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Abstract. The aim of this paper is to determine when there exists a quasi-
continuous Sobolev function u ∈ W 1,p(Rn; µ) whose trace u|Rn−1 is the char-
acteristic function of a bounded set E ⊂ R

n−1, where dµ(x) = |xn|
αdx with

−1 < α < p − 1.

As application we discuss the existence of harmonic measures for weighted
p-Laplacians in the unit ball.

§1. Introduction

For p > 1 and a Borel measure µ, consider the relative (p, µ)-capacity

capp,µ(·; Ω) for an open set Ω ⊂ Rn. For a compact set K ⊂ Ω, it is defined

by

capp,µ(K; Ω) = inf

∫

Ω
|∇u|pdµ,

where the infimum is taken over all functions u ∈ C∞
c (Ω) such that u ≥ 1

on K; here C∞
c (Ω) denotes the space of infinitely differentiable functions

with compact support in Ω. We extend the capacity capp,µ(·; Ω) in the usual

way (see Section 2).

For a subset E of Rn, denote the characteristic function of E by χE . We

use the notation W 1,p
E (Rn;µ) to denote the class of (p, µ)-quasicontinuous

Sobolev functions u ∈ W 1,p(Rn;µ) such that u|Rn−1 is equal to χE (p, µ)-

q.e. on Rn−1; here we identify Rn−1 with the hyperplane Rn−1 × {0}.

Throughout this paper, for −1 < α < p − 1 we consider the Borel measure

dµ(x) = |xn|
αdx,
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76 T. FUTAMURA AND Y. MIZUTA

where x = (x1, ..., xn−1, xn) ∈ Rn and dx denotes the usual Lebesgue mea-

sure.

Motivated by the work of Nakai on the existence of Dirichlet finite

harmonic measures (cf. [10, 11, 12]), we consider the problem to determine

when W 1,p
E (Rn;µ) 6= ∅. Our aim in this paper is to show the following result,

as a generalization of Herron-Koskela [4] which treats the case α = 0.

Theorem 1.1. Let E ⊂ Rn−1 be a bounded Borel set, 1 < p < ∞ and

−1 < α < p − 1. Suppose W 1,p
E (Rn;µ) 6= ∅.

(a) If p > n + α, then E = ∅.
(b) If 2 + α ≤ p ≤ n + α, then Hn−1(E) = 0.

(c) If Hn−1(E) = 0, then capp,µ(E) = 0.

Here Hs denotes the s-dimensional Hausdorff measure.

In case p ≥ 2 + α, E has (p, µ)-capacity zero if W 1,p
E (Rn;µ) 6= ∅. In

Section 5, we give some examples of bounded Borel sets E ⊂ Rn−1 with

Hn−1(E) > 0 and W 1,p
E (Rn;µ) 6= ∅ for 1 < p < 2 + α.

As applications of our results, we discuss the existence of harmonic

measures for the weighted p-Laplace equation

(1.1) −div (ω(x)|∇u(x)|p−2∇u(x)) = 0

in the unit ball B in Rn. In this paper, we consider

ω(x) = |1 − |x||α (−1 < α < p − 1)

as the weight function, which is in the Muckenhoupt Ap class. Further,

letting dν(x) = ω(x)dx, we say that a function w is (p, ν)-Dirichlet finite if

(1.2)

∫

B

|∇w(x)|p dν(x) < ∞.

A (p, ν)-Dirichlet finite function u on B is said to be (p, ν)-harmonic

if it is a continuous weak solution of (1.1) in B. We say that w is a (p, ν)-

harmonic measure on B if w is (p, ν)-harmonic in B and the greatest (p, ν)-

harmonic minorant of min{w, 1−w} is zero. We see that 0 ≤ w ≤ 1 if w is a

(p, ν)-harmonic measure. For elementary properties of (p, ν)-harmonic func-

tions and (p, ν)-harmonic measures, see Heinonen-Kilpeläinen-Martio [3]

and Nakai [10, 11, 12].
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Corollary 1.1. Let 1 < p < ∞ and −1 < α < p − 1.

