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Abstract Let T and 5 be quasisimilar operators on a Banach space X. A well-known result of Herrero
shows that each component of the essential spectrum of T meets the essential spectrum of 5. Herrero
used that, for an n-multicyclic operator, the components of the essential resolvent set with maximal
negative index are simply connected. We give new and conceptually simpler proofs for both of Herrero's
results based on the observation that on the essential resolvent set of T the section spaces of the sheaves

Ker(O'c®X -i=^4 O'C®X) and Coker(Oc®X' - ^ - » OC®X')

are complete nuclear spaces that are topologically dual to each other. Other concrete applications of this
result are given.
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1. Introduction

Let T € L(X) be a continuous linear operator on a complex Banach space X. It is well
known that the restrictions of the sheaves

£ - ^ Og) and ^

to the essential resolvent set pe(T) of T are coherent analytic sheaves. This observation
has been used by Putinar [12] to show that quasisimilar Banach-space operators with
Bishop's property (/?) possess equal essential spectra. Let T G L(X) and 5 G L{Y)
be quasisimilar operators on Banach spaces X and Y. In [7], Herrero proved that each
component of the essential spectrum of T meets the essential spectrum of 5, and vice
versa. The proof given by Herrero is based on one of his earlier results on the Fredholm
structure of multicyclic operators. More precisely, let T be an n-multicyclic operator on
a Banach space X. In [6], Herrero proved that every component of pe(T) of index — n is
simply connected, and this is the main ingredient of the proof of the above cited result
from [7].

In this paper we give extensions of Putinar's results, and we show that the same
coherence principle can be used to obtain new proofs of both results of Herrero. More
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precisely, using the coherence of the above sheaves, one can show that the multiplication
operator

has closed range for each open subset U of pe(T), and that the quotient space !FT{U) =

O{U,X)/(z - T)O(U,X) is a nuclear Frechet space. Let T 6 L(X') be the adjoint of

the operator T. We show that, for each open set U C Pe{T), the range of the operator
rpl

O(U,X') > O(U,X') is u;*-closed; that is, the range is weakly closed relative to the
duality {O(U)'®X,O(U,X')). Furthermore, the nuclear Frechet space

TT'{U) = O(U,X')/(z - T')O(U,X')

can be identified with the strong dual of the complete nuclear (DF)-space

GT(U) = ^

Suppose that T € L(X) and 5 € L(Y) are quasisimilar operators on Banach spaces
X and Y. Then, for each open subset U of pe(T), there are topological isomorphisms of
nuclear Frechet spaces

The above identifications hold without taking closures on the right-hand side if (dU) n
ae(S) = 0 and if S satisfies the single-valued extension property near dU. In this case
the nuclearity of the spaces on the right implies that U n cre(S) = 0. These observations
allow us to prove results on the equality of the essential spectra of suitable quasisimilar
operators, and they can be used to give straightforward proofs of the cited results of
Herrero.

In § 3 we study the properties of the multiplication operator Q(U, X) > O(U,X)
on the open subsets U of the essential resolvent set pe{T) of T, and we use the coherence
of the associated kernel and image sheaves to prove results on the equality of essential
spectra of quasisimilar operators. Thus, we obtain extensions of results of Putinar [12],
Yang [14] and Miller and Miller [11]. In §4 we use the same coherence principle to give
new proofs of the results of Herrero explained above.

2. Preliminaries

Let T G L{X) be a continuous linear operator on a complex Banach space X. For
each open set U in C, we denote by O(U, X) the Frechet space of all X-valued analytic
functions on U. The operator T 6 L(X) is said to possess the single-valued extension
property on U if the multiplication operator

is injective for each open subset V̂  of U. If the same map is injective with closed range
for each open subset V of U, then T is said to possess Bishop's property (/?) on U.
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The operator T E L(X) satisfies property (5) on U if, for each open subset V of U, the
operator

O{V)'®X -> O(V)'®X, u >-» (z - T)u

is surjective or, equivalently, if

X = XT(W) + XT(C\V)

holds for each pair of open sets V, W in C with C\U CV <ZV dW. Here, O{V)' is
the strong dual of the Frechet space O(V), and, for a given closed set F in C,

XT(F) = {xeX; xe(z-T)O(C\F,X)}

is the spectral subspace of T with respect to F. For details of the above notions from
local spectral theory (in particular, the claimed equivalence), the reader is referred to [1].

The operator T € L(X) is decomposable on U (or modulo <C\U)iiT satisfies property
(/3) and property (S) on U, or, equivalently, if, for each finite open cover ( f / i ) i^ j^n of the
complex plane C with C\U C U\, there are closed invariant subspaces X\,...,Xn for
T such that

Let T e L(X') be the adjoint of T on the dual space X' of X. It was shown in [1] that T
satisfies Bishop's property (/?) on U if and only if T" satisfies (6) on U, and that this equiv-
alence also holds if the roles of property (ft) and property (5) are exchanged. Furthermore,
property (/?) on U characterizes the restrictions of operators that are decomposable on U,
while property (5) on U characterizes the quotients of operators that are decomposable
onU.

