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ON THE COMPUTATION OF CERTAIN HOMOTOPICAL FUNCTORS
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Abstract

This paper provides details oMacma computer program for calcu-
lating various homotopy-theoretic functors, defined on finitely pre-
sented groups. A copy of the programis included as an Add-On. The
program can be used to compute: the nonabelian tensor product of
two finite groups, the first homology of a finite group with coeffi-
cients in the arbirary finite module, the second integral homology of
a finite group relative to its normal subgroup, the third homology of
the finite p-group with coefficients iz ,, Baer invariants of a finite
group, and the capability and terminality of a finite group. Various
other related constructions can also be computed.

1. Introduction

This article provides details of a computer program for calculating various homotopy
theoretic functors defined on finitely presented finite groups. A separate text file contai
a version of the program which has been implemented in the computer algebra langue
Macma V2.3 [9] [4] [3]. The text file can be downloaded and used (in the presence o
Macma V2.3 software) to calculate:

1. The third homotopy groupzSK (G, 1) of the suspension of an Eilenberg—Mac Lane
spacek (G, 1) with finite fundamental grou .

2. Thefourth homotopy groupS2K (G, 1) ofthe double suspension&f(G, 1). (Since
K (G, 1) is connected, the homotopy groups,« S*K (G, 1) stabilize fromk = 2
onwards.)

3. The nonabelian tensor produ6t® H of two finite groupsG and H which act
compatibly on each other. (Basic properties of this functor are explainéd,iard
a comprehensive survey of related group-theoretic results can be fou@|four
MaGMA program has also been an aid to the computation of nonabelian tensor squa
of certain infinite groups [1].)

4. The relative Schur multiplied (G, N) which fits into an exact integral homology
sequence

H3(G) — H3(G/N) - M(G,N) - Hx(G) - H2(G/N)

arising from afinite grou with normal subgrougv. The exactness of this sequence
impliesthatketM (G, N) — H(G))isahomomorphicimage ¢f3(G/N), and that
M(G, G) is the usual Schur multiplier a&. (Basic theory for the relative multiplier
is developed in [13].)
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5. The first homologyH1(G, B) of a finite groupG with coefficients in a finiteZG-
module B. As a special case one can, in principle, calculate the third homolog)
H3(G, Z,) of a finite p-groupG with coefficients in the trivial modul&, = Z/pZ,

p aprime. In practice(; needs to be of an extremely low order.

6. The Baer invariants

RN yeq1(F)
Yer1i(R, F) ’
where F is a free group whose quotieit/ R is isomorphic to the finite groug,
and wherey,(F) = F, yi11(F) = [yi(F), F], y1(R, F) = R, vi+1(R, F) =
[¥i (R, F), F]. The groupM ) (G) is the usual Schur multiplier of;. (Basic the-
ory for these invariants is developed &P] and [7/]. OurMaGma program is used in
[7] to computeM @ (G) for all groups G of order less than 32.)

M G) =

=

Various other related constructions can also be calculated.

A very brief algebraic account of the above functors and related constructions, togeth
with references to articles containing further details, is given in Se2tibhe mathematical
results that form the basis of our methods of computation are explained in S&dileither
Section2 nor Sectior contains any essentially new material. Installation instructions for
ourMacmMma program are given in Sectigh Some general remarks on the program are given
in Section5, while Sectioré contains detailed descriptions of all of the various procedures
implemented in the program.

As mentioned above, a text file is attached to this paper. It contains: (iMaagma
program, (ii) a test input file, and (iii) a text copy of Secti@rfwhich can be used as an
on-line help file). Further details of this text file are given in Section

I would like to thank John Cannon for his very generous help in simplifying, shortening
and increasing the speed of an earlier version ofMnema program. | would also like to
thank the referee for many helpful comments.

2. An algebraic account of various homotopical constructions

Let G andH be two (not necessarily finite) groups endowed with an agigon) — 8k
of G on H, and an actiorix, g) — "g of H onG. We shall assume thét acts on itself by
conjugation(g, g’) — 2g’ = gg’g~ 1, and thatH similarly acts on itself by conjugation.
Let us suppose that the various actions@mapatiblein the sense that

-1
g =2"¢ g,
Con =)

for g,d € G, h,H € H. In keeping with our convention for conjugation, we wiite y] to
denote the commutataryx—1y~—1 of two group elements andy.

Following the work of R.K. Dennis10], C. Miller [26], and A.S.-T. Lue [24], the tensor
productG ® H was defined by R. Brown and J.-L. Lod&] fo be the group generated by
symbolsg ® i (for g € G, h € H), subject to the relations

8¢’ ®h =g Q8h)(gQh),
g®hh =(g@h("g®"h),
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forg,d € G, h,H € H. It follows from this definition that there exist homomorphisms
A:G®H — G, g®h»—>ghg_l,

nw:G®®H— H, g®hr—>ghh*l.
TakingG = H, and taking all actions to be conjugation, we define
J(G) = ker(h: G ® G — G).
The following isomorphism is proved in [6].
Theorem 1. [6] 73SK(G,1) = J(G).

