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ON THE COMPUTATION OF CERTAIN HOMOTOPICAL FUNCTORS

GRAHAM ELLIS

Abstract

This paper provides details of aMagma computer program for calcu-
lating various homotopy-theoretic functors, defined on finitely pre-
sented groups. A copy of the program is included as an Add-On. The
program can be used to compute: the nonabelian tensor product of
two finite groups, the first homology of a finite group with coeffi-
cients in the arbirary finite module, the second integral homology of
a finite group relative to its normal subgroup, the third homology of
the finitep-group with coefficients inZp, Baer invariants of a finite
group, and the capability and terminality of a finite group. Various
other related constructions can also be computed.

1. Introduction

This article provides details of a computer program for calculating various homotopy-
theoretic functors defined on finitely presented finite groups. A separate text file contains
a version of the program which has been implemented in the computer algebra language
Magma V2.3 [9] [4] [3]. The text file can be downloaded and used (in the presence of
Magma V2.3 software) to calculate:

1. The third homotopy groupπ3SK(G, 1)of the suspension of an Eilenberg–Mac Lane
spaceK(G, 1) with finite fundamental groupG.

2. The fourth homotopy groupπ4S
2K(G, 1)of the double suspension ofK(G, 1). (Since

K(G, 1) is connected, the homotopy groupsπ2+kSkK(G, 1) stabilize fromk = 2
onwards.)

3. The nonabelian tensor productG ⊗ H of two finite groupsG andH which act
compatibly on each other. (Basic properties of this functor are explained in [5], and
a comprehensive survey of related group-theoretic results can be found in [20]. Our
Magma program has also been an aid to the computation of nonabelian tensor squares
of certain infinite groups [1].)

4. The relative Schur multiplierM(G,N) which fits into an exact integral homology
sequence

H3(G) → H3(G/N) → M(G,N) → H2(G) → H2(G/N)

arising from a finite groupGwith normal subgroupN . The exactness of this sequence
implies that ker(M(G,N) → H2(G)) is a homomorphic image ofH3(G/N), and that
M(G,G) is the usual Schur multiplier ofG. (Basic theory for the relative multiplier
is developed in [13].)
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5. The first homologyH1(G,B) of a finite groupG with coefficients in a finiteZG-
moduleB. As a special case one can, in principle, calculate the third homology
H3(G,Zp) of a finitep-groupG with coefficients in the trivial moduleZp = Z/pZ,
p a prime. In practice,G needs to be of an extremely low order.

6. The Baer invariants

M(c)(G) = R ∩ γc+1(F )

γc+1(R, F )
, c > 1

whereF is a free group whose quotientF/R is isomorphic to the finite groupG,
and whereγ1(F ) = F , γi+1(F ) = [γi(F ), F ], γ1(R, F ) = R, γi+1(R, F ) =
[γi(R, F ), F ]. The groupM(1)(G) is the usual Schur multiplier ofG. (Basic the-
ory for these invariants is developed in [22] and [7]. OurMagma program is used in
[7] to computeM(2)(G) for all groups G of order less than 32.)

Various other related constructions can also be calculated.

A very brief algebraic account of the above functors and related constructions, together
with references to articles containing further details, is given in Section2. The mathematical
results that form the basis of our methods of computation are explained in Section3. Neither
Section2 nor Section3 contains any essentially new material. Installation instructions for
ourMagma program are given in Section4. Some general remarks on the program are given
in Section5, while Section6 contains detailed descriptions of all of the various procedures
implemented in the program.

As mentioned above, a text file is attached to this paper. It contains: (i) ourMagma
program, (ii) a test input file, and (iii) a text copy of Section6 (which can be used as an
on-line help file). Further details of this text file are given in Section4.

I would like to thank John Cannon for his very generous help in simplifying, shortening,
and increasing the speed of an earlier version of ourMagma program. I would also like to
thank the referee for many helpful comments.

2. An algebraic account of various homotopical constructions

LetG andH be two (not necessarily finite) groups endowed with an action(g, h) 7→ gh

ofG onH , and an action(h, g) 7→ hg ofH onG. We shall assume thatG acts on itself by
conjugation(g, g′) 7→ gg′ = gg′g−1, and thatH similarly acts on itself by conjugation.
Let us suppose that the various actions arecompatiblein the sense that

(gh)g′ = g(h(g
−1
g′)),

(hg)h′ = h(g(h
−1
h′))

for g,g′ ∈ G, h,h′ ∈ H . In keeping with our convention for conjugation, we write[x, y] to
denote the commutatorxyx−1y−1 of two group elementsx andy.

Following the work of R.K. Dennis [10], C. Miller [26], and A.S.-T. Lue [24], the tensor
productG⊗H was defined by R. Brown and J.-L. Loday [6] to be the group generated by
symbolsg ⊗ h ( for g ∈ G, h ∈H ), subject to the relations

gg′ ⊗ h = (gg′ ⊗ gh)(g ⊗ h),

g ⊗ hh′ = (g ⊗ h)(hg ⊗ hh′),
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for g,g′ ∈ G, h,h′ ∈ H . It follows from this definition that there exist homomorphisms

λ : G⊗H → G, g ⊗ h 7→ ghg−1,

µ : G⊗H → H, g ⊗ h 7→ ghh−1.

TakingG = H , and taking all actions to be conjugation, we define

J (G) = ker(λ:G⊗G → G).

The following isomorphism is proved in [6].

Theorem 1. [6] π3SK(G, 1)∼= J (G).

For finite groupsG,H the tensor productG⊗H and homomorphismλ can be computed
using Function11in Section6. Functions6 and8 can be used to compute the tensor square
G⊗G and groupJ (G).

Thetensor centreof the groupG is defined as

Z⊗(G) = {g ∈ G: g ⊗ x = 1 ∈ G⊗G for all x ∈ G}.
This central subgroup ofG is of interest because of the following characterisation proved
in [11].

