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Two fixed point theorems

and invariant integrals

T.J. Cooper and J.H. Michael

Two fixed point theorems for a subset ¢ of a normed vector space
X are established by using the concept of centre. These results
differ from previous fixed point theorems in that X is assumed
to have a topology T as well as a norm. The norm is fequired to
be lower semi-continuous with respect to T and C is required
to be convex, bounded with respect to the norm and compact with

respect to T .

The first theorem shows that if the norm is locally uniformly
convex, thn the semigroup of all non-expansive mappings of C
onto € has a common fixed point in € . It is shown how this
theorem can be used to prove the existence of a right invariant
integral on a compact metrizable semigroup with a unique minimal

left ideal.

The second theorem shows that, if the norm is again locally
uniformly convex and if H is a semigroup of continuous (with
respect to T ), non-expansive, affine mappings of C into C
such that H 1is left reversible; that is, TH nT'H # § for
all T, T' € H; then the mappings of H have a common fixed

point in C .

1. Introduction

Throughout the paper, X will denote a normed vector space over the

real numbers, which is also endowed with a locally convex Hausdorff
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topology T , such that

(i) the vector space operations are continuous with respect to

T in the usual way, and

(ii) the norm is lower semicontinuous with respect to T in

the following sense:

for every x* € X and € > 0 , there exists a U €T ,
such that x € U and

lyl > la] - €
for all y €U .

C 1is a non-empty convex subset of X , which is bounded with respect

to the norm and compact with respect to T . For each & € C , define

(1) r{x) = sup |z-y| .
yeC
Put
(2) a(C) = inf r(x)
x€C

and let Y(C) denote the set
(3) {x € C; r(z) = a(C)} .
Similarly to [6], Y(C) will be called the centre of C .

The concept of centre has been used to show the existence of fixed
points by Edelstein [6] and [7] and Belluce and Kirk [1]. The concept of

centre has also been used by Brodskii and Mil'man [2].

It will be shown that vy(C) is non-empty, convex and compact with
respect to T . It will also be shown that every mapping of (¢ onto C ,
which is non-expansive with respect to the norm, takes vY(C) into Y(C)
and that when the norm satisfies a special convexity condition, Y(C) has
exactly one point. In this case v(C) is therefore a common fixed point

for all non-expansive mappings of ¢ onto C .

The existence of a common fixed point is then used to prove the
existence of a right invariant integral on a compact metriqule semigroup
with a unique minimal left ideal. The existence of such an integral has

of course been known since 1956, when it was established by Rosen in [11].
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It is given here as an application of the fixed point theorem. In [12]
Sneperman has given a similar application using a somewhat different fixed

point theorem.

The existence of the common fixed point for onto mappings is also used
to show the existence of a common fixed pdint for a semigroup of non-
expansive mappings of € into C which satisfies the special intersection

property of left reversibility.

2. The first fixed point theorem

The structure of the centre and the first of the fixed point theorems

will now be discussed.
THEOREM 2.1. »r <s lower semicontinuous on C with respect to T .
Proof. Let x € C and € > 0 . There exists 2z € C such that

() le-z| > r(z) - %e .

Since the norm is lower semicontinuous, there exists a V € T such that

X -2 €V and
(5) lw] > |x-2| - %¢

for a1l w €V . Put U=V +2z. Then U €T and x € U . When
y €UnC ,wehave y - 2 €V, so that by (5), |y-z| > |x-3| - %e .
Since r(y) = |y-z| , it follows that r(y) > |x-z| - %€ , so that by (h),

r(y) > r(x) - € .

THEOREM 2.2. vy(C) 4is a non-empty convex subset of C , which is
bounded with respect to the norm and compact with respect to T .

Proof. For each positive integer n , let
1
Yn(C) = {x; x €C and r(z) =al(Cc) + ;} .

Since r is lower semicontinuous and € 1is compact, Yn(c) is compact
with respect to T for all n . From (2), Yn(c) is non-empty for all

n . Therefore

o0

y(c) = n vy (C)
n=1 n
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is a non-empty compact subset of C . The boundedness of vy(C) is trivial

and the convexity is easily verified.