For finite groupsG, H the tensor produat ® H and homomorphism can be computed
using Functiorl1in Section6. Functions and8 can be used to compute the tensor square
G ® G and group/ (G).

Thetensor centreof the groupG is defined as

7Z%G)={geGg®x=1ecG®G forallx € G}.

This central subgroup df is of interest because of the following characterisation proved
in [11].
Proposition 2. [11] The tensor centr&®(G) is the largest central subgroup @ for
which any subgroupt < Z®(G) induces an isomorphism
GRG=(G/A)®(G/A)
and an injection
J(G) = J(G/A).

The tensor centre of a finite group can be computed using FuntiionSection6.
The grouprsS2K (G, 1) is a quotient ofr3SK (G, 1). To describe this quotient alge-
braically we letA(G) denote the subgroup df(G) generated by those elements

(x®@y)(y®x)
forx, y € G, and set
J(G) = J(G)/A(G).
The following isomorphism is proved in [6].
Theorem 3. [6] 745K (G, 1) = J(G).

The groupJ (G) lies in the centre oG ® G. (This is best seen by proving, as #ithat
A:G ® G — G isacrossed module.) HenegG) is central inG ® G, and we can define
thesymmetric producas

G®G =G ® G/A(G).

For finite G the groupJ (G) can be computed using Functi6rin Section6.
The second homology groui;(G) of G with integer coefficients is also a quotient of
J(G). Let V(G) denote the subgroup df(G) generated by those elements

xXQx
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for x € G, and set

M(G) = J(G)/V(G).
The following isomorphism (modulo notation) is proved in [26].
Theorem 4. [26] H2(G) = M(G).

Function13in Section6 invokes Theorend in its computation of the second homology
of a finite group. Two alternative methods of computing the second homology are used
Functionsl8and19.

Motivated by Theoren we recall from f] that theexterior productM A N of two
normal subgroups/ andN in G is the quotient of their tensor product

MAN=(M®N)/V(M,N)

in which all actions are given by conjugation @», and in whichV (M, N) denotes the
central subgroup o# ® N generated by those element® x with x € M N N. We let
x Ay denote the coset of ® y in M A N. The groupV(M, N) lies in the kernel of the
homomorphismu: M @ N — N, x®y — [x, y] = xyx~1y~L. Consequently there is an
induced homomorphism

d:MAN— G, x ANy [x,y]
The Schur multiplierM (G, N) of G relative to a normal subgroufy can be defined as
M(G,N) =ker(d: G AN — N).

An alternative, but equivalent, definition is given ia3]. The exact integral homology
sequence involving this relative multiplier (quoted in the Introduction) is proved in [6].
Some basic theory for the relative multiplier is develope@B8][[12] and [13]. In particular,
therelative epicentre

Z*(G,N)={neN:xAn=1c GAN forall x € G}

is considered, and shown to be the largest central subgratifyaig in N with the property
that any subgroup < Z*(G, N) induces an injectiod (G, N) < M(G/A, N/A). For
finite G, Functionsl4and15in Section6 can be used to compulé (G, N) andZ*(G, N).

The tensor product can be used to describe the first homologyath coefficients in a
ZG-module B. For this we consideB as a group with & -action, and consider the group
G to have a trivialB-action. The following isomorphism is proved in [17].

Theorem 5. [17] Hi(G, B) = ker(u: G ® B — B).

Suppose thaf' is a free group with normal subgroupsuch that the quotient/R is
isomorphic toG. For any integey > 0 the abelian grou®/[R, R]RY is aZG-module
with the action ofG given by conjugation inF. There are well-known1[9] reduction
isomorphismsHz(G) = Hi(G, R/[R, R]) and H3(G,Z,) = Hi(G, R/[R, R]RY). We
consequently have the following description of the third homology of the g@wpath
coefficients in the trivial modul&, = Z/¢Z.

Theorem 6. H3(G,Z,) = ker(u:G ® (R/[R, RIRY) — R/[R, R]R?) forg > 0.

Function16in Section6 invokes Theoreng in its computation of3(G, Z,) for afinite
p-groupG.
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The Baer invariant3/(©)(G) described in the Introduction are analogues of the seconc
integral homology groupd>(G). Function18in Section6, which calculateg/© (G) for
finite G, requires as part of the input data an integéat is divisible by the exponent of
M©(G). The following results are useful for determining such an intgger

Theorem 7. [8] LetG be a finite group of prime-power exponeritand nilpotency class
k > 2. Thenexp(M ) (G)) dividesp®*—1.