We regard the space O(U, X') = O(U)®X' as the strong dual of the Frechet space
O{U)'®X. In general, we write <8> for the completed 7r-tensor product. Since O(U) and
O(U)' are nuclear, the n- and e-tensor products coincide in the above cases. We speak of
the u;*-topology of O(U, X'), when we mean the weak topology induced on O(U, X') by
the duality (O{U)'®X, 0{U,X')). Suppose that the operator T e L{X) satisfies Bishop's
property (/?) on a given open set U in C Then the analytic Frechet sheaf on U, given by
the pre-sheaf of Frechet spaces

FT(V) = O(V, X)/{z - T)O{V, X) (V C U open)

together with the canonical restriction maps, is called the sheaf model of T on U.
Let E be a Frechet space. The space E°° consisting of all bounded sequences in E is

a Frechet space relative to the seminorms

Poo(x) = supp(zn) (x = (xn)n>0 € E°°),
n

where p runs through all continuous seminorms on E. The space Epc of all sequences
(xn) in E such that each subsequence of (xn) has a convergent subsequence is a closed
subspace of E°°. Hence, the quotient Eq = E°°/Epc is a Frechet space with respect to
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the quotient topology. Each continuous linear operator T 6 L(E) induces continuous
linear operators T°° : E°° -»• E°°, (xn) M- (Txn), T*>c = T°° | £p c , and Tq = T°°/Epc.
Let J7 C C be open, and let X be a Banach space. There is a canonical topological
isomorphism O(U, X)q = O(U, Xq) of Frechet spaces.

The functor assigning to each Frechet space E the Frechet space Eq is left exact in the
sense that, for each short exact sequence

of Frechet spaces, the induced sequence

0 _». Eq -2-» Fq - ^ Gq

is exact. Since a continuous surjection between Frechet spaces allows the lifting of precom-
pact sequences (see [8]), the map aq : Eq —> Fq is a topological isomorphism whenever
Gq = 0, i.e. G is an (FM)-space.

For T G L(X), we denote by a{T) the spectrum of T and by

ae{T) = {A G C; dimKer(A - T) = oo or dimX/Im(A - T) = oo},

the essential spectrum of T. We write p(T) = C \ a(T) and /9e(^) = C \ ae{T) for the
resolvent set and the essential resolvent set of T, respectively. It is well known (cf. § 2.6
in [3]) that

a(Tq) = *e(T).

Finally, let us recall that two operators T G L(X) and 5 G L(Y) on Banach spaces X
and Y are quasisimilar if there are injective continuous linear operators A : X —> Y and
B : Y -J- X with dense range such that SA = AT and TB = BS.

3. Coherent analytic sheaves and Fredholm theory

Let T G L(X) be a continuous linear operator on a complex Banach space X. The proofs
of our results on the Fredholm structure of Banach space operators will be based on the
following observation concerning the behaviour of T on its Fredholm domain.

Theorem 3.1. Let T G L{X) be a continuous linear operator on a complex Banach
space X. For each open set U C pe(T), the map

O(U,X)^

has closed range, and the map

has w*-closed range.

The proof depends on a standard construction from the theory of analytically para-
metrized Fredholm complexes (see Proposition 9.4.5 in [3]), which will be explained in
the following lemmas.
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Lemma 3.2. For each point ZQ € Pe{T), there is an open neighbourhood V of zo such
that the map

O(W,X) J=I>O(W,X)

has closed range for each open subset W ofV.

Proof. Fix z0 e pe(T) and a basis {[3/1],..., [yr]} of X/(z0 - T)X. Define L1 = C r

and

If ZQ — T is onto, then we set L1 = {0} and h1 = 0. On a suitable open neighbourhood
V of zo, the induced map

is onto (Lemma 2.1.5 in [3]). Fix a basis {xi,..., xs} of Ker(z0 — T). After shrinking V,
we may suppose (see the remark following Lemma 2.1.5 in [3]) that there are analytic
functions fi,...,fs€ O(V, X ® L 1 ) with fi(zQ) = xt (1 ^ i < s) and

(z - T, -h^Mz) =0 (z € V, 1 < i ^ s).

Define L° = Cs (= {0} if z0 - T is injective). The operators

depend analytically on z € V. After shrinking V again, if necessary, we may suppose
that the complexes

as well as the induced complex

0 _> op £ ,

are exact (see Theorem 2.1.8 in [3]). Let us write dP in the form d° = (/i^u0)*, where
h° 6 O(V,L(L°,X)) and u° € (^(^^(L0,!1)) . Then the last short exact sequence can
be regarded as the mapping cone (see Appendix 2 in [3]) of the morphism of complexes

0 > OV®L° —2—» Ov®Ll > 0

V1

0 > OV®X Z~T ) OV®X

given by h° and h1.
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After shrinking V one more time, we may suppose that there is an analytic operator-
valued function e1 = (k0^1) : V -» L(X ® Ll,L°) with k° € O{V,L(X,L0)) and
v1 e O(V, L(Ll, L°)) such that

e\z)o<P(z) = ILo (zeV).