(1) If p ≥ 2+α, then every (p, ν)-Dirichlet finite (p, ν)-harmonic measure

on B is constant.

(2) For each 1 < p < 2 + α, there exists a non-constant (p, ν)-Dirichlet

finite (p, ν)-harmonic measure on B.

§2. Preliminaries

Let Rn be the n-dimensional Euclidean space (n ≥ 2). For a point

x ∈ Rn, we write x = (x′, xn) , where x′ = (x1, x2, . . . , xn−1) ∈ Rn−1.

Let B(x, r) denote the open ball centered at x with radius r, and Hs the

s-dimensional Hausdorff measure. For 1 < p < ∞, let W 1,p(Rn;µ) denote

the Sobolev space of all functions u ∈ Lp(Rn;µ) whose gradient, denoted

by ∇u, belongs to Lp(Rn;µ), where dµ(x) = |xn|
αdx with −1 < α < p − 1

as above.

Suppose that Ω ⊂ Rn is open. For a compact subset K of Ω, let

W (K,Ω) = {u ∈ C∞
c (Ω) : u ≥ 1 on K}

and define

capp,µ(K; Ω) = inf
u∈W (K,Ω)

∫

Ω
|∇u|pdµ.

Further, we set

capp,µ(U ; Ω) = sup
K⊂U

K:compact

capp,µ(K; Ω)

for an open set U ⊂ Ω, and then

capp,µ(E; Ω) = inf
E⊂U⊂Ω
U :open

capp,µ(U ; Ω)

for an arbitrary set E ⊂ Ω.

The number capp,µ(E; Ω) is called the (variational) (p, µ)-capacity of

E relative to Ω. We know that capp,µ(E; Ω) is an outer Choquet capacity

(see [2, 3, 7]). We say that E ⊂ Rn has (p, µ)-capacity zero, denoted by

capp,µ(E) = 0, if capp,µ(E ∩ Ω; Ω) = 0 for all open sets Ω ⊂ Rn.

We say that a property holds (p, µ)-quasieverywhere, often abbreviated

to (p, µ)-q.e., if it holds except on a set of (p, µ)-capacity zero. A function

u on a bounded open set Ω is said to be (p, µ)-quasicontinuous if given
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ε > 0 there exists an open set E ⊂ Ω such that capp,µ(E; Ω) < ε and u is

continuous as a function on Ω\E. Further we say that a function u is (p, µ)-

quasicontinuous in Rn if u is (p, µ)-quasicontinuous in Ω for all bounded

open set Ω.

The following lemma can be obtained by an elementary calculation and

our assumption on α.

Lemma 2.1. Let x = (x′, 0) ∈ Rn and r > 0. Then

µ(B(x, r)) = c1r
n+α,

where c1 = µ(B(0, 1)) < ∞.

Lemma 2.2. Let x = (x′, 0) ∈ Rn and r > 0. Then

capp,µ(B(x, r);B(x, 2r)) = c2r
n+α−p,

where c2 = capp,µ(B(0, 1);B(0, 2)) < ∞.

Proof. For a > 0, let u ∈ W (B(0, a), B(0, 2a)) where B(x, r) denotes

the closure of B(x, r). If we set v(y) = u((y − x)/r) for r > 0, then v ∈
W (B(x, ra), B(x, 2ra)) and it follows from the definition of the capacity

that

capp,µ(B(x, ra);B(x, 2ra)) ≤

∫

B(x,2ra)
|∇v(y)|pdµ(y)

= r−p+n+α

∫

B(0,2a)
|∇u(y)|pdµ(y),

which gives

capp,µ(B(x, ra);B(x, 2ra)) ≤ c(a)rn+α−p,

where c(a) = capp,µ(B(0, a);B(0, 2a)). Hence we obtain

c(a) ≤ c(ra)r−(n+α−p) ≤ c(a),

and thus

capp,µ(B(x, r);B(x, 2r)) = c2r
n+α−p,

where c2 = c(1) < ∞, by Lemma 2.1. It is also clear from the above equality

that

capp,µ(B(x, r);B(x, 2r)) = capp,µ(B(x, r);B(x, 2r)).
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In the same way as in [5, Theorem 22], we have the following result (see

also [3, Theorem 2.32]).

