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§ 1. Introduction.

The method of summability with which I shall be concerned
here is denoted by (F, a) and is defined1 as follows:—The series
~Lun is said to be summable (F, a) to the sum s if

h S exp ( - in* ^ ) sn+, = s.

This is a particular case of a method due to Valiron2 in which fx~2a is
replaced by a function of /x.

In § 2 the (F, a) consistency theorem is proved. This theorem
exhibits the curious property that any convergent series whose sum
is s is summable (F, a) to the sum s<j>(a), where <f> (a) is a certain step
function.

I t has been shown by Hardy3 that, if the first Cesaro mean of
the series S an is of the form s + o (n~i), the series is summable by
Borel's method to the sum s. Under a more general hypothesis a
similar theorem is found to be true for Valiron summability. This is
given in § 3.

The Tauberian condition for the (F, a) method is known4 to
be an — 0 (n~a). In §4 I give a more general condition which
is analogous to that obtained by Vijayaraghavan6 for Borel
summability.

My thanks are due to Professor Hardy for his helpful suggestions
and criticisms during the course of this work.

1 Summability (V, a) is usually defined by means of the limit

lim ILl— 2 e x p ( - J n 2 ^ a - 2 ) s n + ( 1 .

The definition which I have given makes for greater compactness throughout the paper.
a G. Valiron, Bendiconti di Palermo, 42 (1917), 267-284.
3 G. H. Hardy, Quarterly Journal, 35 (1904), 22-66.

* G. Valiron, loc. ait.
3 T. Vijayaraghavan, Proc. London Math. Soc. (2), 27 (1927-28), 316-326.

https://doi.org/10.1017/S0013091500027474 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500027474


O N THE SUMMABILITY OF SERIES BY A METHOD OF VALIEOK . 219

§ 2. The Consistency Theorem.

We define the function </>(<x) as follows:

*(<*) = *, ( a > l )
1 C1'2

<j> (0) = 1 + 2 S exp ( - 2?i2 7T2),

LEMMA A. For each fixed value of a,

E{p,a)= Jj^ S e x p ( -

as \x tends to infinity.

When a < 0, E (/x, a) > ^. -*• oo .

When a = 0,

E (/*> °) = ~7T^Z\ S exp ( - Aw2) -

by the transformation formula for the Theta function1.

When a > 0, we have

e x p ( - 4y V """J dy + 0 (l)

i fi
— -

The lemma is therefore proved.

THEOREM 1. / / the series 2 an converges to s, then it is summable (V, a)

to the sum s $(a).

We may suppose, without loss of generality, that s is positive.

1 E. T. Whittaker and G. N. Watson, Modern Analysis (1927), 475-476. For a.
proof of the particular case used above see T. M. MacRobert, Functions of a Complex
Variable (1925), 116.
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Case {i), a < 0.
Since £ an converges, we can find v such that sn+ll > fs whenever

n + \i ^ v. Thus

- exp

which tends to infinity with /x.

Case (ii), a 5: 0.
Given e, there exists M such t h a t \sm — s\< e for all values of

TO > M. Choose fj.>2M. Then

..—a —/i+M co

x—s)exp( —

—> e^ ( a )

as /x tends to infinity. Since e is arbitrary, the result follows from
Lemma A.

It will be observed from this theorem that the (V, a) method is
consistent, in the ordinary sense of the term, only when 0 < a < 1.

§ 3. A connection with the Cesaro method.
THEOREM 2. If p is a positive integer, 0<p<p, and if the pth.
Cesaro mean of the series E an is such that

c<f > =s+o (»-"),

then the series is summable (V, a) to the sum s, for any value of a in the
range j8 = (p — p)/p ^ a < 1.

We shall prove first that the series is summable (F, j8) to the
sum 5.

If m is some integer greater than p we have, by summing
partially p times,

S (sn - a) exp { - i (n -
, , —8 m—p

5
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2 ' is a finite sum of terms of the form

r

where q, r, s satisfy the inequalities

in — p <r ^ m, 0 5S s < p, 0 ^ q < p.