We define a mapping T of (¢ 1into C +to be non-expansive if, for
all x and y € C ,

(6) |7(z)-1(y)}] = |z-y]| .

THEOREM 2.3. Every non-eapansive mapping T of C onto C maps
y(C¢) into v(C) .

Proof. Consider any =z € y(C) and y € C . There exists £ € C
such that T(£) =y . Now

le-g] = alC) .
Hence, from (6),
|7(x)-1(E)| = alC) 3
that is,
|T(x)-y| = a(C)

Since this holds for all y € C , then r(7(x)) = a(C) ; hence
T(x) € Y(C) . Thus T maps vY{(C) into ¥(C)

The norm is said to be locally uniformly convex if for every x and

y € X, with x#y , and every D = ¥|z-y| ,
8(x, y, D) = inf{D-|¥(x+y)-E|; & € X, |z-E] =D, |y-&| = D}
is a positive -number.

THEOREM 2.4. If the norm is locally uniformly convex, then Y(C)

contains only ome point.
REMARK. The norm need only be locally uniformly convex on C .

Proof. Suppose y(C) contains two distinct points x, y . Consider
any & €C . Then |x-£|] =a(C) , |y-&] =a(C) and

8z, y» alC)) = alC) - |&(x+y)-g]
Hence

|5 (z+y)-E| = olC) - 8(x, y, a(C))
This holds for all & € ¢ and therefore

r(%(zty)) = alc) - 8{x, y, a(C))
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But since a(C) = %¥|z-y| , then &(x, y, a(C)) is a positive number

and so r{%(xz+y)) < a(C) , a contradiction.
The following fixed point theorem now follows from Theorems 2.2, 2.3

and 2.4,

THEOREM 2.5. If the norm is locally uniformly convex and if H <is
any set of non-expansive mappings of C onto C , then the mappings of H
have a common fized point in C .

REMARK, The members of H do not have to be linear.

COROLLARY 2.6. If X is a Hilbert space, C 1is a non-empty convex
bounded weakly compact subset of X and H <s any set of non-expansive
mappings of C onto C , then the mappings of H have a common fixed

point in C .

3. Invariant integrals

We now show how Theorem 2.5 can be used to prove the existence of a
right invariant integral on a compact metric semigroup with a unique

minimal left ideal.

Let G be a compact metric semigroup with metric d . C(G) 1is the

Banach space of all real valued continuous functions on G with the

supremum norm. {f(n)} is a sequence of members of C((G) such that the

linear manifold M spanned by them is dense in C(G) and

5™ =1

for all n . (See page 246 of [§] for a proof of the separability of
C(G) .) For each f € C(G) and a €G , f& is the member of C(G)

defined by
f(=) = flza) ,
for all x € G . A is the vector space of all bounded linear functionals
A on C(G) . For each XA € A and a € G , define
v 2]
(8) o0u @ = | T 2" [s)]
n=1

Define a norm on A , by
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(9) [A] = sup ¢(A, a) .
a€c

The following lemma is a well known result.
LEMMA 3.1. IFf f e Cc(G¢) and {ak} i8 a sequence in G which

converges to an element a of G , then

|fak'fa| >0

as Kk > o,
THEOREM 3.2. For all X € A there exists an a € G such that
(10) [} = ¢(2, a) .

Proof. Consider any A € A . Choose a sequence {ak} in G such
that

(12) Az o0 @) > A - %

for all k . Since (G is compact metric, there exists a subsequence {br}

of {ak} converging to an element a of G . By (11),
(12) o (2, br) > Al

as r »» . Let K be a constant such that

(13) IMA = k|7

for all f € C(G) . Therefore, by (7),

)

for all r and n .

1A
x

(n)

By Lemma 3.1, |fén)-fa >0 as r > o , hence by (13),
r

(n)

A[fb ] > k(fén)] as r - , By (14), the series concerned is uniformly

r

convergent and hence
o(x, 1) > 0(x; a)

as r > , so that, by (12),
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(A, a) = |A] .
We define a functional B on A , by

(15) B(A) = inf ¢(X, a) .
acc

THEOREM 3.3. For all X € A, there exists an a € G , such that
B(A) = ¢(X, a) .
This can be proved in a similar manner to Theorem 3.2.