Corollary 2.1. If E ⊂ Rn−1 and capp,µ(E) = 0, then E has Haus-

dorff dimension at most n − p + α.

Lemma 2.3. (cf. [3, Theorems 4.4, 4.12] and [7])

(1) For each u ∈ W 1,p(Rn;µ), there exists a (p, µ)-quasicontinuous repre-

sentative u∗ which is equal to u a.e. on Rn.

(2) If u∗ and v∗ are (p, µ)-quasicontinuous and u∗ = v∗ a.e. on Rn, then

u∗ = v∗ (p, µ)-q.e. on Rn.

A set A is called (p, µ)-thin at a point x if

∫ 1

0

(

capp,µ(A ∩ B(x, r);B(x, 2r))

capp,µ(B(x, r);B(x, 2r))

)1/(p−1)

r−1dr < ∞;

A is (p, µ)-thick at x if A is not (p, µ)-thin at x. We say that a function u

is (p, µ)-finely continuous at x if there exists a set A which is (p, µ)-thin at

x such that

u(x) = lim
y→x
y /∈A

u(y).

Lemma 2.4. (cf. Meyers [6] and [3, Section 12]) Let u ∈ W 1,p(Rn;µ). If

u is (p, µ)-quasicontinuous on Rn, then it is (p, µ)-finely continuous (p, µ)-

q.e. on Rn.

Lemma 2.5. (cf. [3, Section 12] and [9]) Let p > n + α.

(1) E ⊂ Rn−1 has capacity zero if and only if E is empty.

(2) If u ∈ W 1,p(Rn;µ) is (p, µ)-quasicontinuous on Rn, then u|Rn−1 is

continuous on Rn−1.

Proof. In this proof, we identify x′ ∈ Rn−1 with (x′, 0) ∈ Rn−1 × R1.

First we show that if x′ ∈ Rn−1 ∩ B(0,N), N > 0, then

(2.1)

∫

B(0,N)
|x′ − y|1−nf(y)dy ≤ CN (p−n−α)/p‖f‖Lp(Rn;µ)
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for every nonnegative measurable function f on Rn. In fact, we have by

Hölder’s inequality

∫

B(0,N)
|x′ − y|1−nf(y)dy

≤

(

∫

B(0,N)
|x′ − y|(1−n)p′ |yn|

−αp′/pdy

)1/p′ (
∫

B(0,N)
f(y)p|yn|

αdy

)1/p

≤ C(N + |x′|)(p−n−α)/p‖f‖Lp(Rn;µ),

where 1/p + 1/p′ = 1.

In view of (2.1), we see easily that

capp,µ({x′};B(0,N)) ≥ CN−(p−n−α),

so that capp,µ({x′}) > 0, which proves (1).

As another application of (2.1), we show that the potential

u(x′) =

∫

B(0,N)
|x′ − y|1−nf(y)dy (x′ ∈ Rn−1)

is continuous on Rn−1 ∩B(0,N) for every f ∈ Lp(Rn;µ). To show this, we

note that if z′ ∈ Rn−1 ∩ B(0,N) and 0 < s < N − |z′|, then

∫

B(0,N)−B(z′,s)
|x′ − y|1−nf(y)dy

is continuous at z′. Further, in view of (2.1), if x′ ∈ Rn−1 ∩ B(z′, s), then

∫

B(z′,s)
|x′ − y|1−nf(y)dy ≤

∫

B(x′,2s)
|x′ − y|1−nf(y)dy

is small enough when s is small. Hence u(x′) is continuous at z′. With the

aid of Sobolev’s integral representation of u ∈ W 1,p(Rn;µ) (cf. [9]), we see

that u|Rn−1 is continuous, so that (2) follows.