Proposition 2. [11] The tensor centreZ⊗(G) is the largest central subgroup ofG for
which any subgroupA 6 Z⊗(G) induces an isomorphism

G⊗G ∼= (G/A)⊗ (G/A)

and an injection

J (G) ↪→ J (G/A).

The tensor centre of a finite group can be computed using Function10 in Section6.
The groupπ4S

2K(G, 1) is a quotient ofπ3SK(G, 1). To describe this quotient alge-
braically we let1(G) denote the subgroup ofJ (G) generated by those elements

(x ⊗ y)(y ⊗ x)

for x, y ∈ G, and set

J̃ (G) = J (G)/1(G).

The following isomorphism is proved in [6].

Theorem 3. [6] π4S
2K(G, 1) ∼= J̃ (G).

The groupJ (G) lies in the centre ofG ⊗ G. (This is best seen by proving, as in [6], that
λ:G⊗G → G is a crossed module.) Hence1(G) is central inG⊗G, and we can define
thesymmetric productas

G⊗̃G = G⊗G/1(G).

For finiteG the groupJ̃ (G) can be computed using Function9 in Section6.
The second homology groupH2(G) of G with integer coefficients is also a quotient of

J (G). Let ∇(G) denote the subgroup ofJ (G) generated by those elements

x ⊗ x
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for x ∈ G, and set

M(G) = J (G)/∇(G).
The following isomorphism (modulo notation) is proved in [26].

Theorem 4. [26] H2(G) ∼= M(G).

Function13 in Section6 invokes Theorem4 in its computation of the second homology
of a finite group. Two alternative methods of computing the second homology are used in
Functions18and19.

Motivated by Theorem4 we recall from [6] that theexterior productM ∧ N of two
normal subgroupsM andN in G is the quotient of their tensor product

M ∧N = (M ⊗N)/∇(M,N)
in which all actions are given by conjugation inG, and in which∇(M,N) denotes the
central subgroup ofM ⊗ N generated by those elementsx ⊗ x with x ∈ M ∩ N . We let
x ∧ y denote the coset ofx ⊗ y in M ∧ N . The group∇(M,N) lies in the kernel of the
homomorphismµ:M ⊗N → N, x⊗ y 7→ [x, y] = xyx−1y−1. Consequently there is an
induced homomorphism

∂ : M ∧N → G, x ∧ y 7→ [x, y].
TheSchur multiplierM(G,N) ofG relative to a normal subgroupN can be defined as

M(G,N) = ker(∂:G ∧N → N).

An alternative, but equivalent, definition is given in [23]. The exact integral homology
sequence involving this relative multiplier (quoted in the Introduction) is proved in [6].
Some basic theory for the relative multiplier is developed in [23], [12] and [13]. In particular,
therelative epicentre

Z∗(G,N) = {n ∈ N : x ∧ n = 1 ∈ G∧N for all x ∈ G}
is considered, and shown to be the largest central subgroup ofG lying inN with the property
that any subgroupA 6 Z∗(G,N) induces an injectionM(G,N) ↪→ M(G/A,N/A). For
finiteG, Functions14and15in Section6 can be used to computeM(G,N) andZ∗(G,N).

The tensor product can be used to describe the first homology ofGwith coefficients in a
ZG-moduleB. For this we considerB as a group with aG-action, and consider the group
G to have a trivialB-action. The following isomorphism is proved in [17].

Theorem 5. [17] H1(G,B) ∼= ker(µ:G⊗ B → B).

Suppose thatF is a free group with normal subgroupR such that the quotientF/R is
isomorphic toG. For any integerq > 0 the abelian groupR/[R,R]Rq is a ZG-module
with the action ofG given by conjugation inF . There are well-known [19] reduction
isomorphismsH3(G) ∼= H1(G,R/[R,R]) andH3(G,Zq) ∼= H1(G,R/[R,R]Rq). We
consequently have the following description of the third homology of the groupG with
coefficients in the trivial moduleZq = Z/qZ.

Theorem 6. H3(G,Zq) ∼= ker(µ:G⊗ (R/[R,R]Rq) → R/[R,R]Rq) for q > 0.

Function16in Section6 invokes Theorem6 in its computation ofH3(G,Zp) for a finite
p-groupG.
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The Baer invariantsM(c)(G) described in the Introduction are analogues of the second
integral homology groupH2(G). Function18 in Section6, which calculatesM(c)(G) for
finiteG, requires as part of the input data an integerq that is divisible by the exponent of
M(c)(G). The following results are useful for determining such an integerq.

Theorem 7. [8] LetG be a finite group of prime-power exponentpe and nilpotency class
k > 2. Thenexp(M(c)(G)) dividespe(k−1).

Proposition 8. [8] If N is a normal subgroup of a finite groupG thenexp(M(c)(G/N))

dividesexp(M(c)(G))× exp(N ∩ γc+1(G)/γc+1(N,G)).

Other results for determining the exponent ofM(c)(G) are given in [8].
The invariantM(2)(G) can in fact be computed without prior knowledge of exp(M(G)),

thanks to the following isomorphism, full details of which are given in [7]. (For non-prime-
power groupsG this method seems to be generally more efficient.)

Theorem 9. [7] There is an isomorphism

M(2)(G) ∼= ker(µ: (G ∧G) ∧G → G)/τ(G)

whereτ(G) is the normal subgroup of(G ∧G) ∧G generated by the elements

((x ∧ y) ∧y z)((y ∧ z) ∧z x)((z ∧ x) ∧x y)
for x, y, z ∈ G.

One can write a short procedure based on Theorem9, using Function11 in Section6, to
computeM2(G) for finiteG (cf. Function7 which computes a preimage ofM2(G)).