THEOREM 3.4. If G <is left simple, that is, Gx = G for all
x € G, then

(16) ¢(A, D) >0

for all X € A, with A #0, andall b € G . Hence B(\) is a positive
rnumber for all A € A, with X #0 .

Proof. Let A € A, with A #0 and let b € G . Since G is
compact it contains at least one idempotent (see [74]). By Theorem 1-27 on
page 38 of [3], G is a left group. Then the mapping ¥ of G onto G
defined by

x(z) = b ,
for all x € G , is one-to-one. Hence ¥ 1is a homeomorphism of G onto

G . It follows that the linear manifold spanned by the set of functions

{fén); n=1, 2, ...} is dense in C(G) .

Then A(f(n)] # 0 for some n and hence ¢(A, b) >0 .

THEOREM 3.5. If G is lesyt gimple, then the norm for A is locally
uni formly convex.

Proof. Consider any A and p € A with XA # u , and any real number
D, with D = %[A-u| . We have to show that

8(X, u, D) = inf{D-|¥(A+n)-£|; & € A, |X-E| =D, |u-g| =D}

is a positive number. Consider any £ € A with |A-g| =D and
lu-g] =D .

Phere exists an element b € G such that
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[o(+hu-g, b)1°
Ho(A-E, b)1% + %o(u-E, b)1° - %[o(A-u, b)}°

|%(A+n)-£]2

{A

2 2 2
%[sup o(A-€, a)] + %[sup o(p-¢, a)] - %Enf ¢(A-u, a)]
acG acG €G

i

5[2-£|2 + %|u- €12 - 4[8(A-1)1°
p? - Hp(x-w)1% .

1A

Since A # 4 , then, from Theorem 3.4, B(A-pu) is a positive number.
Hence there exists a positive number § such that, for all £ € A with
[»-&] =D ana |u-g| =D,

(17) [%(x+u)-g| =D - 6§ ,
where 6 depends only on A, u and D . Hence &(A, u, D) >0 .
Let T denote the weak topology for A .

THEOREM 3.6. The norm for A s lower semicontinuous with respect
to T.

Proof. It is easily verified that, when a is kept fixed and
¢(A, a) is regarded as a function of X , then ¢ is lower semicontinuous

with respect to T . It now follows that the norm is lower semicontinuous.

We now let I be the set of all A € A such that, XA is positive,

(18) A1) =1,
and
(19) XA = |F]

for all f € C(G) . (On the left hand side of (18), 1 denotes the

function with constant value 1 .)

THEOREM 3.7. T <s a non empty convex subset of N which is bounded
with respect to the norm and weakly compact.

Proof. The convexity and boundedness of [ are straightforward. The
existence of a positive linear functional with A(1) =1 and
IX(F)| = |fl » for a11 f € C(G) , can be shown by letting a € ¢ and

defining

AMf) = fla)
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for all f € C(G) .

23

Clearly T is weakly closed, so that by Theorem 4-61-A on page 228 of

[13], T is weakly compact.

We note that T does not contain the zero functional. For each

a € G, let Ta denote the transformation of A into A , defined by

(20) (T M) = A(F)

a
for all f € ¢(G) and A € T . Let H denote the semigroup of all the
transformations Ta
THEOREM 3.8, For all a €G , T, 18 a non-expansive map of T
into T .

If G is left simple, then for all a € G, T, maps T onto ‘T .

Proof. Let a € G . It is easily verified that Ta maps I into

' Let A, u €T . We have to show that ITa(X—u)| < |x-u| . Since
(gb)a © 90p
for all b € G and g € C(G) , it follows that
o )%
- y
17 (Aep)] = sup | T 2 ”{(x-u>[f(” ]}
a beG |n=1 ab
o 2 55
=sup | ) f"{ﬂ-u)[fén)]}
ceG {n=1
= [A-ul .

