
BULL. AUSTRAL. MATH. SOC. 47D05

VOL. I I (1974) , 15-30.

Two fixed point theorems

and invariant integrals

T.J. Cooper and J.H. Michael

Two fixed point theorems for a subset C of a normed vector space

X are established by using the concept of centre. These results

differ from previous fixed point theorems in that X is assumed

to have a topology T as well as a norm. The norm is required to

be lower semi-continuous with respect to T and C is required

to be convex, bounded with respect to the norm and compact with

respect to T .

The first theorem shows that if the norm is locally uniformly

convex, then the semigroup of all non-expansive mappings of C

onto C has a common fixed point in C . It is shown how this

theorem can be used to prove the existence of a right invariant

integral on a compact metrizable semigroup with a unique minimal

left ideal.

The second theorem shows that, if the norm is again locally

uniformly convex and if H is a semigroup of continuous (with

respect to T ), non-expansive, affine mappings of C into C

such that H is left reversible; that is, TH n T'H t 0 for

all T, T' € H ; then the mappings of H have a common fixed

point in C .

1. Introduction

Throughout the paper, X will denote a normed vector space over the

real numbers, which is also endowed with a locally convex Hausdorff
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topology T , such that

(i) the vector space operations are continuous with respect to

T in the usual way, and

(ii) the norm is lower semicontinuous with respect to T in

the following sense:

for every x € X and e > 0 , there exists a U € T ,

such that x € V and

\y\ > \x\ - e

for all y 6 V .

C is a non-empty convex subset of X , which is "bounded with respect

to the norm and compact with respect to T . For each x (. C , define

(1)

Put

(2)

and l e t y(C)

(3)

r(x) =

a(C)

denote the set

{x € C;

sup \x-y\ .
yZC

= inf r(x)
xiC

Hx) = o(C)} .

Similarly to [6], y(C) will be called the centre of C .

The concept of centre has been used to show the existence of fixed

points by Edelstein [6] and [7] and Be I Iuce and Kirk [/]. The concept of

centre has also been used by BrodskiT and Mi I'man [2].

It will be shown that y(C) is non-empty, convex and compact with

respect to T . It will also be shown that every mapping of C onto C ,

which is non-expansive with respect to the norm, takes Y ( C ) into y(C)

and that when the norm satisfies a special convexity condition, y(C) has

exactly one point. In this case y{C) is therefore a common fixed point

for all non-expansive mappings of C onto C .

The existence of a common fixed point is then used to prove the

existence of a right invariant integral on a compact metrizable semigroup

with a unique minimal left ideal. The existence of such an integral has

of course been known since 1956, when it was established by Rosen in [ H ] .
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Fixed point theorems 17

It is given here as an application of the fixed point theorem. In [12]

Sneperman has given a similar application using a somewhat different fixed

point theorem.

The existence of the common fixed point for onto mappings is also used

to show the existence of a common fixed point for a semigroup of non-

expansive mappings of C into C which satisfies the special intersection

property of left reversibility.

2. The first fixed point theorem

The structure of the centre and the first of the fixed point theorems

will now he discussed.

THEOREM 2.1. r is lower semicontinuous on C with respect to T .

Proof. Let x € C and e > 0 . There exists z (. C such that

(U) \x-z\

Since the norm is lower semicontinuous, there exists a V € T such that

a; - z € V and

(5) |w| > \x-z\ - %£

for all w 6 V . Put U = V + z . Then U € T and x € U . When

y (. U n C , we have y - z € V , so that hy (5), |i/-z| > \^-z\ - %e .

Since r(y) > \y-z\ , it follows that r{y) > \x-z\ - %e , so that hy (h),

r{y) > r(x) - z .

THEOREM 2.2. y(C) is a non-empty convex subset of C , which is

bounded with respect to the norm and compact with respect to T .