§3. The main lemma

Here we prepare the following technical lemma needed for the proof of

Theorem 1.1.
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Lemma 3.1. Let Ω be a bounded open set in Rn. If A is a Borel set

with its closure in Ω and Hn(A) > 0, then

∫∫

A×(Ω\A)
|x − y|−n−1 dxdy = ∞.

Proof. Set

Ã =

{

x ∈ A : lim
r→0

Hn(A ∩ B(x, r))

Hn(B(x, r))
= 1

}

.

Then Hn(A \ Ã) = 0 (cf. [2]), so that we may assume that A = Ã, that

is, every point of A is the Lebesgue point of A. Further we may assume

without loss of generality that the origin 0 ∈ A. By our assumption, there

exists r0 > 0 such that Hn(A \ B(0, r0)) > 0 and B(x, r) ⊂ Ω whenever

B(x, r) ∩ A 6= ∅ and 0 < r < r0. Set P (x) = {tx : t ≥ r0} for each x ∈ Rn

and S = {x ∈ Rn : |x| = 1 and P (x) ∩ A 6= ∅}. Then we see from Fubini’s

theorem that Hn−1(S) > 0.

Take r1 such that 0 < r1 < r0. By the intermediate value theorem, for

each x ∈ S we can find B(x(1), r
(1)
x ) such that x(1) ∈ P (x), 0 < r

(1)
x < r1

and
Hn(A ∩ B(x(1), r

(1)
x ))

Hn(B(x(1), r
(1)
x ))

=
3

4
.

Now we denote by B∗(x, r) the projection of B(x, r) to ∂B(0, 1). By the cov-

ering lemma, we can find a countable family {B1j}, where B1j =B(z
(1)
j , r

(1)
j ),

such that |z
(1)
j | ≥ r0, r

(1)
j < r1, {B

∗
1j} is disjoint and

⋃

x∈S

B∗(x(1), r(1)
x ) ⊂

⋃

j

B∗(z
(1)
j , 5r

(1)
j ).

Since Hn−1(B∗(x, r)) ≤ c3r
n−1 for |x| ≥ r0 with a constant c3 > 0, depend-

ing only on r0, we have

c3

∑

j

(5r
(1)
j )n−1 ≥

∑

j

Hn−1(B∗(z
(1)
j , 5r

(1)
j ))

≥ Hn−1(
⋃

x∈S

B∗(x(1), r(1)
x ))

≥ Hn−1(S).
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Hence we can find a positive integer N1 such that

(3.1)

N1
∑

j=1

(r
(1)
j )n−1 ≥ c4,

where c4 = (2c35
n−1)−1Hn−1(S) > 0. Since {B1j}

N1

j=1 is disjoint, we have

∫∫

A×(Ω\A)
|x − y|−n−1 dxdy

≥

∫

(
⋃N1

j=1
B1j)∩A

(

∫

Ω\A
|x − y|−n−1dx

)

dy

≥
N1
∑

j=1

∫

B1j∩A

(

∫

B1j\A
|x − y|−n−1dx

)

dy

≥
N1
∑

j=1

(2r
(1)
j )−n−1Hn(B1j \ A)Hn(B1j ∩ A)

=

N1
∑

j=1

(2r
(1)
j )−n−1 1

4
Hn(B1j)

3

4
Hn(B1j)

> 2−n−4σ2
n

N1
∑

j=1

(r
(1)
j )n−1 > c5,

in view of (3.1), where c5 = 2−n−5σ2
nc4. The above inequalities also imply

that

(3.2)

N1
∑

j=1

∫

(B1j∩A)\G

(

∫

B1j\A
|x − y|−n−1dx

)

dy ≥ c5

whenever G ⊂ Rn satisfies Hn(B1j ∩ A \ G) ≥ Hn(B1j)/2 for 1 ≤ j ≤ N1.

For γ1 = min1≤j≤N1
r
(1)
j and ε1 > 0, take r2 such that 0 < r2 < ε1γ1.