Now suppose that (G is left simple and let g € G . Now (G has an

idempotent ¢ and xe = x for all x € G . Hence fe = f for all

f € C(G) , so that Te(g) =§f forall & €T . Let ¢ € G be such that

ca = e . Consider an arbitrary A € T and put n = TC(A) . Then, for all

fece,

(z,(m) () =n(r,)

A7)

(2,00 () = A(f,)
(),
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so that Th(n) = X . Thus T& is onto.
THEOREM 3.9. If G 1is left simple, then there exists a non-trivial
positive right imvariant integral on G .

Proof. Since the conditions of Theorem 2.5 are satisfied, the

mappings of H have a common fixed point AO in T . Hence, for all
a €G and f € C(G) ,

A (f) = Al .

Thus AO is a positive right invariant integral on G .

We now assume that G has a unique minimal left ideal. One of the
results of Rosen in [17] is that this is a necessary and sufficient
condition for the existence of a right invariant integral. §neperman has
shown in [72] that the right reversibility of G (that is, Gx n Gy is
non-empty for all «, ¥ € G ) is equivalent to the existence of a unique

minimal left ideal.

Let K denote the unique minimal left ideal. Then KX 1is a compact
subsemigroup and it can be shown that X is left simple (see Michael [9],

Theorem 5.1).

By Theorem 3.9 there exists a positive right invariant integral XO
on X . For each f € ¢(G) , let f* denote the restriction of f to
K . Define a positive linear functional Al on €(G) by putting

(21) Al(f) = lo(f’*)

for all f € €(G) . By considering the constant functions one can easily

see that Al is non-trivial.
We show that Al is right invariant. Now X has the properties

(22) Kr DK
for all x € ¢ and
(23) Kz = K

for all x ¢ XK . Suppose that ¢ € K and f € C(G) . One can easily
verify that (fb)* = (f*)a , hence
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A (£ ) = Ay
so that

(2k) A (F)

1l

e

Now suppose a@ € G~ K and f €C(G) . Let ¢ € K. By (22) there exists
an element b € K , such that ba = ¢ . By (24), Al(f) = Al[fé) , 50 that

and by (2k),
A () = A (F)

Thus }\1 is right invariant.

We have shown that there exists a right invariant integral on G .

4, Some further fixed point theory

Some additional fixed point theory will now be discussed. The first
theorem is similar to §neperman's Theorem in both the statement and the
proof. We again assume that X 1is a normed vector space, with a topology
T , satisfying (i) and (ii) of Section 1 and that ( .is as described in

Section 1.

THEOREM 4.1. If the norm is locally uniformly convex and if H is
any semigroup of continuous (with respect to T )} non-expansive affine
mappings of C tinto C such that H is left reversible; that is,

(25) THaT'H#¢

for all T and T' € H; then the mappings of H have a common fized
point in C .

Proof. If C contains only one point, there is nothing to prove.
Therefore assume C contains more than one point. Let K ©be the
collection of all subsets K of C which are non-empty convex and
compact, with respect to T , and for which HK 1is a subset of K . Order

K by inclusion. Then (K, c) is a pre-ordering. Consider a chain K0

in K . Then, since any two members of K0 are related,
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AL nA_n...n Ar is nonempty for any finite sequence A_, A

in K. . Hence
K = N{a; 4 ¢ Ko}

is nonempty. It is straightforward to show that Kl is convex and

compact, with respect to T , and contains HKl . Hence Kl is a member

of K . It is obviously also a lower bound of the chain KO . Therefore

by Zorn's Lemma, K has a minimal element, KO say. If K0 contains

only one point there is nothing further to prove, therefore assume KO

contains more than one point.

We now show that TK = K for all T € H ., We first show that, for

0 0
all »n and Tl’ T2, cees Tn € H , there exists Hl, Hg’ cees Hn € H such
that
= = ...=TH .
(26) TlHl ZEH2 Tn #

From (25), there exist H, and H, such that (26) holds for n =2 .

