On the Summability of Series by a Method of Valiron
By J. M. Hysrop, University of Glasgow.
(Received 14th October, 1935. Read 1st November, 1935.)

§1. Introduction.

The method of summability with which I shall be concerned
here is denoted by (V, a) and is defined! as follows:—The series
X a, is said to be summable (V, o) to the sum s if

Hm Z exp( ntu—%)s,, ., =s.

p—> \/(2

This is a particular case of a method due to Valiron? in which p=2* is
replaced by a function of u.

In §2 the (V, o) consistency theorem is proved. This theorem
exhibits the curious property that any convergent series whose sum
is ¢ is summable (V, a) to the sum s ¢(a), where ¢ (a) is a certain step
function.

It has been shown by Hardy?® that, if the first Cesaro mean of
the series X a, is of the form s + o (n—%), the series is summable by
Borel’s method to the sum s. Under a more general hypothesis a
similar theorem is found to be true for Valiron summability. This is
given in §3.

The Tauberian condition for the (¥, a) method is known? to
be a,=0(n"*). In §4 I give a more general condition which
is analogous to that obtained by Vijayaraghavans for Borel
summability.

My thanks are due to Professor Hardy for his helpful suggestions
and criticisms during the course of this work.

1 Summability (V, a) is usually defined by means of the limit

D
T T exp(-in2pe—2)s, .
po—> 0 /(277) —;L

The definition which I have given makes for greater compactness throughout the paper.
2 (. Valiron, Rendiconti di Palermo, 42 (1917), 267-284.
3 G. H. Hardy, Quarterly Journal, 35 (1904), 22-66.
4 (. Valiron, loc. cit.
5., Vijayaraghavan, Proc. London Math. Soc. (2), 27 (1927-28), 316-326.
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§2. The Consistency Theorem.
We define the function ¢ (a) as follows:
¢ (a) = 3, (a>1)
1 r/z 2 g g
1) = — | x~Vee"%dzx,
s(M=12%+ 5", _
¢ (a) =1, 0<a<l)

$(0)=1+ 2 s exp (— 2q% 7%,
1

¢(a’)=w, (CL<0).

Lemma A. For each ﬁxed value of a,

—a

E(,L,a)— N )Zexp( Ppum) >4 (a)
as wu tends to infinity.
When a <0, B (u, a) >
When a =0,

—a

L
v/ (2m)

1 o
lu" 0) ( ) E exp (—' 2"’2) \/(27?) _Ewexp(_ %n2) = ¢ (0)

by the transformation formula for the Theta function.

When a > 0, we have

- —0.

= \/”(;w) ” exp (—4y*p~*)dy + 0 (1)}

0

v {j exp (— 3y°p=2)dy + O (1)}

1 (B2
=4+ 5 j . z~2e=7dx + O (n=°)

— ¢ (a).

The lemma is therefore proved.

Z‘exp(— Zpm2) 4+ \/( )EGXP( n? u=2)

2

TaEOREM 1. If the series  a, converges lo s, then it is summable (V,a)

to the sum s ¢(a).

We may suppose, without loss of generality, that s is positive.

1E. T. Whittaker and G. N. Watson, Modern Analysis (1927), 475-476. For a
proof of the particular case used above see T. M. MacRobert, Functions of « Complex

Variable (1925), 116.
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Case (t), a < 0.
Since X a, converges, we can find » such that s,, > 3s whenever
n+ p=v. Thus

Lo L oxp (— i) s

27y
—a o —a —ptv-—1
= £ 2 exp (_%nzl"'_za) 8n+u+ - FZ exp (— %n‘ - 8n+#
V(27) —ptv VvV (2m)
S z

> 2@ o, KR (= e +oll),

which tends to infinity with u.
Case (it), a = 0.

Given e, there exists M such that |s, —s|<e for all values of
m > M. Choose u>2M. Then

—n. _ ’L—a —n+M w N
v ){“ (n=5) exp(—4n* u=2)} §7(zw>{ z ffls"*“"s'e"p(“%"z" )
———aZex *2a+€”_a §e n -2
— e (a)
as p tends to infinity. Since e is arbitrary, the result follows from

Lemma A.
It will be observed from this theorem that the (¥, o) method is
consistent, in the ordinary sense of the term, only when 0 < o < 1,

§3. A connection with the Cesaro method.

Tavorem 2. If p s a positive integer, 0 <p <p, and if the pth
Cesaro mean of the series X a,, 18 such that
P =35+ o(n"),
then the series is summable (V, a) to the sum s, for any value of a in the
range B = (p —p)/p = a< 1.
We shall prove first that the series is summable (V, 8) to the
sum s.