Next, for each x ∈ S, find B(x(2), r
(2)
x ) such that x(2) ∈ P (x), 0 < r

(2)
x < r2

and

Hn(A ∩ B(x(2), r
(2)
x ))

Hn(B(x(2), r
(2)
x ))

=
3

4
.
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By the same considerations as above, we can take a family {B2j}
N2

j=1, where

B2j = B(z
(2)
j , r

(2)
j ), such that |z

(2)
j | ≥ r0, r

(2)
j < r2, {B

∗
2j}

N2

j=1 is disjoint and

(3.3)

N2
∑

j=1

∫

(B2j∩A)\G

(

∫

B2j\A
|x − y|−n−1dx

)

dy ≥ c5

whenever G ⊂ Rn satisfies Hn(B2j ∩ A \ G) ≥ Hn(B2j)/2 for 1 ≤ j ≤ N2.

Since {B∗
2j}

N2

j=1 is disjoint, we see from Fubini’s theorem that

Hn(B1j1 ∩
N2
⋃

j2=1

B2j2) ≤ (max
j2

2r
(2)
j2

)c6H
n−1(B∗

1j1) ≤ 2c3c6(r
(1)
j1

)n−1r2,

so that

Hn(B1j1 ∩ A \
N2
⋃

j2=1

B2j2) ≥ Hn(B1j1 ∩ A) −Hn(B1j1 ∩
N2
⋃

j2=1

B2j2)

≥ 3Hn(B1j1)/4 − 2c3c6(r
(1)
j1

)n−1r2

≥ (3/4 − c7ε1)H
n(B1j1),

where c6 and c7 are positive constants. Taking ε1 = 2−3/c7, we have by

(3.2) and (3.3)
∫∫

A×(Ω\A)
|x − y|−n−1 dxdy

≥

∫

⋃N1

j1=1
B1j1

∩A\
⋃N2

j2=1
B2j2

(

∫

Ω\A
|x − y|−n−1dx

)

dy

+

∫

⋃N2

j2=1
B2j2

∩A

(

∫

Ω\A
|x − y|−n−1dx

)

dy ≥ 2c5.

Setting εi = 2−i−2/c7 for each nonnegative integer i, we apply the above

arguments repeatedly, and obtain {Bij}
Ni
j=1, where Bij = B(z

(i)
j , r

(i)
j ), such

that {B∗
ij}

Ni
j=1 is disjoint, |z

(i)
j | ≥ r0, r

(i)
j < εi−1 min{r

(i−1)
j : 1 ≤ j ≤ Ni−1},

Hn(A ∩ Bij) = 3Hn(Bij)/4 and

(3.4)

Ni
∑

j=1

∫

Bij∩A\G

(

∫

Bij\A
|x − y|−n−1dx

)

dy ≥ c5
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whenever G ⊂ Rn satisfies Hn(Bij ∩ A \ G) ≥ Hn(Bij)/2 for 1 ≤ j ≤ Ni.

For 1 ≤ i ≤ k − 1 and 1 ≤ ji ≤ Ni, we have

Hn(Biji ∩ A \ Gi) ≥ (3/4 − c7

k−1
∑

l=i

εl)H
n(Biji) ≥ Hn(Biji)/2,

where Gi = ∪k
l=i+1 ∪

Nl
jl=1 Bljl

. Thus we have by (3.4)

∫∫

A×(Ω\A)
|x − y|−n−1 dxdy

≥
k
∑

i=1

∫

⋃Ni
ji=1

Biji
∩A\Gi

(

∫

Ω\A
|x − y|−n−1dx

)

dy

≥
k
∑

i=1

Ni
∑

ji=1

∫

Biji
∩A\Gi

(

∫

Bij\A
|x − y|−n−1dx

)

dy

≥ kc5,

which proves the present lemma by the arbitrariness of k.

§4. Proof of Theorem 1.1

We are now ready to prove Theorem 1.1.