To see this, note that, for each z 6 V, the map

R(z):L(X®L1,L°)^L(L°), T

is onto, and then apply Lemma 2.1.5 from [3]. The map

P : V -> L(X © Z,1), P(z)=d°

is an analytic project ion-valued function with ImP(z) = Imrf°(z) = Kerd}(z) (z € V).
For z e F , define the operator e2(z) = (r^z), -/^(z))* 6 L(X, X e L1) as the inverse of

regarded as a map with values in X ®LX. After shrinking V again, we may suppose that
£2 : V —¥ L(X, X © L1) is analytic. Indeed, for z close enough to z0, the operators dl{z)
acting as

(/ - P(zo))(X © L1) - ^ X

are invertible, and
d 1 ( z ) ( / - P ( z ) ) J 1 ( z ) - 1 = / x .

Hence, £2(z) = (7 — P^))*!1^)"1 is analytic for z close enough to z0.
The functions e1 and e2 form a splitting for the mapping cone of the morphism h =

(hz)i=o,i- Indeed, our definitions imply that, for z GV,

(i) e1(z)e2(z)=0;

(ii) e1(z)d°(z) = ILo, d1(z)e2(z) = Ix; and

(iii) d°(zy(z)+e2(z)d1(z) =

Hence, h = (/il)i=o,i is a homotopy equivalence with homotopy inverse given by k —

(fci)i=o,i- Indeed,

k°(z)h°(z) = ILo - vl{z)u°(z), k^z^iz) = ILi - u°(z)v\z)

and

h°(z)k°(z) =IX- r\z){z - T), h\z)k\z) = lx-(z- T)r\z)

holds for z eV.

https://doi.org/10.1017/S0013091500021167 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500021167


On the essential spectrum of Banach-space operators 517

In particular, for each open set W CV, the map

O{W)®Ll/u°O{W)®L° -^ O(W, X)/(z - T)O(W, X),

induced by h1, is a vector-space isomorphism. Its inverse is the corresponding map
induced by k1. Both maps are continuous with respect to the quotient topologies, and
the space on the left is a Prechet space in its quotient topology (see the 'Abgeschlossen-
heitssatz' in [5, p. 172]). Hence, for each open set W C V, the map

O(W,X) ^

has closed range. •

To prove the second part of Theorem 3.1 we need the dual version of Lemma 3.2.

Lemma 3.3. For each point ZQ G pe(T), there is an open neighbourhood V of ZQ such
that the map

O(W,X') - ^ > O(W,X')

has w*-closed range for each open subset WofV.

Proof. Let us indicate what happens if everywhere in the last proof the space X
is replaced by its dual X' and the operator T € L(X) is replaced by its adjoint T" €
L(X'). Note that L° S (L0')' and L1 S (L1')' and that the w'-topologies of L° and L1

with respect to these dualities coincide with the norm-topologies. The operators e1 (z) €
L(X'@Ll, L°) can be chosen as u;*-continuous linear operators. Indeed, since each finite-
dimensional subspace of X' © L1 has a u;*-closed direct complement in X' © L1, also in
this case the operators

R(z):£(X'®L\L°)-*L(L0), T^TdP(z),

where C(X' © L\L°) is the closed subspace of L(X' © Ll,L°) consisting of all w*-
continuous operators, are surjective.

However, the operators P(z) = <P{z)el(z) e L{X' © L1), e2(z) £ L{X',X' © L1) and
kl{z) € L{X',LX) are then also tu*-continuous for each z e V. As before, for each open
set W c V, the operator

O{W, X')/(z - T')O{W, X') - ^ O{W, L^/vPOiW, L°)

is a vector-space isomorphism. Since O(W, L1) is a reflexive space, the proof of Lemma 3.3
is complete, if we can show that the operator

is ̂ --continuous. We regard O(W, X') and O(W, L1) here as the dual spaces of O{W)'®X
and O(W)'®{L1)'. Thus, the next result completes the proof. D
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Proposition 3.4. Let E, F be complex Banach spaces, and let C(F', E') be the closed
subspace of L(F', E') consisting of all w*-continuous linear operators. For each open set
W in C, the map

X : O{W) x C(F',E') -» Lb(O(W)'®E,O(W)'®F), (f,T') ^ (M'f)®T

is continuous bilinear and induces a continuous linear map

X : O(W,C(F',E')) -+ Lb{O{W)'®E,O{W)'®F).

For h G O(W, C(F', E')), the adjoint of the operator x(h) is the multiplication operator

O(W,F') A

Proof. To prove the continuity of x, it is sufficient to prove its separate continuity (see
[9, § 40.2.(1)]). One can prove the separate continuity of x directly by using the fact that
each bounded set in O{W)'®E is contained in a set of the form (see [3, Corollary A.I.11])
F(C x D), where C and D are bounded sets in O(W)' and E (F stands for the absolutely
convex hull), and by using the fact that the topology of O{W)'®F is generated by the
continuous extensions of all seminorms p on O{W)' ® F of the form (see [9, §41.2])

p(z) = i

where M runs through all bounded sets in O(W) and

\\U\\M = sup K / ) | .