If m is some integer greater than p we have, by summing
partially p times,

p® 2 _
\/(277) %(S,,, —s) exp{— %(n - /“')ZF' 25}

~8 m-—p
w

- s {s(l’)—<n+p>s} APexp{—§(n —p)2p=%} 4 X',
V(2r) 5 | n :
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3’ is a finite sum of terms of the form
-8
o f(p) T+ q —1 — 8 —u) 28
\/(2_”) ' ¥ sp A exp{ 2 (m § I"') I }’
where g, 7, s satisfy the inequalities
m—p<r=m, 0Zs<p 0=¢g<op.
Each of these terms tends to zero as m tends to infinity so that

-8 =
F )= D Z s, —8) exp{— § (v — p)? =)
-8B = ; )
=@ {82’” - (n " p) ’ J" AP exp{—}(n —u2p~®. (1)

By hypothesis we have
s — (n + p> s = o (n?f)

n
as n tends to infinity. It easily follows that, as p tends to infinity,

F (1) =0{G (u)} +0(1), (2)
where
PB| AP —L(n—u)2u-2M.
G(p) = \/(217) S 02| A7 exp (— 3 (n — p)? p%}|
We proceed to show that G (i) is bounded for all large values of pu.
If

f(@) =exp{—}(z—p)?pn %,
it is easy to verify that f® () is of the form

2 bz) or (u — )P~ 2r =280 =1 exp {— 3 (x — p)2 n=28},

where b, b,,_z, ....,are constants, and ¢ is (p — 1) or {p according
as p is odd or even.

If n+ 0 is that value of z which gives the upper bound of
|f@® ()| in the range n < z < n + p, we have, by repeated application
of the Mean Value Theorem,

A7 f(r) [ = 4 [P (n + 0)],
where 4 is a positive constant. Accordingly
-8

4 Lo
G ST T T by || n—n— 0¥ w8 oxpl— (n + —p)f 28,

and our assertion will be proved if we show that
H(p)=p""* Z PP lu—mn — §17=2r =280 exp{ —} (n + 0 — p)? u=2

is bounded for all large values of pand 0 = r =< ip.
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Write
—-p-—1 @
P20 B L5 4 S 4 S ot u—n— 0192 exp{— (n + 0 — p) p-m]
¢ pt1 w—p
:SI + SQ + Ss.
Clearly S; = O (u?#).
Also
uw—p—1
Si= Z 0P (p—n)P~¥ exp{—}(n + p — p)?p=%}
0
-1
— O[S v (u— )P~ exp{— } (u — v )]
v=p
-1
= O (e (u— 2P~ exp{— } (u — 2)f =¥} da] + O {0 ¥}
D
— 0{#5(2p—2r+1)}.
Finally

Sy < 3 P (n+ p— )P~ oxp{—} (n — p)? u=%)
#t1

—O[ £ w?(n— wpr~ oxp{—}(n — u)? 2]
ptl

2, o
—O[2]+O0[ 2 ]=2=8;+ 82
wt1 2u+1

As in the case of §; it is easy to show that

Sz 1= 0{”3(21)—21'—{-1)},
and
[
Sg, 2= Of{ T vrbtr—2 exp (—32 n—2)}
pt1
a0

=0 {#B(pﬂ+p—2r+1) j utB+ 2 =2+ g—u oy} 1 o (1)
2(1~g)
3

=o(1).

It follows that H (n) is bounded. Hence, by (2), (1) and Lemma
A, the series X a, is summable (¥, B) to the sum s.

To prove that it is summable (V, o) to the sum s for B<a <1,
we observe that the hypothesis implies

¢® =s+o0(n*)

for 0 <p’<p. The series is therefore summable {V, (p — p')/p} to
the sum s.

The proof of this theorem applies, with trivial modifications, to
the case p = 0, when we have the following interesting result:
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TeEOREM 3. If Za, is summable (C, p) to the sum s, then i is
summable (V, 1) to the sum s ¢(1).

When p = 0, p =0, the hypothesis of Theorem 2 reduces to the
convergence of Xa,, and the proof becomes simply the proof of
Theorem 1, case (ii).

§4. The Tauberian Theorem.

TeEEOREM 4. If O0<a< 1, and Za, is summable (V, a) to the sum s,

and if
Hm (s,,, —8,) =0
n—"

whenever p = o (n°), then X a, converges to s.

The truth of this theorem for 0 <« =} was conjectured by
Hardy and Littlewood!.

The proof is similar to the proof of the corresponding theorem?
for Borel summability. Several of the necessary lemmas are obtained
from the corresponding lemmas in Vijayaraghavan’s paper by putting
a, or in some cases 1 — a, for 4. Others are particular cases of more
general lemmas due to Valiron?, his function H (u) being replaced by
p~%. Important parts of the proof are also to be found in a paper?
by Hardy and Littlewood. The analogues for (V, a) summability of
Vijayaraghavan’s first four lemmas cannot be obtained however from
these sources. The first two may be proved after the manner of
Lemma A, while, from these and Lemma 4, the third may easily be
deduced. By defining the sequence M, M, M,, ...., analogous to
the sequence which occurs in Lemma a of Vijayaraghavan’s paper,
and by dividing the range (M, «) into the components (M, M,),
(M,, M,), ....,it is not difficult to prove the fourth.

7G. H. Hardy and J. E. Littlewood, Annali di Pisa (2), 3 (1934), 54.

2T. Vijayaraghavan, loc. cit.

3 G. Valiron, loc. cit.

1 G. H. Hardy and J. E. Littlewood, Rendiconti di Palermo, 41 (1915), 1-18.
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