Proof of (a). In case p > n + α, Lemma 2.5 shows that W 1,p
E (Rn;µ) is

empty for every bounded nonempty set E ⊂ Rn−1.

Proof of (b). Assume that 2 + α ≤ p ≤ n + α and W 1,p
E (Rn;µ) 6= ∅. If

u ∈ W 1,p(Rn;µ) is (p, µ)-quasicontinuous on Rn, then, in view of [9, 13]

∫∫

Ω×Ω

|u(x′, 0) − u(y′, 0)|p

|x′ − y′|n+p−(2+α)
dx′dy′ < ∞

whenever Ω is a bounded open set in Rn−1, so that

∫∫

E×(Ω\E)
|x′ − y′|−n−p+2+α dx′dy′ < ∞,

which together with Lemma 3.1 implies that E is of measure zero. Thus (b)

holds.
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Proof of (c). We claim that if Hn−1(E) = 0, then F = Rn−1 \ E is

(p, µ)-thick at each point of E. Fix x ∈ E and r > 0. Let K ⊂ F ∩ B(x, r)

be compact and v ∈ W (K,B(x, 2r)). Then we have
∫
∣

∣

∣

∣

∂v(y′, yn)

∂yn

∣

∣

∣

∣

dyn ≥ 2 for all y′ ∈ K.

Hence it follows from Hölder’s inequality and Fubini’s theorem that
∫

|∇v|pdµ ≥ cr−p+1+αHn−1(K)

for a positive constant c. Consequently, we have

capp,µ(F ∩ B(x, r);B(x, 2r)) ≥ cr−p+1+αHn−1(F ∩ B(x, r)).

In view of the assumption Hn−1(E) = 0 and Lemma 2.2, we see that

capp,µ(F ∩ B(x, r);B(x, 2r))

capp,µ(B(x, r);B(x, 2r))
≥ c′

for a positive constant c′. Now our claim is proved.

Fix u ∈ W 1,p
E (Rn;µ) such that u is (p, µ)-quasicontinuous on Rn and

u|Rn−1 = χE on Rn−1 \ A1, where A1 has (p, µ)-capacity zero. By Lemma

2.4, u is (p, µ)-finely continuous on Rn \ A2, where A2 has (p, µ)-capacity

zero. Since F is (p, µ)-thick at each point of E as was shown above,

u = 0 on E \ A,

where A = A1 ∪ A2. On the other hand, u = 1 on E \ A, so that E \ A is

empty. Thus it follows that capp,µ(E) = 0.

§5. Proof of Corollary 1.1

Let ν denote the Borel measure on Rn defined by

dν(y) = |1 − |y||αdy.

Proof of (1). Suppose that w is a (p, ν)-Dirichlet finite (p, ν)-harmonic

measure on B. Then w(1 − w) ∈ W 1,p(B; ν) since 0 ≤ w ≤ 1. By using [3,

Theorem 3.17], there exists a solution u ∈ W 1,p(B; ν) of (1.1) in B with

u−w(1−w) ∈ W 1,p
0 (B; ν). Since 0 ≤ w ≤ 1, it follows from [3, Lemma 7.37]

that u is a (p, ν)-harmonic minorant of both w and 1−w. By the definition of

harmonic measures, we see that u ≤ 0 in B. Hence Theorem 1.1 implies that

either capp,ν ({ζ ∈ ∂B : w(ζ) = 0}) = 0 or capp,ν ({ζ ∈ ∂B : w(ζ) = 1}) =

0, so that w is constant by [3, Lemma 7.37].
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Proof of (2). Let E be a domain in ∂B with (nonempty) smooth bound-

ary and take u ∈ W 1,p
E (Rn; ν) as in Proposition 6.1 given in the next section.

By [3, Theorem 3.17] we find w ∈ W 1,p(B; ν) which is the solution of (1.1)

in B with w − u ∈ W 1,p
0 (B; ν). Clearly, u and hence w is not constant. Set

ŵ = min{w, 1 − w} and let v be any (p, ν)-harmonic minorant of ŵ. Since

the boundary values of w(1−w) are zero (p, ν)-q.e, ŵ has boundary values

zero (p, ν)-q.e. Hence [3, Lemma 7.37] implies that v ≤ 0. It follows that w

is a (p, ν)-harmonic measure on B, which proves (2).

