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THETA-FUNCTIONS AND HILBERT MODULAR FORMS
STEPHEN S. KUDLA

Introduction

The purpose of this note is to show how the theta-functions attached
to certain indefinite quadratic forms of signature (2,2) can be used to
produce a map from certain spaces of cusp forms of Nebentype to
Hilbert modular forms. The possibility of making such a construction
was suggested by Niwa [4], and the techniques are the same as his and
Shintani’s [6]. The construction of Hilbert modular forms from cusp
forms of one variable has been discussed by many people, and I will not
attempt to give a history of the subject here. However, the map
produced by the theta-function is essentially the same as that of Doi
and Naganuma [2], and Zagier [7]. In particular, the integral kernel
Q(z, 2y, 2,) of Zagier is essentially the ‘holomorphic part’ of the theta-
function.

Professor Asai has kindly informed me that he has also considered
the case of signature (2,2) and has obtained similar results. In [9],
Professor Asai has studied the case of signature (8,1) and has shown
that forms of signature (3,1) can be used to produce a lifting of cusp
forms of Neben type to modular forms on hyperbolic 3-space with respect
to discrete subgroups of SL,(C). The case of signature (n — 2,2) has
been considered by Rallis and Schiffman [10], [11], and by Oda [12].

1. Construction of the theta-functions

Let k = Q(+/4) be the real quadratic field with discriminant 4, and
let ¢ be the Galois automorphism of %/@Q. Let

V = {X e M,(k) such that X* = —X°}
:{X:(ml x4);xlek, Zay x4eQ}.

T3 —@f

Received October 19, 1976.
97

https://doi.org/10.1017/50027763000017955 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017955

98 STEPHEN 8. KUDLA

Let QX)) = —2det (X) and (X,Y) = —tr (XY*) where ¢ is the usual
involution of M,(k). Then V is a rational vector space and Q is a @ valued
non-degenerate quadratic form on V. Let SO(Q) be the special orthogonal
group of @ over @, and let G = SL,(k) viewed as an algebraic group
over Q. Then define a rational representation p: G — SO(Q) by p(9)X =
g°Xg for geG and X e V.

Let Vpi=V @R ={X=X,X)eM,RB X M)(R), X:= —X,}, and
identify V,p with M,(R) via the projection X — X, on the first factor.
Then if X = (i; g;) Ve QX) = 2@y, — 2,2,).

Let SO(Q)% be the connected component of the special orthogonal
group of Vg, Q. Identify Gy = SL,(R) X SL,(R), and extend the repre-
sentation p to p: Gy — SO(Q)% via p(9)X = ¢,Xg; for g = (9,,9,) € G and
XeVg.

Let LX(Vy) = square integrable functions on V; for Lebesgue measure,
and let S(Vz) = Schwartz functions on V,. Then for ¢ € SL,(R), let 7(s, Q)
be the unitary operator on L*(R) defined by:

jaf el(ab/2)(X, X1f@X)  if ¢ =0
o, @70 = lei* det Qe [ o @D =2 XD 5 yay
VR

Cc

ife#0.

Here e[t] = e, ¢ = (g 2) For details see [6].

Let Gy act in L¥(Vp) via (g- /)X) = f(p(9)7'X). Then the operators
r(c, @) and g commute and preserve the space S(Vp).

Let S(Vy), = {f €S2 s.t. 700, QF = 7, vl = (_ 597 S 0N

For XeVy, let R(X) =22 + 23 + 22 + «2; then R is a majorant of
Q and p(SO@2) x SO2)) < SO@)% N SOR).

Let #gr={reVe=V &, C=M,(C) s.t. Qr =Rr, and Q) = 0}.
Then, #¢ r = Cr U CF, where » = (:%1 _—t) Moreover, R(X) + QX) =
(X, [

Now for ve Z,,, let f(X) = (X,r)e="*®. Then f € S(Vg),, [6, lemma
1.2]; and if k = (k,, k,,) € SO2) X SO2), then k.f = e-#1+% f,

For M e Q., let Q(X) = MQ(X), (, )y = M(, ), and By(X) = MR(X).
Then R, is a majorant of Qu, Foury = For FyX) + QuX) =
M (X, Myl and fy(X) = (X, r)ye"FaD g in S(Vyg), with respect to the
operators r(o, Q).
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Let L be a lattice in V, and let L} ={YeVs.t. (X,Y)yeZ,vXeL}.
Assume L% D L. Then for z = u + iv e §) = the upper half-plane, g € G,
and & e L}, define the theta-function:

0z, 9, h) = v‘”’zé {r(oz Qu) S ul(e(9)7'(€ + k)

where

1/2 -1/2
g, = (”0 ":}”_1/2) e SL,(R) .