Each of these terms tends to zero as in tends to infinity so that

F (/i) = JjL) f {Sn ~ S)

By hypothesis we have

as n tends to infinity. It easily follows that, as fi tends to infinity,

where

We proceed to show that G (/n) is bounded for all large values of /x.
If

it is easy to verify that j ^ (x) is of the form

S bp_2r(!M- x)P-2r p-SMp-r) e xp{_^(3 ._ / i )2 / | t -8f l} j

r = 0

where bp, bp_2 > a r e constants, and t is \{p — 1) or \p according
as p is odd or even.

If n + 0 is that value of x which gives the upper bound of
I/'*1' (a:) | in the range n 5S x ^ n + p, we have, by repeated application
of the Mean Value Theorem,

where A is a positive constant. Accordingly

and our assertion will be proved if we show that

B(fj.) = p-P 2 nrt\\i — n — ^|p-2rjU,-2«p-r) e x p{—\
n = 0

is bounded for all large values of \x and 0 ^ r ^ Jy.
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Write

«2j,-2r+l)jy(

Clearly Ss = 0

Also

0

(^) +

J.

00

9*+1 8

M.

i—p

HYSLOP

^ " £ TO** (/u, - TO)*"2' exp {-$(n+p
0

= 0 [ *2 i/*" (/x - I/JP-2' exp {- | (JLI - i/

= 0 [ ^ T ( / x - a;)*-2' exp{ - J (/n -
JP

Finally

So ̂  S TO*" (TO + p - M)p~2r exP {- 4 (»

= 0 [ S nrt{n-~ IL?-2' exp {-i (TO -

= O[ I ] + O[ S ] = 58>1 + -88i2.
+l 2+l

As in the case of S-^ it is easy to show that

$2,1 =

and

== 0 {pfXPfi+P-Zr+l) \ ui{pfi+p-2r+l)

It follows that H (n) is bounded. Hence, by (2), (1) and Lemma
A, the series San is summable (V, £) to the sum s.

To prove that it is summable (F, a) to the sum s for ]8 < a < 1,
we observe that the hypothesis implies

c<f> =s + o{n-<>')

for 0 < p' < p. The series is therefore summable {V, (p — p')/p} to
the sum s.

The proof of this theorem applies, with trivial modifications, to
the case p = 0, when we have the following interesting result:
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THEOREM 3. / / S an is summable (C, p) to the sum s, then it is
summable (F, 1) to the sum s<f>{l).

When p = 0, p = 0, the hj'pothesis of Theorem 2 reduces to the
convergence of So,,, and the proof becomes simply the proof of
Theorem 1, case (ii).

§4. The Tauberian Theorem.

THEOREM 4. / / 0 < a < 1, and Ea,, is summable (F, a) to the sum s,

and if
s n + p - «„) ̂  0

whenever p = o (»"), then 2 an converges to s.

The truth of this theorem for 0 < a ^ J was conjectured by
Hardy and Littlewood1.

The proof is similar to the proof of the corresponding theorem2

for Borel summability. Several of the necessary lemmas are obtained
from the corresponding lemmas in Vijayaraghavan's paper by putting
a, or in some cases 1 — a, for |-. Others are particular cases of more
general lemmas due to Valiron3, his function H (fj.) being replaced by
^~2a. Important parts of the proof are also to be found in a paper4

by Hardy and Littlewood. The analogues for (F, a) summability of
Vijayaraghavan's first four lemmas cannot be obtained however from
these sources. The first two may be proved after the manner of
Lemma A, while, from these and Lemma A, the third may easily be
deduced. By defining the sequence M, Mlt M2, .. .., analogous to
the sequence which occurs in Lemma a of Vijayaraghavan's paper,
and by dividing the range (M, oo ) into the components (M, Mx),
{Mx, Mo) , it is not difficult to prove the fourth.

,',G. H. Hardy and J. E. Littlewood, Annali di Pisa (2), 3 (1934), 54.
2 T. Vijayaraghavan, loc. cit.
3 G. Valiron, loc. cit.
4 G. H. Hardy and J. E. Littlewood, Jtendiconti di Palermo, 41 (1915), 1-18.

https://doi.org/10.1017/S0013091500027474 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500027474