In connection with the Baer invariants ofG we define theupper epicentral series
Z∗

1(G) 6 Z∗
2(G) 6 ... 6 G by choosing a free groupF such thatG ∼= F/R, and set-

ting Z∗
c (G) equal to the canonical image inG of thec-th term of the upper central series

of the groupF/γc+1(R, F ). Function18 in Section6 yields the upper epicentral series
of a finite group. Among other things, the epicentral series is useful in determining the
capability of a group: we say thatG is c-capableif there exists some group H such that
G ∼= H/Zc(H), whereZc(H) denotes thec-th term of the upper central series ofH .

Proposition 10. [7] A groupG is c-capable if and only ifZ∗
c (G) is trivial.

The capability of groups is of relevance to the classification of prime-power groups (see
[18]). A modern account of the basic theory of 1-capable groups can be found in [2].

A dual notion, also relevant to the classification of prime-power groups, is due to L. Evens
[15] who defined a groupG to beterminalif (i) it is nilpotent of some classc, and (ii) there
exists no groupH such thatG ∼= H/γc+1H . This dual notion is also discussed in [2].

The boolean-valued Functions20 and 21 in Section6 can be used to determine the
capability and terminality of a finite group.

3. Methods of computation

The tensor productG⊗H of two finite groups is known to be finite (provided that the
actions are compatible). Thus, in principle, its presentation could be entered directly into
a Todd–Coxeter procedure or nilpotent p-quotient algorithm. (Indeed, this approach was
taken in [5] in order to determine the tensor squareG⊗G of certain groupsG of order up
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to about|G| = 50.) However, there are| G×H | generators in this presentation, and this
number of generators can be a problem even whenG andH are fairly small groups. One
method for reducing the number of generators is suggested in [14], and illustrated there
by means of aCayley computer program. TheMagma program in the attached text file
(Appendix A) is a development of thatCayley program.

In order to explain the method for reducing the number of generators we continue with
the assumption thatG andH are arbitrary groups which act compatibly on each other. Let
G ∗ H be the free product ofG andH , and letJ denote the normal subgroup ofG ∗ H
normally generated by the elements

x[g, h]x−1[h̄, ḡ]
for g ∈ G,h ∈ H , x ∈ G∪H , whereḡ = xgx−1 ∈ G andh̄ = xhx−1 ∈ H . The following
theorem is due to N.D. Gilbert and P. Higgins [16].

Theorem 11. [16] There is an isomorphism

((G⊗H)oH)oG ∼= G ∗H/J
whereo denotes a semi-direct product. This isomorphism restricts to an isomorphism

G⊗H ∼= Ḡ ∩ H̄
whereḠ andH̄ are the normal closures inG ∗H/J ofG andH .

If G andH have presentations< X | R > and< Y | S > then their free product
G ∗ H is presented by< X ∪ Y | R ∪ S >. Thus for finitely presented groups Theorem
11yieldsG⊗H as a subgroup of a finitely presented group on| X ∪ Y | generators. This
is a significant improvement on| G × H | generators. OurMagma program computes
G ⊗ H by first applying the Todd–Coxeter procedure or nilpotent p-quotient algorithm
to a presentation ofG ∗ H/J , and then computing the subgroup̄G ∩ H̄ . However, the
above presentation ofF ∗G/J contains many unnecessary relations (that is, the description
of J contains many unnecessary normal generators). OurMagma program uses the more
efficient description ofJ given in the next proposition.

Let X be a generating set forG, andY a generating set forH . Let Zi(G)H be the
subgroup ofG consisting of those elements ofG that lie in thei-th termZi(HoG) of the
upper central series of the semi-direct productHoG. LetDi(G)H denote some generating
set for the subgroupZi(G)H , and letTi(G)H denote some transversal ofZi(G)H inG. For
c > 1 set

Xc = D1(G)H ∪D2(G)H ∪ · · · ∪Dc(G)H ∪ Tc(G)H ,
Yc = D1(H)G ∪D2(H)G ∪ · · · ∪Dc(H)G ∪ Tc(H)G.

The following proposition, which is a development of material in [14], has been proved by
Aidan McDermott in his thesis [25].

Proposition 12. [25] Fix somec > 1. The subgroupJ is normally generated by the
elements

x[g, h]x−1[h̄, ḡ]
for g ∈ X, h ∈ Y , x ∈ Xc ∪ Yc, whereḡ = xgx−1 ∈ G andh̄ = xhx−1 ∈ H .

Theorem11and Proposition12are used in Functions11and17 in Section6.
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In order to efficiently compute the quotientJ̃ (G) = J (G)/1(G) we consider the ele-
ments

{x, y} = (x ⊗ y)(y ⊗ x)

for x, y ∈ G. Proposition 4.10 in [6] implies the identities

{xx′, y} = {x, y}{x′, y},
{x, yy′} = {x, y}{x, y′},

for x, x′, y ∈ G. This bilinearity leads to the following more efficient description of the
subgroup1(G) of G⊗G.

Proposition 13. LetW be a subset ofG which generatesGab. Then1(G) is generated by
the elements

(x ⊗ y)(y ⊗ x)

for x, y ∈ W .

Proposition13 is used in Function9 in Section6.
We similarly derive the following description of the central subgroup∇(M,N)ofM⊗N ,

whereM andN are normal subgroups ofG.

Proposition 14. Let W be a subset ofM ∩ N which generatesM ∩ N/[M,N ]. Then
∇(M,N) is generated by the elements

(x ⊗ y)(y ⊗ x)

and

(x ⊗ x)

for x, y ∈ W .