Proof. For each positive integer n , let

Y (C) = \x% x (. C and r(x) 5 cc(C) + -I .
n [ n)

Since r is lower semicontinuous and C is compact, Y (C) is compact
n

with respect to T for all n . From (2), y (£) is non-empty for all

n . Therefore

y(c) = n Y (c)
n=l
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i s a non-empty compact subset of C . The boundedness of y{C) i s t r i v i a l

and the convexity i s easily verif ied.

We define a mapping T of C into C to be non-expansive if, for

a l l x and y € C ,

(6) \T(x)-T(y)\ 5 \x-y\ .

THEOREM 2 .3 . Every non-expansive mapping T of C onto C maps

y{C) into y(C) .

Proof. Consider any x € y(C) and y € C . There exists £ € C

such that T(£) = y . Now

|x-C| 5 a(C) .

Hence, from (6) ,

\T{x)-T{O\ 2 a{C) ;

that is,

\T(x)-y\ 5 a(C) .

Since this holds for all y € C , then r(r(x)) = a(C) ; hence

T(x) € y(C) . Thus T maps Y(C) into

The norm i s said to be locally uniformly convex i f for every x and

y € X , with x ? y , and every D 2 %\x-y\ ,

y | | £ € AT, |x-£| < D, |j/-£| 5 /)}

i s a posi t ive number.

THEOREM 2.4. If the norm is locally uniformly convex, then y(C)

contains only one point.

REMARK. The norm need only be locally uniformly convex on C .

Proof. Suppose y(C) contains two dis t inc t points x, y . Consider

any £ € C . Then |x-£ | 5 a(C) , |z/-£| 5 a(C) and

6(x, y, a ( O ) s a(C) - \h(x+y)-^\ .

Hence

I^Oc+z/)-^ 5 a(C) - 6(x, j/, a(O) .

This holds for all £ € C and therefore

- 6(x, j / , a (O) .
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But s ince a(C) 2 %|x-y| , then &(x, y, a(C)) i s a p o s i t i v e number

and so r[k{x+y)} < a(C) , a c o n t r a d i c t i o n .

The following f ixed po in t theorem now follows from Theorems 2 . 2 , 2 .3

and 2.If.

THEOREM 2.5. If the norm is locally uniformly convex and if H is

any set of non-expansive mappings of C onto C y then the mappings of H

have a common fixed point in C .

REMARK. The members of H do not have to be l inear .

COROLLARY 2.6. If X is a Hilbert space, C is a non-empty convex

bounded weakly compact subset of X and H is any set of non-expansive

mappings of C onto C , then the mappings of H have a common fixed

point in C .

3. I n v a r i a n t i n t e g r a l s

We now show how Theorem 2.5 can be used to prove the existence of a

right invariant integral on a compact metric semigroup with a unique

minimal left ideal.

Let G be a compact metric semigroup with metric d . C(G) is the

Banach space of all real valued continuous functions on G with the

supremum norm. {/ } is a sequence of members of C(G) such that the

linear manifold M spanned by them is dense in C(G) and

lfU)| =1

for all n . (See page 2̂ (6 of [S] for a proof of the separability of

C(G) .) For each f € C(G) and a Z G , f is the member of C(G)

defined by

fa(x) = f{xa) ,

for all x £ G . A is the vector space of all bounded linear functionals

X on C(G) . For each X Z A and a f G , define

1%
„( ( r„\^^*

(8) (j)(X, a) = £
n=l

Define a norm on A , by
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(9) |X| = sup (f)(X, a) .

aiG

The following lemma is a well known result.

LEMMA 3.1. If f € C(G) and {a,} is a sequence in G which

converges to an element a of G 3 then

as k •+ oo .

THEOREM 3.2. For all X € A there exists an a € G such that

( 1 0 ) |X | = <)>(X, a) .

Proof. Consider any X f A . Choose a sequence {a-h\ in ^ such

that

(11) |X| 2 (|>(X, a j > |X| - •£•

for all k . Since G is compact metric, there exists a subsequence

of {a,} converging to an element a of G . By (ll),

(12) <)>(A, bp) •* |X|

as r1 ->- oo . Let K be a constant such that

(13) |X(/)| < K\f\

for all / € C(C) . Therefore, by (T),

& }

Mfi

for all r and n .