Suppose there exists H. , H € H such that (26) holds for

1* "2 "t Hk—l
n=%kk-1. Then, from (25), there exists H and Hk € H such that

TIHlH = Zkﬂk . Hence

TlHlH = T2H2H =.,,. = Tk-lHk-lH = Tka

and so (26) holds for n = k . By induction, (26) holds for all = .

Let z ¢ K, . Then (26) gives, for all n ,

TH (%) = T H(x) = ... = TH (z);
that is, for all 7 and all Tl’ T2, cees Tn € H , there exists
xl, x2, cees xn € KO such that
Tlxl = IéxQ = = Tnxn

Hence, for every finite sequence Tl’ T2,
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n
N 7.(k) is non empty.
=1 © 0

Since KO is compact, with respect to T , and for each T € H , T(Ko)

is closed, it follows that

(27) K'=n 7k
0 ey (k)

is non empty and compact, with respect to T . Since each T 1is affine,

K' is convex.

(0]
If now Zb and Tl are arbitrary transformations in H , then by
(25) there exist HO and Hl such that TOHO = TlHl and therefore, since
' c .
KO HO(KO) , it follows that

7, (&) < 7, (8, (k)]
7.4, (k)]

c T1(K0) .

Hence Tb(Ké) c T(KO] , for all T ¢ H , and so, from (27),

1] 1]
(28) 1o (k) < K}
Therefore Ké = KO , since Kb is minimal. Hence by (27) and (28),
7(K,) = K, for all T €H.

Then KO and H satisfy the conditions of Theorem 2.5 and therefore

Ko contains a fixed point under H . This is also a fixed point in C .

If the norm topology and T are the same, if X is a Banach space
and if the diameter of C is positive, then it follows from Lemma 1 of [4]

that there exists a u € C such that
r(u) < diam(C)
It can be easily shown that y(C) =(C iff
r(x) = diam(C)

for all x € C . Therefore in the above case Y(C) is a proper subset of
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C 1if (C contains more than one point. Hence the existence of a fixed
point in C , under a left reversible semigroup of non-expansive affine
mappings of € into C , can be shown by using a Zorn's Lemma Argument
similar to the one used in the proof of Kakutani's Fixed Point Theorem on
page 457 of [5]. This will be valid without the norm property of local
uniform convexity. This is a slightly less general version of the fixed
point theorem established by Mitchell in [10].

If the norm and the topology T are ﬁot the same, but € has normal
structure or the stronger condition of completely normal structure (see
BrodskiY and Mil'man [2] and Belluce and Kirk [7]), then vY(X) can be
shown to be a proper subset of any convex subset K of C which is
compact with respect to T and contains more than one point. Similarly to
the above, a Zorn's Lemma Argument shows the existence of a fixed point in
C under a left reversible semigroup of non-expansive affine mappings of (C
into € . Local uniform convexity of the norm is again not required. This
is similar to the fixed point theorem of Belluce and Kirk [1]. It weakens
many of their assumptions, but, of course, it requires the norm to be lower

semicontinuous with respect to the topology T .

We conclude with an example which shows that in the general case,
where both the norm and the topology T are being considered and neither
the norm nor ¢ has special properties, y(C) need not be a proper subset
of C .

COUNTER EXAMPLE 4.2. Let m be the space of all bounded real

® R N
sequences aq = {an}n=1 with the usual norm; that is,

la] = sup |a_| .
n n

let T be the Tychonoff product topology. Then the norm is lower semi-

continuous with respect to T .

Let ( be the closed (with respect to T ) convex hull of
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(o)

a 12, 2, 2,
a(l) i, 2, 2,
a(2) 2,1, 2,

a3 2, 2,1, ..

C 1is clearly bounded with respect to the norm. Since any set of the form
{a; a €¢m and |a| = p}
is compact with respect to T and ( is a closed subset of such a set, it

follows that C 1is compact with respect to T .

It is not difficult to show that the diameter of ¢ is 1 . With
greater difficulty it can be shown that for all x € ¢ , r(x) =1 . Then
a(C) = 1 and hence ¥Y(C) =C .
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