Transformation laow: If y = (g’ Z) e SL,(Z), such that vX, YelL,
ab(X,X) = cd(Y,Y) =0Q), and cLE C L, ¢(Y,Y) =02), vYeL%, ¢c+0:
Then

8(rz, g, h) = (%)J(r, z)”e[%ab(h, h)M]e(z, g, ah)

where D = D(L) = det ((2;, 2;)) for some Z basis of L, (—) is the quadratic
symbol as in Shimura [5], and J(y,2) = ¢z + d.

In particular, if N,e Z., such that N,L} C L, and Ny(X,X) = 02),
vX e L%, N = 4N,. Then,

vy e I'(N) = {(Z‘ Z) eSL(Z), c=b=00N), o =d = 1(N)} ,

0(7’2, 9, h = J(T’ z)po(z’ 9, h) .

Moreover, let 'y = {g € SL,(k) s.t. p(9)L = L}. Then I'; preserves L,
and v9' ey,

0(2, g,g, h) = 0(2«', g9, P(g/)—lh) .

Remark. These transformation laws follow easily from Propositions
1.6 and 1.7 of Shintani [6], and hold for analogous functions constructed
from any feS(Vg),. For the particular f chosen above, they could be
proved just as in Siegel [8] and Shimura [5]. In fact,

r(o,, Q) (X) = ve[fu(X, X)v/*(X, r)re EX |
So that,
0(z,9,h) =v 3, (p(9)7(€ + h), r)yerwerivRe@=1¢im)
el

It should be noted that 4(z, g, ») is not holomorphic in z.
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2. The inner product with the Poincaré series

Since M will be fixed throughout this section, it will be dropped as
a subscript e.g. (,) =(, )y.

Let N = 4N, as before.

Let S,(I'(N)) be the space of cusp forms of weight v for I'(N). Then
for ¢ € S,(I"(N)), the following integral is well defined:

7(g,h) = j o(2)0(z, g, h)v*~*dudw

where % is a fundamental domain for I'(N).
Now assume that v> 2, and let I'. = {yeI'(N) s.t. yoo = 0}. Let
2 = a set of representatives for I'.,\I'(N), and let

_ 1 e[
Pa(R) = N ép Iy, 2) e[ N rz]
be the n-th Poincaré series for I'(N) of weight v. Let

7.9, h) = L_ 0(2)0(z, 9, W)v*~-*dudv .

PropPoSITION 1. If v > 17, n >0, then:

V9, ) = a>['()M 2, @7+ ),

‘e
(l+h,l+h)=2n/N

Proof.

7. (g, h) = L (@0, 9, Tyv-rdudy

Il

1 LN <Z TG z)—ve[,z% TZDW?)”‘Wudv

TER

Il

j J(@, 2)” “e[—N— 7z]6(z 9, v *dudv

If

Il

gl

N
1
N 7
% J J(r,r"z)‘”e[N ]m)v(r“z)”v‘zdudv
1
N/

.[ e[wz]ﬁ(z, g, v 2dudv

ez

1

= ~ ) e[wzlﬁ(z, g, hv~*dudv

where & is a fundamental domain for I".,. Take . ={z¢} s.t. 0 <
Rez < N},
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v, h) =L [ jN e[—n-z]v‘”” > ve[—ﬁ(e R0+ h)]
nA N Jo Jo N icL 2 ’

X f@'7(9)7(4 + h))v~dudv
[T et s (Mol 2 — Lo 4 my 0+ m|du
¢eL Jo 2

0 N
X flv"p(@)~ (¢ + h))dv
— jw @270/ N py/2=1 Z vp/z(p(g)—l(g + h), 7)»6—xu3(p(g)~1(z+n))d,v .

0

1
N

i

‘el
(¢+nyb+h)=2n/N

If v > 17, the sum and integral in the last expression can be switched,

V.9, h) = 2. f: v e N (0(9) 76 + h), Tyem T EE@TIErM gy

{EL
(6+hyb+h)=2n/N

= T0) Y 6@+ b, v)(%% + R(p(g)™(0 + h)))

Le
(+hyt+h)=2n/N

-y

But now,

2n/N + R(p(9)7(¢ + 1) = (Q + R)(p(9)7'(¢ + 1))
= M~ [(o(9)7*(¢ + B), 1)},

by the property of » remarked in section 1. Substituting this into the
last expression yields the desired result.