§6. Further results

First we note the following result.

Lemma 6.1. If 0 < δ < 1 and Ω is a bounded domain with C1 bound-

ary, then
∫∫

Ω×(Rn\Ω)
|x − y|−n−δ dxdy < ∞.

In fact, it suffices to note that
∫

Rn\Ω
|x − y|−n−δdy ≤

∫

Rn\B(x,d(x))
|x − y|−n−δdy ≤ cd(x)−δ ,

for x ∈ Ω,where c is a positive constant and d(x) = dist(x, ∂Ω) denotes the

distance of x from the boundary ∂Ω.

Proposition 6.1. If 1 < p < 2 + α and Ω is a bounded domain on

Rn−1 with C1 boundary, then W 1,p
Ω (Rn;µ) 6= ∅.

Proof. In view of Lemma 6.1, we see that χΩ satisfies

∫∫

Rn−1×Rn−1

|χΩ(x′) − χΩ(y′)|p

|x′ − y′|n+p−(2+α)
dx′dy′ < ∞.

Hence χΩ belongs to the Lipschitz space Λp,p
β (Rn−1) with β = 1−(α+1)/p,

so that the Poisson integral u(x) = Pxn ∗ χΩ(x′) satisfies
∫

D

|∇u(x)|pxα
ndx < ∞,

where D = {x = (x′, xn) : xn > 0}; see Stein [13] or the second author [9].

Then we can extend u to a function in W 1,p
Ω (Rn;µ), so that W 1,p

Ω (Rn;µ) is

not empty.
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For K ⊂ Rn−1, let Λp,p
β (K) be the space of all functions u ∈ Λp,p

β (Rn−1)

such that u = 0 outside K. Finally we discuss whether Λp,p
β (K) with β =

1 − (α + 1)/p is trivial, or not. For this purpose we consider a capacity

inequality introduced by Carleson [1, Theorem 2 in Section 4] (see also [8]).

Proposition 6.2. Let K be a compact set in Rn−1. Let G1 and G2

be bounded open sets in Rn such that K ⊂ G1 ⊂ G1 ⊂ G2. Set ω1 =

G1 ∩ Rn−1. If β = 1 − (1 + α)/p and

(6.1) capp,µ(ω1 \ K;G2) < capp,µ(ω1;G2),

then Λp,p
β (K) has non-zero element.

Proof. We can find a (p, µ)-quasicontinuous function u1 ∈ W 1,p(Rn;µ)

such that

(i) u1 = 0 (p, µ)-q.e. outside G2 ;

(ii) u1 = 1 (p, µ)-q.e. ω1 \ K ;

(iii)
∫

G2
|∇u1|

pdµ = capp,µ(ω1 \ K;G2) ;

(iv)
∫

G2
|∇u1|

p−2∇u1 · ∇ϕdµ = 0 for all ϕ ∈ C∞
c (G2) such that ϕ = 0 on

ω1 \ K.

Similarly, we find a (p, µ)-quasicontinuous function u2 ∈ W 1,p(Rn;µ) such

that

(v) u2 = 0 (p, µ)-q.e. outside G2 ;

(vi) u2 = 1 (p, µ)-q.e. ω1 ;

(vii)
∫

G2
|∇u2|

pdµ = capp,µ(ω1;G2) ;

(viii)
∫

G2
|∇u2|

p−2∇u2 · ∇ϕdµ = 0 for all ϕ ∈ C∞
c (G2) such that ϕ = 0 on

ω1.

Then we see from (6.1) that u1 6= u2. Consequently, for ϕ ∈ C∞
c (G1),

[ϕ(u2 − u1)]|Rn−1 is shown to be a non-zero element of Λp,p
β (K).
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