Proposition14 is used in Function14 in Section6.
In [7] the Baer invariantM(2)(G) was computed for certain non prime-power groupsG

via the isomorphismM(2)(G) ∼= ker(µ: (G∧G)∧G → G)/τ(G) of Theorem9. For this
computation it is useful to consider the elements

< x, y, z >= ((x ∧ y) ∧y z)((y ∧ z) ∧z x)((z ∧ x) ∧x y)
in (G∧G)∧G, wherex, y, z ∈ G. IfG is a free group then, as explained in [11], the triple
Pontryagin product

Gab ×Gab ×Gab → H3(G
ab) ∼= ker(µ: (G ∧G) ∧G → G)

can be identified with the function

Gab ×Gab ×Gab → (G ∧G) ∧G, (x̄, ȳ, z̄) 7→< x, y, z > .

Since this Pontryagin product is trilinear, it follows that for anarbitrary groupG the bracket
< x, y, z > is trilinear. This yields the following efficient description ofτ(G).

Proposition 15. LetW be a subset ofG which generatesGab. Thenτ(G) is generated by
the elements< x, y, z > for x, y, z ∈ W .

31https://doi.org/10.1112/S1461157000000139 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000139


On the Computation of Certain Homotopical Functors

Proposition15can be used construct an analogue of Function7 in Section6 for computing
M2(G).

For c > 1 our Magma program computesM(c)(G) from a presentationP =
< x1, ..., xs | r1, ..., rt > of G, and an integerq divisible by the exponent ofM(c)(G).
We set

2
q

1(P) =< x1, ..., xs | [rj , xi], (rj )q for 1 6 i 6 s, 1 6 j 6 t >,

2
q

c+1(P) = 2
q

1(2
q
c (P)),

and letFqc be the group presented by2qc (P). Our program uses the following isomorphism,
proved in [7].

Theorem 16. [7] M(c)(G) ∼= ker(ρ: γc+1(F
q

c+1) → G) whereρ is the canonical homo-
morphism.

Theorem16 is the basis of Function18 in Section6.

4. Installation instructions

An attached text file (Appendix A) comprises three sections which contain, respectively:
(i) a help file, (ii) ourMagma program, and (iii) a test input file. The program and test input
file can be run on any machine withMagma (Version 2.3) installed [3]. It is important to
note that they will not run with earlier versions ofMagma.

The help file in Section I should be extracted and saved under the file-namehomotopy-
help.m. The program in Section II should be saved under the file-namehomotopy.m. The
test file in Section III should be saved under the file-namehomotopytest.m. These three files
need to be stored in a single directory.

To run the program, users should startMagma, and then typeload "homotopy.m";.
The help file can be accessed by typinghelp();. To test that the program runs correctly
on a given computer, typeload "homotopytest.m";. This test file will call the var-
ious homotopy functions, apply them to particular groups, and then compare results with
previously calculated data. The test file may take about ten minutes to run, and will conclude
with a declaration of any detected errors.

5. General remarks about the program

The program contains a number of homotopy-theoretic functions, each of which calls
certain variables and returns other variables. For instance, the commandT :=
TensorSquare(G,p); will call variablesG andp, and return a variable under the
nameT . In this exampleG must be a finitely presented finite group, andp a non-negative
integer. The variableT will represent an “enumerated” version of the tensor squareG⊗G.
The basic group-theoretic properties ofG⊗G (such as order, exponent, nilpotency class,
abelian quotient invariants) can then be determined using standard procedures onT . A full
list of the homotopy-theoretic functions is given in Section6.

Our program needs to call various standard group theory functions, such as the Todd–
Coxeter procedure and the Nilpotent Quotient algorithm. Thus, any “stand-alone” C im-
plementation of our program would to some extent involve “re-inventing the wheel”. It
seems more reasonable to implement the program in a computer algebra language such as
Magma or GAP in which a number of group theory procedures already exist. In this article
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we have opted forMagma. However, Aidan McDermott has written aGAP version of part
of the program in his thesis [25]. Even with the enormous help of such computer algebra
languages, a number of technicalities the program. The nature of these technicalities differs
betweenMagma andGAP. But in both cases it seems to be a non-trivial step from the ideas
explained in this paper to the production of efficient code. For this reason we have attached
a complete version of our program which can be run (and read) by the reader.

The structure of the program is simplified by introducing the concept of anenumerated
group. Informally, such a group is a computer representationeG of a finite groupG for
which: (i) we can iterate over the elements ineG, and (ii) for any two elementsx, y in
eG there is a unique element ineG representing their multiplexy. More precisely, the
termenumerated groupis used throughout the program in three very specific senses: in the
presence of a primep it means a group obtained as the output fromMagma’s nilpotent
p-quotient algorithm applied to a finitely presented group; in a situation wherep = 1 it
means a finite permutation group (often obtained as the output fromMagma’s Todd–Coxeter
procedure); in the absence ofp it can have either of the previous meanings, or it can mean
a finite matrix group.

The original motivation for our program was the desire to compute the kernel

K(G) = ker(G⊗ (G⊗G) → G)

of the homomorphism from the tensor cube of a finite groupG toG. Here the action ofG
onG⊗G is defined on generators by

g(x ⊗ y) = (gx)⊗ (gy)

for g, x, y ∈ G. An elementτ ∈ G⊗G is understood to act ong ∈ G by
τ g = ∂(τ )g∂(τ )−1

where∂:G⊗G, x ⊗ y 7→ xyx−1y−1. These actions are shown to be well-defined in [5].
A certain quotient of K(G) provides the calculations of the Baer invariantsM(2)(G) listed
in [7] (cf. Theorem9). In order to illustrate the nature of our program, we present a sketch
algorithm for the computation of K(G):

• Input a finite presentation for a finite groupG. Also input a non-negative integerp.

• Construct an enumerated versioneG ofG, together with the ‘isomorphisms’φ:G →
eG andφ−1: eG → G.

• Construct the function

GactG:G×G → G, (x, y) 7→ φ−1(φ(xyx−1)).