Now, as observed in section 1, if k = (%,, k,,) € SO2) X SO2), then
k- f = e ®0+0 £ Consequently,

0(z, gk, h) = e~®1+%4(z, g, h)
and so,

U(gk, h) = e*"+2¥ (g, h) .
Then for (z,7)) €Y Xy, and a,,,,, = (¢, 0,,), the function

V(2,255 B) = (0,0) W (02,25 1)
satisfies
V(921 9°%2, 1) = J (g, 20°T (9, 20"V (21, 20, p(9)™*1)

for all ge ;.

PROPOSITION 2. If v > 1T, (2,2, h) i8 a holomorphic automorphic
form of weight v on § X § with respect to

Tin=1{9el; st p(@)h = hmodL) .
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In particular,

‘!’n(zn 2y h) = ('vﬂ)z)-v/zqrn(o'zl,za’ R)
= M*n=*I"(v) > (— 24212, + X2 + 252, + )

LEL
6+ hyb+h)=2n/N

where

e+h=(”1

x
4), ek, x,0eQ.
T3 —@f

Recall that (,) = (, )y

Proof. The only point to be proved is that +(z,, 2, #) is holomorphic;
and, since the Poincare series ,(2) span S,(I'(N)), it will be sufficient
to prove that the +,(z;, 25, #) are holomorphic. Since

e(9) € SOQ) , (@) + ), 1) = (¢ + h, p(D)7) .
On the other hand,

- ¥/
0(02,,2)7 = 05,70, = (vlvz)"m( il z; ’) .
- 1

Then if ¢ + h is as above,
¢ + h, ‘O(O'z,,zz)T) = (0,0) VP M(—2:2.2, + 2,21 + X2, + 2,) .

Substituting this into the formula for ¥, given in proposition 1, and
multiplying the result by (w,v,)™** yields the desired expression for +,.
Finally observe that, since

M (p(0,,2)7 (4 + ), 1P = (Q + E)p(0,,.,)7' (¢ + 1),

and Q¢ + h) =2n/N >0, and R is positive definite, the expression
—X2.2, + ®.2, + X2, + x, never vanishes on § X §. Thus +, is holomor-
phic as claimed.

3. An example

Take M =1, so that Q4(X) = Q(X) = —2det (X). For NeZ,, let

L = {(xl x4) s.t. x,el;, x,e NZ, x,¢ Z} .

Ty —x

L* = {(yl y“) st. 1,€D, y,eZ, y4eiZ}.
Y —Yi N
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Then (,) is even integral on L, N’(, ) is even integral on L*, where N’
is the least common multiple of N and 4.

D) = N4 and L*/L ="/0,®Z/NZ® %Z/Z :
Moreover,

I'y

U

{(“ g) e SL,(0)) s.t. tr (Fay) e NZ, vy, €0, 17° € Nz}
T

> FN) = {(‘;‘ /;) e SL,0y) s.t. e N@k} .

Now for reZ/NZ, let h, — (g g) ¢L*. Then (h,h) =0, and if
g = (“ §> e I'(N), then o(g)"'h, = h,.., mod L.
r
Let y be a character of (Z/NZ)®, and set

0z, 9,0= 2. xog,h,) .
r€Z/NZ

(r,N)=1

Then, vyeI'y(N"),
02, 9, 1) = x(d)(-ﬁli)J(r, 20(z, 9, 7)

Thus by the procedure of section 2, 6(z, g,y yields a map

Sr@, - (4)) —> 8.0, D

where 7(0) = x(66°).
In particular, taking N = 1, and v even yields a map

sv<r<,(4), (é)) > S,SLy(0)) .

4, The ‘Mellin transform’

Let (2, 2,) € S,(SL,(0,)) with v even. Then + has a Fourier ex-
pansion of the form:

Nn=—o0

Vewz) = 3 e®) 3 eléera + £aal,

€
£>0,mod U}

where ®! is the inverse different of k, and ¢, is a fundamental unit.
The ‘Mellin transform’ of + is given by:
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D#(s, ) = I: j B ire®, ire= ) dw di

—log 5,

LA NECIC O

&5
$»0,mod U}

Now suppose that ¢ e S,(I"y(4), (4/%)) with v even, and consider its
image under the map given at the end of section 3:

(21, 2) = J 0()0(z, g, Dv**dudv .

o4

Then (2, 2,) € S,(SLy(0y). Set (2, ) = (2,2) 7 y(—1/z;, —1/2z,), and
consider the Mellin transform D*(s, ;) as above.