(n) Jn)
By Lemma 3.1,

'a
0 as r ̂  o° , hence by (13),

X /} -»• \\f as r -»• oo . By (lit), the series concerned is uniformly
V lp J \ J

convergent and hence

<j)(X, bp) -> <j,(A, a)

as r -»• oo 5 so t h a t , by ( 1 2 ) ,
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<t>(X, a) = |X| .

We define a func t iona l B on A , by

(15) 6(X) = in f <|)(X, a) .

THEOREM 3.3. For all X € A , there exists an a € G , SMCTJ that

B(X) = (j)(X, a) .

This can be proved in a similar manner to Theorem 3.2.

THEOREM 3.4. If G is left simple, that is, Gx = G for all

x € G , then

(16) <t>(X, b) > 0

/or ail X € A , witfe U 0 , and aZ-Z i> € G . Hence f}(X) is a positive

number for all \ (. t\. , with X ̂  0 .

Proof. Let X € A , with X i- 0 and let i> € G . Since G is

compact it contains at least one idempotent (see [J4]). By Theorem 1-27 on

page 38 of [3], G is a left group. Then the mapping x °^ ^ onto G

defined by

X(x) = xb ,

for all x € G , is one-to-one. Hence x is a homeomorphism of G onto

G . It follows that the linear manifold spanned by the set of functions

W); n = 1, 2, ...\is dense in C(G) .

'"'Then A(/ ' " ' ) t 0 for some n and hence ()>(A, b) > 0 .

THEOREM 3.5. 1 / G i s l e / t simple, then the norm for A i s Vocally

uniformly convex.

Proof. Consider any X and y € A with X t \i , and any real number

D , with D > %(X-u| . We have to show that

6(X, p, 0) = inf{zH%(A+u)-£|; £ € A, |A-£| s 0, | y -5 | < 0}

is a positive number. Consider any E, € A with |X-£| 5 D and

lu-Cl « o •
There exists an element b € G such that
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M - € , b ) f

1 [ i n f 4>U-U, |< %[sup <|>(A-S, a ) | + %|sup <f>(y-£, a ) 1 - %[i
Laeff J La€G J ^a

Since A # p , then, from Theorem 3.!+, 3(A-p) is a positive number.

Hence there exists a positive number 6 such that, for all ? ? A with

| X—C| S D and |u-£| 5 Z? ,

(17) |%(A+uK| « D .- 6 ,

where 6 depends only on A, \i and 0 . Hence 6(A, y, Z?) > 0 .

Let T denote the weak topology for A .

THEOREM 3.6. The norm for A is lower semi continuous with respeot

to T .

Proof. It is easily verified that, when a is kept fixed and

(j>(A, a) is regarded as a function of A , then <J> is lower semi continuous

with respect to T . It now follows that the norm is lower semicontinuous.

We now let T be the set of all A € A such that, A is positive,

(18) A(l) = 1 ,

and

(19)

for all / € C{G) . (On the left hand side of (l8), 1 denotes the

function with constant value 1 .)

THEOREM 3.7. T is a non empty convex subset of A which is bounded

with respect to the norm and weakly compact.

Proof. The convexity and 'boundedness of T are straightforward. The

existence of a positive linear functional with A(l) = 1 and

|A(/)| S |/| , for all / € C(G) , can he shown by letting a € G and

defining

= f(a)
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for all / 6 C{G) .

Clearly F is weakly closed, so that by Theorem i*-6l-A on page 228 of

[13], F is weakly compact.

We note that F does not contain the zero functional. For each

a £ G , let T denote the transformation of A into A , defined by

(20) (n)(f) = \[f )

for all / ? C(G) and X € F . Let H denote the semigroup of all the

transformations T
a

THEOREM 3.8. For all a € G , T is a non-expansive map of V

into Y .

If G is left simple, then for all a £ G , T maps Y onto 'F .