(SinceG is “represented” by a free group, the wordφ−1(φ(xyx−1)) will generally
be shorter thanxyx−1.)

• Let H be an isomorphic copy of G, and construct a finite presentation for the free
productG ∗H .

• Use Proposition12, the actionGactG, and the presentation forG ∗H to construct a
finite presentation of the groupG ∗H/J . (As explained in Section3, the intersection
of the normal closures ofG andH in G ∗H/J is isomorphic toG⊗G.)

• Construct an enumerated versione(G ∗ H/J) of the groupG ∗ H/J , together with
“isomorphisms”ψ :G ∗H/J → e(G ∗H/J) andψ−1: e(G ∗H/J) → G ∗H/J .

• Construct the subgroup[ψ(G),ψ(H)] of e(G ∗H/J) generated by commutators of
the form[ψ(g), ψ(h)]. (This subgroup is an enumerated version ofG⊗G.)
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• Construct a finitely presented group[G,H ] isomorphic to[ψ(G),ψ(H)], together
with the “inclusion homomorphism”ι: [G,H ] → e(G∗H/J)and the “isomorphism”
ι−1: [ψ(G),ψ(H)] → [G,H ].

• Construct the functions

[G,H ]actG: [G,H ] ×G → G, (x, y) 7→ ψ−1(ι(x)ψ(y)ι(x−1))

Gact[G,H ]:G× [G,H ] → [G,H ], (y, x) 7→ ι−1(ψ(y)ι(x)ψ(y−1)).

• Let L be an isomorphic copy ofG, and construct a finite presentation for the free
product[G,H ] ∗ L.

• Use Proposition12, the actions[G,H ]actG andGact[G,H ], and the presentation for
[G,H ] ∗L to construct a finite presentation of the group[G,H ] ∗L/J ′ in which the
intersection of the normal closures of[G,H ] andL is (by Theorem11) isomorphic
to (G⊗G)⊗G.

• Construct an enumerated versione([G,H ] ∗ L/J ′) of the group[G,H ] ∗ L/J ′,
together with “isomorphisms”ν: [G,H ] ∗ L/J ′ → e([G,H ] ∗ L/J ′) and ν−1:
e([G,H ] ∗ L/J ′) → [G,H ] ∗ L/J ′.

• Construct the subgroup[ν([G,H ]), ν(L)] of e([G,H ] ∗ L/J ′) which is generated
by the appropriate commutators. (This subgroup is an enumerated version of(G ⊗
G)⊗G.)

• Construct the enumerated groupeK(G)consisting of all those elements in[ν([G,H ]),
ν(L)] which get sent to the identity by homomorphisme([G,H ] ∗ L/J ′) → eG in-
duced by[G,H ] ∗ L → G, [g, h] ∗ l 7→ [g, h]l.

The Magma language is near enough to a generic pseudocode, and so more precise
details on this sketch algorithm can be obtained by reading ourMagma program. Note
that the program employs two helpful conventions: (i) an enumerated groupeG is always
prefixed by a lower-case “e”, whereas a finitely presented groupG (i.e., a presentation of a
group) is not; (ii) a homomorphism from a groupG to a groupH is (nearly) always denoted
by GhomH.

We shall now try to give some indication of the capabilities and limitations of our
program. All timings refer to the CPU time on a Digital AlphaStation 200(4/100) with a 100
MHz processor and 64 MB of memory.

Let us first remark that the test input file contained in the attachment calls most of our
homotopical functions and applies them to various groups. The test file takes 792 seconds
to run. However, 436 seconds of this CPU time is taken up by the functionJtilde(G,1)
which invokes the Todd–Coxeter procedure in its computation ofJ̃ (G) for the group
G =< x, y|x2 = y8 = (xy)2 = 1 > of order 16. SinceG is a 2-group we could use
Jtilde(G,1) as an alternative method for computingJ̃ (G); this alternative invokes the
p-quotient algorithm in place of the Todd–Coxeter procedure, and takes just 3 seconds to
run!

One of the authors of [1] has recently been working on a generalisation of the results
in that paper. As part of this work he has run the functionTensorSquare(G,3) on the
d-generator exponent-three Burnside groupsG = B(d, 3) for d = 3,4, 5, in the hope of
determining the exponent, nilpotency class, and number of generators ofB(d, 3)⊗B(d, 3).
Ford = 3 he used the presentation given in the example of Section6; the groupB(3, 3) has
order 37, its tensor square has order 320, and the function took 59 seconds to complete. For
d = 4 he used a presentation on 4 generators and 56 relations; the groupB(4, 3) has order
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314, and the function took just under one hour to complete. Ford = 5 he used a presentation
on 5 generators and 152 relations; the groupB(5, 3) has order 325, and the function ran for
over five days without completing. In this last case the program was stopped in order to
allow other jobs to run.

The program has been used in [7] to compute the Baer invariantsM2(G) of all groupsG
of order less than 32. For the non-prime-power groups we computedM2(G) using output
from the functionTensorCube(G,1). This function took up to an hour to complete
on some of the more difficult groups (cf. the above comments onJtilde(G,1).) (We
should remark that we know of no other programs/computer software for computing the
Baer invariantsMc(G) of finite groups whenc > 2.)

The program’s least successful feature is the functionThirdHomologyModP(G,p)
for determining the dimension of the vector spaceH3(G,Zp), wherep denotes a prime.
We have encountered difficulties when running this function with certain groupsG of
order 64 andp = 2, in that a parameter inMagma’s p-quotient algorithm was exceeded.
Even allowing for an easily made adjustment in this parameter, we feel it is unlikely that
the function would work for groups of any significantly larger prime-power order. (We
should remark that J.F. Carlson and J.J. Cannon have been developing computer methods
for determining the cohomology ringsH ∗(G,Zp) of prime-power groupsG. As of April 1,
1997 they had computed these rings for 250 of the 267 groups of order 64. Further details
can be found athttp://www.math.uga.edu/ jfc/groups/cohomology.html.)