/6M

Since O{W)'®E is a (DF)-space (see [9, §41.4(7)]), the space

Lb{O{W)'®E, O(W)'®F)
is complete (see [8, §29.3(7)]), and \ induces a continuous linear map x, as in the
assertion. To prove the last part of Proposition 3.4, it suffices to observe that

(X(f ®T')(u®x),g®v) = {u® x, (fg) ® (T'v)),

for all f,ge O(W), xeE,T£ L(E, F), and u 6 O(W)', v € F'. •

Up to now we have proved that the assertion of Theorem 3.1 holds locally. To obtain
the global version of the first part of Theorem 3.1 we use some elementary arguments
from the theory of coherent sheaves.

It is well known, and it follows from the proof of Lemma 3.2, that the cohomology
sheaves,

n°(z - T,
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H\z - T, Og) =

restricted to pe{T) are coherent analytic sheaves (see [3, Proposition 10.1.3]).
Since all sheaves in the exact sequences

0 -> H°(z - T, O$) A O$ -^£» {z - T)O$ -* 0,

0 -> (z - T)Og A O ^ A O$/{z - T)O£ -> 0

are acyclic on each open subset U of pe(T) (cf. [10, Satz 18.4]), there are canonical
vector-space isomorphisms

O(U,X)/(z - T)O{U,X) ^ r{U,Og/(z - T)O£) (U C pe(T) open).

Let us equip the spaces on the left with their quotient topologies, and let us equip
the spaces on the right with their canonical nuclear Frechet space topologies (see [5,
ch. V, §6]). Since homomorphisms between coherent sheaves induce continuous linear
maps between section spaces, the proof of Lemma 3.2 shows that each point ZQ € pe{T)
possesses an open neighbourhood V such that the above vector-space isomorphisms are
topological isomorphisms for all open subsets U of V.

For a given open set U C pe(T), we choose an open cover (Ui) of U by countably many
open sets Ui, such that the components of the right vertical map in the commutative
diagram

O(U,X)/(z-T)O(U,X) ^ ^ UiO(Ui,X)/(z-T)O(Ui,X)

are topological isomorphisms. Since the upper horizontal map is a topological monomor-
phism, the left vertical map is continuous. It follows that (z — T)O(U, X) is closed, and
that the left vertical map is even a topological isomorphism between nuclear Frechet
spaces.

Thus, we have proved the first part of Theorem 3.1. To prove the global version of
the second part of Theorem 3.1, we use duality theory for locally convex spaces. Let
T £ L(X) be a continuous linear operator on a complex Banach space. For C / c C open,
we define

E{U) = O{U, X')/(z - T')O(U, X'),

M(U) = KeT(O(U)'®X - ^

We equip the first space with its quotient topology, and we regard the second space as a
closed subspace of the (DF)-space O(U)'®X. The missing part of Theorem 3.1 is proved
as a part of the next result.
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Theorem 3.5. For each open set U C pe{T), the range of the operator

O(U,X') -±^O(U,X')

is w*-closed. With respect to the duality {O(U)'®X,O(U)<&X'), the nuclear Frechet
space

E{U) = O(U,X')/(z - T')O(U,X')

is the strong dual of the complete nuclear (DF)-space

M(U) = ^

Proof. Let us fix an open set U C pe{T). Let us suppose that we know already that
(z - T')O{U,X') is a u;*-closed subspace of O(U,X').

Since the quotient space E = E(U) is a nuclear Frechet space (by the proof of the first
part of Theorem 3.1), its strong dual space E'b can be identified topologically with the
closed subspace

Ker(O(U)'®X" ^ ^ O{U)'®X")

of O(U)'®X" (see [8, § 22.2 (7)] and [9, § 32.5 (2)]). Hence, the space M = M{U) can be
regarded as a closed subspace of the strong dual E'b of the nuclear Frechet space E. Since
E is reflexive, M is also cr(E', i?)-closed as a subspace of E'b.

Since the quotient space E/XM is nuclear, a repetition of the above argument shows
that the strong dual topology on M induced by the duality (E/^MjM) coincides with
the relative topology of M as a subspace of E'b. But then the subspace M C O(U)'®X
is a complete nuclear (DF)-space. In particular, the strong dual topology induced by M
on O{U)®X'/Mx = E is the quotient topology of the natural Frechet-space topology on
O(U)'®X (see [8, §29.5 (2)]). As the strong dual of a nuclear Frechet space, the space
M is reflexive.