Proof. Let a € G . It is easily verified that T maps F into

F . Let X, u € F . We have to show that \T (X-y)| s |X-u| . Since

^ a = gab

for all b € G and g € C(G) , it follows that

|T (X-u)| = sup

= |X-p| .

Now suppose that G is left simple and let a (. G . Now G has an

idempotent e and xe = x for all x € G . Hence f = f for all

/ € C{G) , so that 2"e(£) = € for all £ € F . Let e € G be such that

ca = e . Consider an arbitrary X € F and put r\ = 7 (X) . Then, for all

/ € C{G) ,

• (TaM)(f) =nCfJ = 0

https://doi.org/10.1017/S0004972700043586 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700043586


2 4 T . J . C o o p e r a n d J . H . M i c h a e l

so that T (n) = A . Thus T is onto.a a

THEOREM 3.9. If G is left simple, then there exists a non-trivial
positive right invariant integral on G .

Proof. Since the conditions of Theorem 2.5 are satisfied, the
ings of H have a

a € G and / 6 C(G) ,

mappings of H have a common fixed point A in T . Hence, for all

Thus A is a positive right invariant integral on G .

We now assume that G has a unique minimal left ideal. One of the

results of Rosen in [//] is that this is a necessary and sufficient

condition for the existence of a right invariant integral. Sneperman has

shown in [72] that the right reversibility of G (that is, Gx n Gy is

non-empty for all x, y € G ) is equivalent to the existence of a unique

minimal left ideal.

Let K denote the unique minimal left ideal. Then K is a compact

subsemigroup and it can be shown that K is left simple (see Michael [9],

Theorem 5.1).

By Theorem 3.9 there exists a positive right invariant integral X

on K • For each f d c(G) , let f* denote the restriction of / to

K . Define a positive linear functional A. on C(G) by putting

(21) X1(/) = Xo(/*)

for all f € C(G) • By considering the constant functions one can easily

see that A, is non-trivial.

We show that A, is right invariant. Now K has the properties

(22) Kx => K

for all x (. G and

(23) Kx = K

for all x f K . Suppose that a (. K and / £ C(C) . One can easily

verify that (/)*=(/*) , hence
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so that

Now suppose a € G ~ X and / € C(G)

an element b € £ , such that ba = e

Let e € X . By (22) there exists

By (2U), X (/) = A (/ ) , so that

and by (2U),

Thus A is right invariant.

We have shown that there exists a right invariant integral on G .

4. Some fu r t he r f i xed po in t theory

Some additional fixed point theory will now be discussed. The first
theorem is similar to Sneperman's Theorem in both the statement and the
proof. We again assume that AT is a normed vector space, with a topology
T , satisfying (i) and (ii) of Section 1 and that C .is as described in
Section 1.

THEOREM 4.1. If the norm is locally uniformly convex and if H is
any semigroup of continuous (with respect to T ) non-expansive affine
mappings of C into C such that H is left reversible; that is,

TH n T'H * 0

then the mappings of H have a common fixed

(25)

for all T and T

point in C .

€ H

Proof. If C contains only one point, there is nothing to prove

Therefore assume C contains more than one point. Let K. be the

collection of all subsets K of C which are non-empty convex and

compact, with respect to T , and for which HK is a subset of K Order

K by inclusion. Then (K, c) is a pre-ordering. Consider a chain K

in K . Then, since any two members of K are related,
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A n A n . . . n A i s nonempty for any f i n i t e sequence A , A , ..., A

i n K . Hence

K± = 0{A; A € KQ]

i s nonempty. I t is straightforward to show that K is convex and

compact, with respect to T , and contains HK^ . Hence K is a member

of K . It is obviously also a lower bound of the chain K . Therefore

by Zorn's Lemma, K has a minimal element, K say. If K contains

only one point there is nothing further to prove, therefore assume K

contains more than one point.

We now show that TK = K for a l l T € H . We f i rs t show that , for

a l l n and T , T . .., T € H , there exists H , H , ..., H € H such

that

(26) T A = T2B2 = ... =TnHn .