6. Summary of functions implemented in the program

The following is a list of ourMagma functions for calculating a variety of homotopical
functors and related constructions, which are defined on finitely presented finite groups.
Many of the functions require an input variablep. If all of the groups called by the function
are prime-power groups thenp should be set equal to this prime; otherwise setp = 1.
Whenp is prime, the p-quotient algorithm is used to enumerate finitely presented groups
(fp-groups); whenp = 1, the Todd–Coxeter procedure is used.

1. EnumeratedGroup(G, p) = (eG, GhomeG, eGhomG)
FpGrp, RngIntElt → EnumGrp, Map, Map
============================================
Given a finite fp-groupG, this function yields an enumerated versioneGof the group,
together with the ‘isomorphisms’GhomeG:G → eGandeGhomG:eG → G.

2. EnumeratedKernel(delta) = K
Map → EnumGrp
===========================
Given a homomorphismdelta: G → H from an enumerated groupG to any group
H , this function returns the kernel ofdelta as an enumerated groupK. This func-
tion should be used only in situations whereMagma’s internal Kernel function is
undefined.

3. PresentedGroup(eG) = (G, GhomeG, eGhomG)
EnumGrp → FpGrp, Map, Map
========================================
Given an enumerated groupeG, this function yields an fp-groupG together with
“isomorphisms”GhomeG:G → eGandeGhomG:eG → G.
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4. SelfAction(G, p) = (GactG, NiceGeneratorsG)
FpGrp, RngIntElt → Map, Set
===========================================
Given a finite fp-groupG, this function yields the mapping

GactG: G× G:→ G, < x, y >7→ x−1yx

from the cartesian productG× G into G. It also yields a “nice” generating set for
G. ( More precisely, the generating setNiceGeneratorsG has the formD1(G) ∪
D2(G)∪· · ·∪Dc(G)∪Tc(G)whereDi(G) is a generating set for theith termZi(G)
of the upper central series ofG, andTc(G) is a transversal ofZc(G) in G. Such a
generating set is called by Function11,cf. Proposition12.)

5. Action(GhomQ, HhomQ, p) = (HactG, NiceGeneratorsG)
Map, Map, RngIntElt → Map, Set
==================================================
Given finite fp-groupsG, H and an enumerated groupQ, and a normal inclusion
GhomQ:G ↪→ Q, and any homomorphismHhomQ:H → Q, this function produces
the mapping

HactG: H× G→ G, < x, y >: 7→ GhomQ−1(HhomQ(x−1)GhomQ(y)HhomQ(x))

from the cartesian productG× H to G given by conjugation inQ. It also produces
a ‘nice’ generating set forQ. The groupsG,H,Qcan be accessed by the commands
G:=Domain(GhomQ); H:=Domain(HhomQ); Q:=Codomain(GhomQ);.
In order to obtain the conjugation action of a groupG on itself, the more efficient
function SelfAction should be used. (The generating setNiceGeneratorsG is of
the formD1(G)H ∪D2(G)H ∪· · ·∪Dc(G)H ∪Tc(G)H whereDi(G)H is a generating
set forZi(G)H = H ∩ Zi(HoG), andTc(G)H is a transversal ofZc(G)H in G.
Such a generating set is called by Function11,cf. Proposition12.)

6. TensorSquare(G, p) = (GtensorG, delta)
FpGrp, RngIntElt → EnumGrp, Map
======================================
This function is defined for any finite fp-groupG. It yields an enumerated version
GtensorG of the tensor squareG⊗ G. It also yields the homomorphism

delta: GtensorG → G

which sends a tensor to the corresponding commutator inG.

7. TensorCube(G, p) = (TCube, delta)
FpGrp, RngIntElt → EnumGrp, Map
=================================
This function is defined for any finite fp-groupG. It yields an enumerated version
Tcube of the triple tensor product(G⊗ G)⊗ G. The function also returns the homo-
morphism

delta: Tcube → G

which sends a triple tensor to the corresponding triple commutator inG. (The tensor
square is understood to act onGby conjugation via the homomorphismδ: G⊗ G→
G. The groupG is understood to act on the tensor square by the diagonal action
g(x ⊗ y) = gx ⊗ gy.)
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8. Jgroup(G, p) = JG
FpGrp, RngIntElt → EnumGrp
===========================
This function is defined for any finite fp-groupG. It yields the kernelJGof the homo-
morphismδ: G⊗ G→ Gwhich sends each tensor to the corresponding commutator.
The groupJG is returned as an enumerated group.

9. Jtilde(G, p) = JtildeG
FpGrp, RngIntElt → EnumGrp
===========================
This function is defined for any finite fp-groupG. It yields the quotient ofJGby those
elements(x ⊗ y)(y ⊗ x) for x, y ∈ G. The quotient is returned as an enumerated
groupJtilde.

10. TensorCentre(G, p) = (TC, phi)
FpGrp, RngIntElt → EnumGrp, Map
================================
This function is defined for any finite fp-groupG. It yields an enumerated versionTC
of the tensor centreZ⊗(G). It also yields the inclusionphi: TC ↪→ G.