Let U C pe{T) be an arbitrary open set. Choose a countable open cover (Ui) of U such
that (z - T')O(Ui,X') C O(UU X') is w*-closed for each i. Consider the commutative
diagram that was used in the proof of the first part of Theorem 3.1, but this time with
X replaced by X' and T replaced by T. The maps

O{UU X')/(z - T')O(UU X') -> r(Ui, Og'/(z - T)O£)

axe continuous if the spaces on the left are equipped with the quotient topology of the
weak*-topology of O(Ui, X'), and if the spaces on the right are equipped with their weak
topology (see [13, Corollary 1, Chapter IV.4.1]).

Since the topological monomorphism

r(u,o*'/(z -

is also a weak monomorphism (see [9, §32.3(3)]), it follows that the quotient space
O(U,X')/(z - T')O(U,X') equipped with the quotient topology of the weak*-topology
of O(U, X') is Hausdorff. Hence, (z - T')O(U, X') c O{U, X') is w*-closed. D
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Since the space M(U) is reflexive, we can also regard the space M(U) as the strong
dual space of the nuclear Frechet space E(U).

As a first application we prove natural extensions of results of Putinar [12] and
Yang [14] on the equality of the essential spectra of quasisimilar operators with Bishop's
property (/?).

Corollary 3.6. Let T € L(X) and S € L(Y) be continuous linear operators on com-
plex Banach spaces X and Y. Let A : X —> Y and B : Y -* X be continuous linear
operators with AT = SA and BS = TB.

(a) If A and B have dense range, then

A
O{U, X)/(z - T)O{U, X) A O{U, Y)/{z - S)O(U, Y)

is a topological isomorphism of nuclear Frechet spaces for each open set U C pe(T).

(b) If A and B are injective, then

O(U, X')/(z - T')O{U, X') -2-> O(U, Y')/(z - S')O(U, Y')

is a topological isomorphism of nuclear Frechet spaces for each open set U C pe(T).

Proof, (a) The quotient sheaf T = O*,T->/(z — T)O*,T* is a coherent sheaf with
section spaces F(U) = O{U,X)/(z - T)O{U,X) (U C pe(T) open). Suppose that A and
B have dense range. Then the induced maps BA : F(U) —> J~(U) have dense range, and
they yield a sheaf homomorphism BA : T -> T. Since the image sheaf (BA)T C T is a
coherent subsheaf, the space

(BA)T(U) = {{BA)T){U) C T(U)

is a closed subspace of the Prechet space F(U) for each open set U C pe{T) (Abgeschlos-
senheitssatz in [5, p. 172]). Hence, the sheaf homomorphism BA : T —> T is onto. Since,
for each z 6 pe{T), the sequence of submodules Ker(BA)^ (k ^ 1) of the noetherian
02-module Tz becomes stable, the sheaf homomorphism BA : T' -* T vs, also injective.

Let U C pe(T) be open. Since the topological isomorphism BA : T(U) —> F(U) admits
the factorization

O{U, X)/{z - T)O(U, X) A O(U, Y)/(z-S)O(U,Y) A O(U, X)/(z - T)O(U, X),

the first map is a topological isomorphism.
(b) As in part (a), the quotient sheaf T' — O^',TJ(z - f j O ^ L is a coherent analytic

sheaf with section spaces

?'{U) = O(U, X')/(z - T')O(U, X') (U C Pe(T) open).

Suppose that A and B are injective. Then the maps

A'B' : O{U, X') -» O(U, X') {U C pe(T) open)
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have u;*-dense range. It follows from Theorem 3.5 that the induced maps A'B' : F'(U) —¥
^F'{U) have dense range for each open set U in pe(T). Exactly as in part (a), it follows
that the map A'B' : !F' —> !F' is an isomorphism of coherent sheaves, and that the maps

O(U, X')/(z - T')O(U, X') -?-> O(U, Y')/(z - S')O(U, Y') (U C pe(T) open)

are w*-monomorphisms with iu*-dense range. Equivalently (see [9, §32.3(4)]), the pre-
dual maps

Ker{O{U)'®Y - ^ O{U)'®Y) A Ker{O{U)'®X - ^ O(U)'®X)

are continuous bijections for all open sets U C pe(T). As the strong dual of the reflex-
ive Prechet space F'(U), the space on the right is complete and bornological (see [9,
§ 29.4 (4)]), hence ultrabornological. Since the space on the left is webbed (see [9, § 35.4]),
De Wilde's open-mapping principle implies that the above continuous bijections are topo-
logical isomorphisms (see [9, § 35.3 (1)]). Thus, the proof of part (b) is complete. •

By imposing natural extra conditions on the operator S, one obtains information on
the relation between the spectra and essential spectra of the operators S and T.

Corollary 3.7. Let T e L(X), S £ L{Y) and A e L(X, Y), B € L{Y, X) be continu-
ous linear operators on Banach spaces X and Y such that AT = SA and BS = TB.

(a) Suppose that A and B have dense range and that S satisfies Bishop's property (/3)
on pe(T). Then cr(S) C a(T) and ae(S) C ae(T).

(b) Suppose that A and B are injective and that S satisfies property (S) on pe{T).
Then a(S) C o{T) and ae(S) C ae[T).