Proposition 8. [8] If N is a normal subgroup of a finite grou@ thenexp(M ©)(G/N))
dividesexp(M©(G)) x exp(N N ye41(G)/ye+1(N. G)).

Other results for determining the exponentf) (G) are given in [8].

The invariantM® (G) can in fact be computed without prior knowledge of iG)),
thanks to the following isomorphism, full details of which are givendh (For non-prime-
power groupss this method seems to be generally more efficient.)

Theorem 9. [7] There is an isomorphism
M@ (G) = ker(u: (G AG)AG — G)/1(G)
wheret (G) is the normal subgroup d@iG A G) A G generated by the elements

(X A A DIy A2 AT X))z AX) A" y)

forx,y,z€G.

One can write a short procedure based on Thedeusing Functiorll in Section6, to
computeM?(G) for finite G (cf. Function7 which computes a preimage #f%(G)).

In connection with the Baer invariants @f we define theupper epicentral series
Z1(G) < Z5(G) < ... < G by choosing a free group’ such thatG = F/R, and set-
ting Z*(G) equal to the canonical image @ of the c-th term of the upper central series
of the groupF/y.+1(R, F). Function18 in Section6 yields the upper epicentral series
of a finite group. Among other things, the epicentral series is useful in determining th
capability of a group: we say that is c-capableif there exists some group H such that
G = H/Z.(H), whereZ .(H) denotes the-th term of the upper central series Bt

Proposition 10. [7] A groupG is c-capable if and only i (G) is trivial.

The capability of groups is of relevance to the classification of prime-power groups (se
[18]). A modern account of the basic theory of 1-capable groups can be found in [2].
Adual notion, also relevant to the classification of prime-power groups, isdueto L. Ever
[15] who defined a groug to beterminalif (i) it is nilpotent of some class, and (ii) there
exists no groupd such thatG = H/y..1H. This dual notion is also discussed in [2].
The boolean-valued Functior&) and 21 in Section6 can be used to determine the
capability and terminality of a finite group.

3. Methods of computation

The tensor produat ® H of two finite groups is known to be finite (provided that the
actions are compatible). Thus, in principle, its presentation could be entered directly in
a Todd—Coxeter procedure or nilpotent p-quotient algorithm. (Indeed, this approach w
taken in [5] in order to determine the tensor squéar® G of certain groups; of order up
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to about|G| = 50.) However, there areG x H | generators in this presentation, and this
number of generators can be a problem even wtiend H are fairly small groups. One
method for reducing the number of generators is suggestetin ¢nd illustrated there
by means of &AyLEY computer program. ThBlagmA program in the attached text file
(Appendix A) is a development of th&tayLEY program.

In order to explain the method for reducing the number of generators we continue wi
the assumption thak and H are arbitrary groups which act compatibly on each other. Let
G * H be the free product off and H, and letJ denote the normal subgroup 6fx H
normally generated by the elements

xlg, hlx 1k, gl

forg e G,h e H,x € GUH,wherez = xgx 1 € Gandh = xhx~1 € H. The following
theorem is due to N.D. Gilbert and P. Higgins [16].

Theorem 11. [16] There is an isomorphism
(G H)XH)YXG=G=x*H/J
wherex denotes a semi-direct product. This isomorphism restricts to an isomorphism
GH=GNH
whereG and H are the normal closures itv « H/J of G and H.

If G and H have presentations X | R > and< Y | § > then their free product
G x H is presented b X UY | RU S >. Thus for finitely presented groups Theorem
1lyieldsG ® H as a subgroup of a finitely presented groug huU Y | generators. This
is a significant improvement onG x H | generators. OUMAGMA program computes
G ® H by first applying the Todd—Coxeter procedure or nilpotent p-quotient algorithrr
to a presentation of; « H/J, and then computing the subgroGpn H. However, the
above presentation @« G /J contains many unnecessary relations (that is, the descriptior
of J contains many unnecessary normal generators)MJgma program uses the more
efficient description o/ given in the next proposition.

Let X be a generating set fa, andY a generating set foH. Let Z;(G)y be the
subgroup ofG consisting of those elements Gfthat lie in thei-th termZ; (H x G) of the
upper central series of the semi-direct proddctG. Let D; (G) y denote some generating
set for the subgrouf; (G) i, and letT; (G) y denote some transversal6f(G) g in G. For
c > lset

Xe=D1(G)g YU D2G)g U---UD(G)g UT(G)y,
Ye = D1(H)g U D2(H)g U ---UD.(H)c UT:(H)g.

The following proposition, which is a development of materialid]} has been proved by
Aidan McDermott in his thesis [25].

Proposition 12. [25] Fix somec > 1. The subgroup/ is normally generated by the
elements

x[g, hx "k, g1
forge X,heY,x e X, UY,, whereg =xgxte Gandh =xhx~te H.