11. Tensor(G, H, GactH, HactG, NiceGeneratorsG,
NiceGeneratorsH, p) = (GtensorH, delta, TC,
TChomG, phi, act) FpGrp, FpGrp, Map, Map, Set, Set,
RngIntElt → EnumGrp, Map, EnumGrp, Map, Map, Map
===================================================
Given two finite fp-groupsG, H with compatible actions (i.e., mappingsGactH :
G× H → H andHactG: H× G→ Gand “nice” generating sets (for instance, those
which are closed under conjugation and under the given actions, or those given as the
output from Functions4 or 5), this function yields:
i) an enumerated versionGtensorH of the tensor productG⊗ H ;
ii) the homomorphismdelta: GtensorH → Gwhich sends a tensor to the corre-
sponding “commutator” inG;
iii) a subgroupTCof (an enumerated version of)Gconsisting of those elementsg for
whichg ⊗ h is trivial in G⊗ H for all h in H;
iv) the inclusion homomorphismTChomG:TC→ G;
v) the mappingphi: : G× H → GtensorH from the cartesian product into the
tensor product which sends a pair to the corresponding tensor;
vi) the G-actionact: G× GtensorH → (GtensorH) from the cartesian product
to the tensor product.

12. ExteriorSquare(G, p) = (GexteriorG, delta)
FpGrp, RngIntElt → EnumGrp, Map
==========================================
This function is defined for any finite fp-groupG. It yields an enumerated version
GexteriorG of the exterior squareG∧ G. It also yields the homomorphism

delta: GexteriorG → G

which sends an exterior form to the corresponding commutator inG.

13. Htwo(G, p) = HG
FpGrp, RngIntElt → EnumGrp
===========================
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This function is defined for any finite fp-groupG. It yields the kernelHGof the
homomorphismG∧ G → G which sends each exterior form to the corresponding
commutator. The groupHGis returned as an enumerated group. (The groupHGis
isomorphic to the Schur multiplier ofG,cf. Theorem4.)

14. RelativeSchurMultiplier(G,N,p) = M(G,N)
FpGrp, SubFpGrp, RngIntElt → EnumGrp
=======================================
This function is defined for any finite fp-groupGwith normal subgroupN. It yields
the relative Schur multiplierM(G,N) as an enumerated group.

15. RelativeEpiCentre(G,N,p) = C
FpGrp, SubFpGrp, RngIntElt → EnumGrp
=====================================
This function is defined for any finite fp-groupGwith normal subgroupN. It yields
the relative epicentreCas a subgroup of an enumerated version ofN.

16. ThirdHomologyModP(G,p) = d
FpGrp, RngIntElt → RngIntElt
=============================
Given a finitely presented finite p-groupG, this function returns the dimensiond of
the third homology groupH3(G,Z/pZ) of Gwith coefficients in the integers modulo
p. This homology group is a vector space. In practice, the function works only for
groupsGof extremely low order. (The function is based on Theorem6.)

17. Exterior(GhomQ, HhomQ, p) =
(GexteriorH, delta, C, ChomG, phi, act)
Map, Map, RngIntElt → EnumGrp,
Map, EnumGrp, Map, Map, Map
=======================================
Given three finite fp-groupsG, H, Q and normal inclusionsGhomQ:G ↪→ Q,
HhomQ:H ↪→ Q, this function yields:
i) an enumerated versionGexteriorH of the exterior squareG∧ H;
ii) the homomorphismdelta: GexteriorH → Gwhich sends an exterior form to
the corresponding ‘commutator’ inG;
iii) a subgroupCof (an enumerated version of)Gconsisting of those elementsg for
whichg ∧ h is trivial in G∧ H for all h ∈ H;
iv) the inclusion homomorphismChomG:C → G;
v) the mappingphi: G× H → GexteriorH from the cartesian product into the
exterior product which sends a pair to the corresponding exterior form;
vi) theG-actionact: G×GexteriorH → GexteriorH from the cartesian prod-
uct to the exterior product. The groupsG, H, Q can be accessed by the commands
G:=Domain(GhomQ); H:=Domain(HhomQ); Q:=Codomain(GhomQ).

18. BaerInvariant(G, c, q, p) = (BG, C)
FpGrp, RngIntElt, RngIntElt, RngIntElt → EnumGrp, EnumGrp
=====================================================
Given a finite fp-groupG, a positive integerc, andq a positive multiple of the exponent
of the c-th Baer invariantBGof G, this function returnsBGas an enumerated group. The
function also returns the cth term of the upper epicentral series ofGas an enumerated
groupC. (Theorem7 and Proposition8 can help with the choice of a suitable value
for q.)
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19. CoveringGroup(G, p) = (DG, delta, Htwo)
FpGrp, RngIntElt → FpGrp, Map, EnumGrp
=======================================
Given a finite fp-groupG, this function returns a finite fp-groupDGwhich is a central
extensionDG→ Gof Gwith the property that the Schur multiplier of G is isomorphic
to

[DG,DG] ∩ ker(DG→ G).

It also returns the homomorphismdelta: eDG→ eGgiven on enumerated groups,
as well as the Schur multiplierHtwo as an enumerated group. (The fp-groupsG
and DGhave the same generating set, but the order ofDG is not minimal. The
groupseDGandeGcan be accessed by the commandseDG:=Domain(delta);
eG:=Codomain(delta);.)

20. IsCapable(G,p) = B
FpGrp, RngIntElt → Boolean
===========================
Given a finite fp-groupGthis function returns the boolean value TRUE ifGis the inner
automorphism group of some group, and returns the boolean value FALSE otherwise.
(This function is based on Proposition10.)

21. IsTerminal(G,p) = B
FpGrp, RngIntElt → Boolean
===========================
Given a finitely presented finite nilpotent groupG this function returns the boolean
value TRUE ifGis a terminal group, and returns the boolean value FALSE otherwise.
(This function is based on [15].)

