset, say Am, of M−1K.

The mapM establishes a one-to-one correspondence between elements of Am and elements
of K . Indeed, M restricted to this set is injective, Am being antisymmetric, and ‘onto’, since
Am is maximal. Hence, a straightforward reasoning based on the fact that M is open shows
that Am is compact.

On the other hand, ZAm ⊂ M−1K is also antisymmetric and maximal, and so, by the same
reasoning, it is compact. Finally, M−1K is compact as a union of two compact sets, namely
Am and ZAm.
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Clearly, S
 is a Hausdorff space. Since, by Lemma 4, it is also the image of the locally
compact space S × S via an open map, S
 is locally compact [18].

Proposition 11. The spaces C0(S
) and C0s(S × S) are isometrically isomorphic.

Proof. For a continuous symmetric function f on S×S, define Jf on S
 by Jf ([(p, q)]) =
f (p, q), where [·] is an equivalence class of R. By the definition of the topology in S
, Jf is
continuous, and

sup
ξ∈S


|Jf (ξ)| = sup
(p,q)∈S×S

|f (p, q)| (finite or infinite).

Also,

{ξ ∈ S
 | Jf (ξ) �= 0} = MU, where U = {(p, q) ∈ S × S | f (p, q) �= 0}.
Hence, M being continuous, the support

supp(Jf ) = MU ⊃ MU = M supp(f ).

On the other hand, M being closed, M supp(f ) is closed, and so, since M supp(f ) contains
MU,

supp(Jf ) = MU ⊂ M supp(f ).

Hence,
supp(Jf ) = M supp(f ). (40)

If f has compact support then, by (40), supp(Jf ) is compact as the continuous image of
the compact set supp(f ). This implies that J maps C0s(S × S) into C0(S
) in an isometric
manner. On the other hand, if g on S
 is continuous with compact support then f := g ◦M is
symmetric (forM ◦Z = M) and, by Lemma 4 and (40), has compact support; clearly, g = Jf .
Thus, J being an isometry and having dense image is onto.
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