Proof. Let A, B and 5 be as in part (a), and let Ts be the sheaf model of the operator
5. By Corollary 3.6, ?s \ p(T) = 0 and Ts \ Pe(T) is a coherent analytic sheaf. Hence,
a(S) C a(T) and ae(S) C ae{T) (see [3, Proposition 10.1.3]).

Secondly, suppose that A and B are injective and that S satisfies property (6) on
pe{T). It was proved in [2] (or the proof of Theorem 1.7 in [1]) that the operator

O(U,Y') ^ 4 O(U,Y')

is injective with closed range for each open set U C pe(T). To complete the proof, it
suffices to apply part (a) of Corollary 3.6. D

Corollary 3.8. Let T € L(X) and S E L(Y) be continuous linear operators on com-
plex Banach spaces X and Y. Let A £ L(X, Y) and B £ L(Y, X) be operators with
SA = AT and TB = BS.

(a) If A and B have dense range, and if S and T satisfy property (/?), then

CT(S) = G{T) and <re(S) = ae{T).
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(b) If A and B are injective, and if S and T satisfy property (S), then

<r(S) = o{T) and <re(5) = ae(T).

(c) Suppose that S and T are quasisimilar. IfT satisfies property (/3) or property (S),
and if S satisfies property (/?) or property (S), then

<j(S) = o(T) and tre(S) = ae(T).

Part (a) of Corollary 3.8 was proved by Yang [14] for Hilbert-space operators with
empty point spectrum, and by Putinar [12] in the general case. Part (b) was proved,
with different methods, by Miller and Miller in [11].

Corollary 3.9. Let T £ L(X) be a continuous linear operator on a complex Banach
space. Suppose that T satisfies the single-valued extension property. Then T satisfies
property (/?) on pe{T). If T £ L(X) and T £ L(X') both satisfy the single-valued
extension property, then T is decomposable modulo cre{T).

Proof. The first part is an obvious consequence of Theorem 3.1. Suppose that both T
and T" satisfy the single-valued extension property. Then both T and T" satisfy property
(/?) on pe(T) by Theorem 3.1. Hence, T satisfies property (/?) and property (6) on pe{T),
and, thus, is decomposable modulo cre(T) (see [1, Theorems 2.1 and 3.4]). •

4. Essential spectra of quasisimilar operators

In [7], Herrero proved that, for any pair of quasisimilar Banach space operators T £ L{X)
and 5 £ L(Y), each component of ae(T) meets ae(S), and vice versa. The main ingredient
of the original proof was Herrero's result (see [7, Theorem 2]) on the Predholm domain of
multicyclic operators. In the following we indicate how the results of the previous section
can be used to give an alternative proof.

Proposition 4.1. Let S £ L(X) be a continuous linear operator on a complex Banach
space X, and let fi be a bounded open set in C such that

is compact. Suppose that U is an open set with dQ C U C C \ a.

(a) If S satisfies the single-valued extension property on QC\U, then the map

is injective with closed range.

(b) If S' satisfies the single-valued extension property on Q D U, then the map

is injective with w*-closed range.
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Proof. Under the hypothesis of part (a), let (fn) be a sequence in O{Q, X) such that
limn-too(z — S)fn = 0. For any closed disc K in fl, we can choose a connected open set G
with K c G CC fl and dG C U. By the maximum modulus principle and Theorem 3.1,

||/n||oo,A- < ||/n||oo,aG "^ 0-

Secondly, suppose that 5 is as in part (b). Let J?o CC i? be open with Q n (C \ U) C
fto- Set ,f?i = C \ /?o- The disjoint union V = QQ U i?i is open and contains the set
S = C\ (U fl Q). By Theorem 3.1, the operator 5' satisfies property (/?) modulo S.
According to Lemma 6 and Theorem 21 in [1], the operator

O{V)'®X - ^ O{V)'®X

is surjective. The same holds with V replaced by QQ. Using Kothe-Grothendieck duality,
one obtains that the space O{QQ)'®X is an (jLF)-space (cf. the proof of Theorem 5 in [1]).
By the open mapping principle for (LF)-spa,ces (see [9, § 34.8 (4)]), and by general duality
theory (see [9, §32.3(4)]), the map

is injective with u>*-closed range.
By applying this observation to each set Qn in a suitably chosen exhaustion (i?n) of

Q, the proof of part (b) is completed. •

Elementary examples show that the assertions of the last proposition become wrong
without the hypothesis on the single-valued extension property near the boundary of Q.
Even for open sets Q containing the whole essential spectrum ae(T) of a given operator
T e L(X), one cannot expect that (z - T)O(Q,X) is a closed subset of O{Q,X). For
example, let X = £2, and let T G L(X) be the unilateral backward shift on X. Set
i7 = {z eC; 0 < \z\ < 2}. Then the space

XT(0) = {xeX; xe (z-T)O(f2,X)} = {x € X; lim \\Tnx\\1'n = Q}
n—too

is a proper dense subspace of X. Hence, (z — T)O(fi,X) cannot be closed in O(f2, X).
Let T € L(X) be a continuous linear operator on a complex Banach space X, and let