THEOREM. D*(s, ) = C-2n)"#1(8)%¢(2s — v + 1)L(s)

where

and

L(s) = A)Eg)

géD—1
0,6 mod U3

A = 2 Afgoarea,em »('24(‘}5 c&, 1),

where the last sum runs over a set of coset representatives

a b ) .
T:(C d), for I'.\SL.(Z)/T'y(4) ;

the o are the Fourier coefficients of ¢ at the cusp corresponding to c, i.e.

o(z7'2)J(z7h2) ™ = 2%8[2,/—(%2-05)—] .

And c(&,7) is given by:

o) = 4o 3 o LEZHUDEEE] g ony,,

7€ 0ox/cok C

1 ifge(gk, iflez-

o8, o) = {0 N

Proof. This theorem is proved by a direct computation of the in-
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tegral along the same lines as the computation in Niwa [4].

Set D(s, ) = {(2s — v + 1)L(s).

Now suppose that 4 = ¢ = 1(4), and further assume that the class
number of £ =1. If

pe S,(F (@), (1)) , o(2) = ; aqelnz] ,

*

set L(s,¢) = > v an™".

PROPOSITION. Suppose that ¢ is a common eigenfunction of all the
Hecke operators, and that a, =1. Set ¢,(z) = ¢(—1/qz)-q*'*(qz)~>. Then
if ¥ and +, are as in the theorem,

D*(s,4) = C-q/*~"*q*2m)~*I'(s)°’L(s, ) L(s, ¢1) .

This proposition shows that the map from S,(I"(q), (g/*))—S,(SL,(0))
by the theta-function is the same, up to a constant factor, as that given
by Naganuma [3].

Remarks. 1) By taking non-trivial characters y in the construction
of section 3, it is possible to produce Hilbert modular forms from auto-
morphic forms for various congruence subgroups. For example, taking
N =4, and y = (4/%), should yield the map of Doi and Naganuma [2],
on forms of Haupt-type. Taking N = a multiple of 4, and y = y,(4/%),
should yield the map given by H. Cohen [1].

2) It is possible to carry out all of the constructions of sections 1
and 2 with an arbitrary indefinite quaternion algebra A4,/@ in place of
M,(Q). The corresponding theta-functions will give maps from automor-
phic forms of § with respect to congruence subgroups of SL,(Z) to holo-
morphic automorphic forms on §) x §) with respect to the unit groups of
orders in A = A,® ok. The functions +,(2,, 2,) will then be the analogue
of Zagier’s functions ,(2,,2,), and should be significant in the study of
cycles in the surfaces attached to A.

REFERENCES

[1] H. Cohen, Formes modulaires & deux variables associées & une forme & une varia-
ble, C. R. Acad. Se. Paris 281 (1975).

[2] K. Doi and H. Naganuma, On the functional equation of certain Dirichlet series,
Invent. Math. 9 (1969), 1-14.

[ 8] H. Naganuma, On the coincidence of two Dirichlet series associated with cusp

https://doi.org/10.1017/50027763000017955 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017955

106 STEPHEN S. KUDLA

forms of Hecke’s “Neben”-type and Hilbert modular forms over a real quadratic
field, J. Math. Soc. Japan 25 (1973), 547-554.

[4] S. Niwa, Modular forms of half integral weight and the integral of certain theta-
functions, Nagoya Math. J. 56 (1974), 147-161.

[ 5] G. Shimura, On modular forms of half integral weight, Ann. of Math. 97 (1973),
440-481.

[ 6] T. Shintani, On construction of holomorphic cusp forms of half integral weight,
Nagoya Math. J. 58 (1975), 83-126.

[ 71 D. Zagier, Modular forms associated to real quadratic fields, Invent. Math. 30
(1975), 1-46.

[ 8] C. L. Siegel, Indefinite quadratische Formen und Funktionen Theorie I, Math.
Ann, 124 (1951), 17-54.

[9] T. Asai, On the Doi-Naganuma lifting associated with imaginary quadratic fields
(to appear).

[10] S. Rallis and G. Schiffman, Weil representation I. Intertwining distributions and
discrete spectrum, preprint 1975.

, Automorphic forms constructed from the Weil representation: holomorphic
case, preprint 1976.

[12] T. Oda, On modular forms associated with indefinite quadratic forms of signature
(2, n-2), preprint.

[11]

Department of Mathematics
University of Maryland

https://doi.org/10.1017/50027763000017955 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017955