From (25), there exist H and H such that (26) holds for n = 2 .

Suppose there exis ts H , H , . . ., ff, E H such that (26) holds for

n = k - 1 . Then, from (25), there exis ts H and #, (. H such that

= hh • Hence

- hh
and so (26) holds for n = k . By induction, (26) holds for all n .

Let x £ K . Then (26) gives, for all n ,

that is, for all n and all T ,T , ... , T i. H , there exists

x±, x2, ..., xn € KQ such that

Vi = Va = ••• S V» •
Hence, for every finite sequence T , T , ..., T in H ,
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n
D T.[K ) is non empty.
i=l v °

Since XQ is compact, with respect to T , and for each 1 € H , Tfc.)

is closed, it follows that

(27) x' = n T(K)
0 y€f/ 0

is non empty and compact, with respect to T . Since each T is affine,

K' is convex.

If now T and T are arbitrary transformations in H , then by

(25) there exist ff and H such that Tff = T H1 and therefore, since

K' c ff (x ) , it follows that

Hence TQ[K^) C T[KQ) , for all T f H , and so, from (27),

(28) rQ(^) c j ^ .

Therefore X' = X , since X is minimal. Hence by (27) and (28),

r(X0) = KQ for all T € H .

Then X and H satisfy the conditions of Theorem 2.5 and therefore

X. contains a fixed point under H . This is also a fixed point in C .

If the norm topology and T are the same, if X is a Banach space

and if the diameter of C is positive, then it follows from Lemma 1 of [4]

that there exists a u (. C such that

r(w) < diam(C1) .

It can be easily shown that y(C) = C iff

r(x) = diam(C)

for all x i. C . Therefore in the above case y(C) is a proper subset of
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C i f C contains more than one point. Hence the existence of a fixed

point in C , under a l e f t reversible semigroup of non-expansive affine

mappings of C in to C , can be shown by using a Zorn's Lemma Argument

similar to the one used in the proof of Kakutani's Fixed Point Theorem on

page 1+57 of [5 ] . This wi l l be valid without the norm property of local

uniform convexity. This i s a s l ight ly less general version of the fixed

point theorem established by Mitchell in [JO].

If the norm and the topology T are not the same, but C has normal

s t ruc ture or the stronger condition of completely normal structure (see

BrodskiT and Mi I'man [2] and Bel luce and Kirk [ / ] ) , then y(K) can be

shown to be a proper subset of any convex subset K of C which is

compact with respect to T and contains more than one point. Similarly to

the above, a Zorn's Lemma Argument shows the existence of a fixed point in

C under a l e f t revers ible semigroup of non-expansive affine mappings of C

in to C . Local uniform convexity of the norm is again not required. This

i s similar to the fixed point theorem of Bel luce and Kirk [ / ] . I t weakens

many of the i r assumptions, bu t , of course, i t requires the norm to be lower

semicontinuous with respect to the topology T .

We conclude with an example which shows that in the general case,

where both the norm and the topology T are being considered and neither

the norm nor C has special propert ies , y(C) need not be a proper subset

of C .

COUNTER EXAMPLE 4.2 . Let m be the space of a l l bounded real

sequences a = {a } with the usual norm; that i s ,

| a | = sup \an\ .
n

Let T be the Tychonoff product topology. Then the norm is lower semi-

continuous with respect to T .

Let C be the closed (with respect to T ) convex hull of
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a( 0 ) - 2 2 2

a( l ) - 1 2 2

(2) .
a : 2, 1, 2, ...

a : 2, 2, 1, ...

C is clearly bounded with respect to the norm. Since any set of the form

{a; a € m and |a| 5 p}

is compact with respect to T and C is a closed subset of such a set, it

follows that C is compact with respect to T .

It is not difficult to show that the diameter of C is 1 . With

greater difficulty it can be shown that for all x € C , r(x) = 1 . Then

ct(C) = 1 and hence y(C) = C .
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