U be an open set in C such that

is injective with closed range. If the quotient space O(U,X)/(z — T)O(U,X) is nuclear,
then the induced map

O{U,Xq) « O{U,X)q -^+ O{U,X)q S* O{U,X")

is a topological isomorphism (see the preliminaries), and, therefore,

£ / c C \ a ( T « ) = C \ f f , ( T ) (cf. [3, p. 12]).
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Let T e L(X) and 5 e L(Y) be quasisimilar operators on complex Banach spaces X
and Y. Let us assume that there is a component <TO of ae(S) with <7o H o~e(T) = 0. Since
ae(5) is compact, the set OQ is the intersection of all closed and open subsets a of ae(S)
containing <7o- Hence, there is a closed and open subset a of ae(S) with OQ C a C pe(T).
We fix an open set Q in C with

To prove the result of Herrero cited above, we have to produce a contradiction. Ele-
mentary arguments from Fredholm theory can be used, as in Herrero's original proof, to
reduce the general case to the two main cases

Ker(A - 5) = 0, for all A 6 dQ,

or
Ker(A - 5') = 0, for all A e dQ.

In the first case, part (a) of Proposition 4.1 and the first part of Corollary 3.6 imply that
there is a topological isomorphism

o{n, x)/(z - T)O{n, x) ^ o(Q, Y)/{Z - s)o(Q, Y).

In the second case, the remaining parts of Proposition 4.1 and Corollary 3.6 yield a
topological isomorphism

O{Q, X')/{z - T')O{Q, X') ^> O{Q, Y')/{z - S')O(n, Y').

In both cases, the space on the right is a nuclear Prechet space, and, hence, QC\oe(S) = 0.

Theorem 4.2 (Herrero). Let T 6 L(X) and S e L(Y) be quasisimilar operators on
complex Banach spaces X and Y. Then each component ofae(S) meets ae(T), and vice
versa.

Proof. For the sake of completeness we indicate how to reduce the general case to
the two special cases considered above.

Let us choose the closed and open subset a of cre(S) and its open neighbourhood fi
exactly as explained above. Since the discontinuity points of the function

pe{S)->C, 2H^dimKer(2-5)

form a discrete subset of pe(S) (see [3, Remark 9.4.6]), one can achieve, by shrinking Q
if necessary, that none of these discontinuity points belongs to dQ. Since one can always
replace Q by Int(fi), we may suppose in addition that dQ has no isolated points.

The spaces
M= \J Ker(A-T) and N = \J Ker(A - 5)

xedn

https://doi.org/10.1017/S0013091500021167 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500021167


526 J. Eschmeier

are closed invariant subspaces for T and S, respectively. Since, for /j, € C \ dQ and for
A 6 dQ, the operators

(i-T: Ker(A - T) -> Ker(A - T), (/z - 5) : Ker(A - S) -+ Ker(A - S)

are bijective, the subspaces (p. — T)M C M and (/z — S)N C N are dense subspaces. For
fj. € pe(T), the space (M + Ker(/x — T))/Ker(/x — T) is a closed subspace of the quotient
space X/Ker(/j, — T). Hence, (n — T)M C M is closed. By applying the same argument
to 5, we obtain that

Q n ae(T I M) = 0, / ? n a e ( 5 | i V ) C a ,

and that the operators \ — S : N -* N (\ € fi\a) are surjective. It follows from part (b)
of Proposition 4.1 and part (b) of Corollary 3.6 that

O{Q,M')/(z - (T | M)')O(n,M') £ O{O,N')/{z - (S \ N)')O(n,N')

are topologically isomorphic. Therefore, Q C pe(S \ N).
We complete the proof by showing that J? C pe(S/N). For /i 6 dJ2, the operator

fj, — (S/N) £ L(Y/N) has finite-codimensional range, and, hence,

/i - (S/N)" e L{{Y/N)0)

is surjective (Theorem 2.6.4 in [3]). Since fi \ a C pe(S/N) = p((S/N)q), it follows that
dJ? C pe((S/N)). We claim that dQC\av(S/N) = 0. In view of the definition of the space
N, it suffices to show that the operators

are surjective. Fix a point \x 6 dQ. Let C and CN be the components of fi in /0e(5) and
pe(5 | iV), respectively. Let (nn) be a sequence in CnCjvn(<9,T?\{/i}) with limn-^ \in = //.
Since fj,n, fj, e C D di?, we have

dimKer(/in - 5 | JV) = dimKer(/xn - 5) = dimKer(^ - S) = dimKer(/x - 5 | N),

for all n. Since fin,fi & CN, we have

dim{N/((in - S)N) = dim(iV/(/i - S)N),

for all n. By Remark 9.4.6 in [3], the set of discontinuity points of the function

CN -> Z, m dim(7V/(z - 5)iV)

is discrete in CN- Therefore, (n — S)N = N.
Thus, we have shown that (dQ) n (ap(S/N) U ae(S/N)) = 0. By the first parts of

Corollary 3.6 and Proposition 4.1, the spaces

O(Q, X/M)/(z - T/M)O(Q, X/M) S O(Q, Y/N)/(z - S/N)O(Q, Y/N)

are topologically isomorphic nuclear Frechet spaces. Therefore, Q C pe(S/N), and the
proof is complete. D
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As a final application we also indicate that the result originally used by Herrero to
prove Theorem 4.2 (see [7, Theorem 2]) can be obtained as an elementary consequence
of the methods from § 3.