Example 1. To find the order and nilpotency class of the tensor square of the Burnside
groupG = B(3, 3) of exponent 3 on three generators, enter the following:

F:=FreeGroup(3);
a:=F.1; b:=F.2; c:=F.3;
x1:=(c,a);
x1:=(a,b);
x2:=(a,c);
x3:=(b,c);
x4:=(x1,c);
rels:=[ aˆ3, bˆ3, cˆ3, x1ˆ3, x2ˆ3, x3ˆ3, x4ˆ3,
(b,a)*x1ˆ-2, (c,a)*x2ˆ-2, (x1,a), (x2,a), (x3,a)*x4ˆ-1,
(x4,a), (c,b)*x3ˆ-2, (x1,b), (x2,b)*x4ˆ-2, (x3,b),
(x4,b), (x1,c)*x4ˆ-1, (x2,c), (x3,c), (x4,c),
(x2,x1), (x3,x1), (x4,x1), (x3,x2), (x4,x2), (x4,x3) ];
G:=quo<F|rels>;
T:=TensorSquare(G,3);
print Order(T);
print NilpotencyClass(T);.

This tensor square turns out to have order 320 and nilpotency class 2.
Now letN denote the centre of the Burnside groupG. In order to determine the relative

Schur multiplierM(G,N), enter the following:
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eG, GhomeG, eGhomG:=EnumeratedGroup(G,3);
N:=Center(eG);
N:=eGhomG(N);
M:=RelativeSchurMultiplier(G,N,3);
print M;.

It turns out that the relative multiplierM(G,N) is elementary abelian of order 27.

Appendix A. Magma programs

TheMagma programs discussed in this paper are provided as text files, forming a special
electronic appendix to this paper (see Section4 for installation instructions). This appendix
is available to journal subscribers at:

http://www.lms.ac.uk/jcm/1/lms97004/appendix-a/

References

1. M. Bacon, L.C. Kappe andR.F. Morse, ‘On the nonabelian tensor square of a 2-Engel
group’,Archiv der Mathematik(Basel) 69 (1997) 353–364.25,34

2. F.R. Beyl andU. Tappe, Group extensions, representations, and the Schur multiplier,
Lecture Notes in Mathematics 958 (Springer, Berlin, 1982).29,29

3. W. Bosma andJ.J. Cannon,Handbook ofMagma functions, Third edition (University
of Sydney, 1994).25,32

4. W. Bosma, J.J Cannon andC.E. Playoust, ‘The Magma algebra system I: the user
language’,J. Symbolic Computation, 24, 3/4 (1997) 235–265.25

5. R. Brown, D.L. Johnson andE.F. Robertson, ‘Some computations of nonabelian
tensor products of groups’,J. Algebra111 (1987) 177–202.25,29,33

6. R. Brown andJ.-L. Loday, ‘Van Kampen theorems for diagrams of spaces’,Topology
26 (1987) 311–335.26,27,27,27,27,27,28,28,31

7. J. Burns and G. Ellis, ‘On the nilpotent multipliers of a group’,Mathematische
Zeitschrift226 (1997) 405–428.26,26,29,29,29,31,32,32,33,35

8. J. Burns and G. Ellis, Inequalities for Baer invariants of finite groups,Canadian
Mathematical Bulletin, to appear.29,29,29

9. J.J. Cannon andC.E. Playoust, ‘Magma: A new computer algebra system’,Euro-
math Bulletin, 2, 1 (1996) 113–144.25

10. R.K. Dennis, ‘In search of new homology functors having a close relationship to
K-theory’, preprint, Cornell University, 1976.26

11. G. Ellis, ‘Tensor products andq-crossed modules’,J. London Math. Soc.(2) 51 (1995)
243–258. 27,27,31

12. G. Ellis, ‘Capability, homology, and central series of a pair of groups’,J. Algebra179
(1996) 31–46.28

13. G. Ellis, ‘The Schur multiplier of a pair of groups’,Applied Categorical Structures,
to appear (1997).25,28

14. G. Ellis andF. Leonard, ‘Computing Schur multipliers and tensor products of finite
groups’,Proc. Royal Irish Academy(95A) 2 (1995) 137–147.30,30

40https://doi.org/10.1112/S1461157000000139 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000139


On the Computation of Certain Homotopical Functors

15. L. Evens, ‘Terminalp-groups’,Illinois J. Math.12 (1968) 682–699.29,39

16. N.D. Gilbert andP.J. Higgins, ‘The nonabelian tensor product of groups and related
constructions’,Glasgow Mathematical J.31 (1989) 17–29.30,30

17. D. Guin, ‘Cohomologie non abéliennes des groupes’,J. Pure Applied Algebra50
(1988) 109–138.28,28

18. P. Hall, ‘The classification of prime-power groups’,J. Reine Angew. Math.182 (1940)
130–141. 29

19. P.J. Hilton andU. Stammbach, A course in homological algebra, Graduate Texts in
Mathematics 4 (Springer, New York, 1971).28

20. L.-C. Kappe, ‘The nonabelian tensor product of groups’,Groups in St. Andrews/Bath
1997, LMS Lecture Notes, (ed.C. Campbell, E.F. Robertson et al., Cambridge Uni-
versity Press, Cambridge, 1997).25

21. G. Karpilovsky, The Schur multiplier, LMS monographs New Series 2, (Oxford
University Press, 1987).

22. C.R. Leedham-Green andS. McKay, ‘Baer invariants, isologism, varietal laws and
homology’,Acta Mathematica137 (1976) 99–150.26

23. J.-L. Loday, ‘Cohomologie et groupe de Steinberg relatif’,J. Algebra54 (1978) 178–
202. 28,28

24. A.S.-T. Lue, ‘The Ganea map for nilpotent groups’,J. London Math. Soc.(2) 14 (1976)
309–312. 26

25. A. McDermott, ‘Tensor products of groups and related theory’, PhD Thesis, National
University of Ireland Galway, May 1998.30,30,33

26. C. Miller, ‘The second homology group of a group’,Proc. Amer. Math. Soc.3 (1952)
588–595. 26,28,28

Graham Ellis graham.ellis@ucg.ie

Department of Mathematics
National University of Ireland
Galway
Ireland

41https://doi.org/10.1112/S1461157000000139 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000139