Let n > 1 be a natural number. Recall that an operator T e L(X) on a complex
Banach space X is n-multicyclic if there are vectors y\,..., yn € X such that

X = \f{p(T)yi; p € C[z] and i = 1,... ,n},

and if, moreover, n is the minimal natural number with this property. In this case, for
z € Pe(T),

X = \f{p(T)yi; p e C[z], i = 1, • •. ,n} = (z - T)X + \J{Vl,.. .,yn}.

In particular, — ind(z — T) < dim(X/(z — T)X) ^ n. In [6], Herrero proved the following
result on the structure of the Fredholm domain of n-multicyclic operators.

Theorem 4.3. Let T € L(X) be n-multicyclic, and let Q be a component of pe(T)
with ind(z - T) = - n for z 6 Q. Then Q is simply connected.

Proof. Note that, for z £ Q, the elements [j/i],..., [yn] form a basis for X/(z - T)X,
and that Ker(z — T) = {0}. Hence (with the notation from the proof of Lemma 3.2),
each of the operators

n

i=l

is a topological isomorphism. Observing that in each step of the proof of Lemma 3.2 one
can choose V = Q, we obtain that the map

h1 : O(Q)n -> O{n,X)/(z - T)O{Q,X), (hi) ^
L i = l

is a vector-space isomorphism with inverse induced by

A;1 : Q -¥ L(X,Cn), kx(z) = -7rCn od1{z)~1.

The composite J : X —> O(fi)n of the two operators

X^O(Q,X)/(z-T)O(Q,X), zh->[x],

O(Q, X)/(z - T)O(Q, X) -* O(Q)n, [/] H> fc1 J

satisfies, for any system of polynomials p i , . . . ,pn 6 C[z],

Fix a compact subset L of Q and a bounded component H of C \ L. It suffices to show
that the compact set a = HC\oe(T) is empty. Choose a cycle 7 surrounding cr in H such
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that 7 is contained in J?, and fix a family of left inverses R(z) [z £ fi) of z — T depending
continuously on z (e.g. R(z) = TTX ° d 1 ^)" 1 ) . Since O{Q)n is nuclear, the operator

K : O(fl)n -> X, (/i)r=i ^ E ^r / /i

is nuclear, and, hence, compact. For i = 1 , . . . , n and p € C

(KJ)(p(T)yi) = 2^[

But the operator

is precisely the spectral projection corresponding to the closed and open subset a of
a(TQ) = cre(T). Therefore, a = 0, and the proof is complete. •

References

1. E. ALBRECHT AND J. ESCHMEIER, Analytic functional models and local spectral theory,
Proc. Lond. Math. Soc. 75 (1997), 323-348.

2. J. ESCHMEIER, Analytische Dualitat und Tensorprodukte in der mehrdimensionalen Spek-
traltheorie, Schriftenreihe des Math. Inst. der Univ. Miinster 42 (1987), 132pp.

3. J. ESCHMEIER AND M. PUTINAR, Spectral decompositions and analytic sheaves, London
Mathematical Society Monographs, vol. 10 (Clarendon Press, Oxford, 1996).

4. J. K. FlNCH, The single-valued extension property on a Banach space, Pacific J. Math.
58 (1975), 61-69.

5. H. GRAUERT AND R. REMMERT, Theory of Stein spaces (Springer, Berlin, 1979).
6. D. HERRERO, The Fredholm structure of an n-multicyclic operator, Indiana Univ. Math.

J. 36 (1987), 549-566.
7. D. HERRERO, On the essential spectra of quasisimilar operators, Can. J. Math. 40 (1988),

1436-1457.
8. G. KOTHE, Topological vector spaces I (Springer, Berlin, 1969).
9. G. KOTHE, Topological vector spaces II (Springer, New York, 1979).

10. R. KULTZE, Garbentheorie (Teubner, Stuttgart, 1970).
11. T. L. MILLER AND V. G. MILLER, Equality of essential spectra of quasisimilar operators

with property (S), Glasgow Math. J. 38 (1996), 21-28.
12. M. PUTINAR, Quasisimilarity of tuples with Bishop's property (/?), Integral Eqn. Operator

Theory 15 (1992), 1047-1052.
13. H. SCHAEFER, Topological vector spaces (Macmillan, New York, 1966).
14. L. YANG, Quasisimilarity of hyponormal and subdecomposable operators, J. Fund. Anal-

ysis 112 (1993), 204-217.

https://doi.org/10.1017/S0013091500021167 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500021167