Theoremlland Propositiori2 are used in Functionkl and17in Section6.
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In order to efficiently compute the quotieﬁ(G) = J(G)/A(G) we consider the ele-
ments
X, =@ ex)
for x, y € G. Proposition 4.10 in [6] implies the identities

{xx’, y} = {x, yHx', y},

fx, vy} =, yHx, ),
for x,x’, y € G. This bilinearity leads to the following more efficient description of the
subgroupA(G) of G ® G.
Proposition 13. Let W be a subset off which generate§“?. ThenA(G) is generated by
the elements

(x®@y)(y®x)

forx,y e W.
Propositionl3is used in Functio® in Section6.

We similarly derive the following description of the central subgrdyp/, N) of MQN,
whereM andN are normal subgroups df.

Proposition 14. Let W be a subset oM N N which generates N N/[M, N]. Then
V(M, N) is generated by the elements

(x®@y)(y®x)
and
(x @ x)
forx,y e W.

Propositionl4 is used in Functiori4in Section6.

In [7] the Baer invariant/ @ (G) was computed for certain non prime-power groGps
via the isomorphism/ @ (G) = ker(u: (G A G) A G — G)/7(G) of Theorem. For this
computation it is useful to consider the elements

<x,y,2>=((x AN A (A2 A )z AX) A" y)

in (GAG)AG,wherex, vy, z € G. If G is afree group then, as explained Iil], the triple
Pontryagin product

G x G x G*™ — H3(G) = ker(u: (G A G) A G — G)
can be identified with the function
GP"x G x G 5> (GAG)AG, (3,7, ><x,y,2>.

Since this Pontryagin product is trilinear, it follows that foraabitrary groupG the bracket
< x,y,z > istrilinear. This yields the following efficient description ofG).

Proposition 15. Let W be a subset off which generate&%?. Thent (G) is generated by
the elements x, y, z > forx, y,z € W.
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Propositionl5 can be used construct an analogue of FunctionSection6 for computing
M2(G).

For ¢ > 1 our MaGMA program computes©)(G) from a presentatiorP =
< X1,...Xs | r1,....,r; > of G, and an integey divisible by the exponent o#/ ) (G).
We set

O (P) =< x1, .o, xy | [rj, xil, )7 forl<i<s,1<j<t>,
0!, ,(P) = 0{(O%(P),

and letF! be the group presented B¢ (P). Our program uses the following isomorphism,
proved in [7].

Theorem 16. [7] M9(G) = ker(p: ye4+1(F! ;) — G) wherep is the canonical homo-
morphism.

Theoreml6is the basis of Functioh8in Section6.

4. |Installation instructions

An attached text fileAppendix A) comprises three sections which contain, respectively:
(i) a help file, (i) ourMaGma program, and (iii) a test input file. The program and test input
file can be run on any machine wiNMacma (Version 2.3) installedd]. It is important to
note that they will not run with earlier versionsfacma.

The help file in Section | should be extracted and saved under the fileimamatopy-
help.m. The program in Section Il should be saved under the file-hametopy.m. The
test file in Section 11l should be saved under the file-n&mmotopytest.m. These three files
need to be stored in a single directory.

Torunthe program, users should stdrtgma, and then typéoad "homotopy.m”;.

The help file can be accessed by typhep();. To test that the program runs correctly

on a given computer, tydead "homotopytest.m";. This test file will call the var-

ious homotopy functions, apply them to particular groups, and then compare results wi
previously calculated data. The test file may take about ten minutes to run, and will conclu
with a declaration of any detected errors.

5. General remarks about the program

The program contains a number of homotopy-theoretic functions, each of which cal
certain variables and returns other variables. For instance, the commar
TensorSquare(G,p); will call variablesG and p, and return a variable under the
nameT. In this examples must be a finitely presented finite group, gnd non-negative
integer. The variabl@ will represent an “enumerated” version of the tensor sqGageG.

The basic group-theoretic properties®@fR G (such as order, exponent, nilpotency class,
abelian quotient invariants) can then be determined using standard procedires farl
list of the homotopy-theoretic functions is given in Secton

Our program needs to call various standard group theory functions, such as the Tod
Coxeter procedure and the Nilpotent Quotient algorithm. Thus, any “stand-alone” C in
plementation of our program would to some extent involve “re-inventing the wheel”. I
seems more reasonable to implement the program in a computer algebra language suc
MAaGMA or GAP in which a number of group theory procedures already exist. In this article
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we have opted foMaGma. However, Aidan McDermott has writtenGAP version of part

of the program in his thesi®p]. Even with the enormous help of such computer algebra
languages, a number of technicalities the program. The nature of these technicalities diff
betweerMacma andGAP. But in both cases it seems to be a non-trivial step from the idea:
explained in this paper to the production of efficient code. For this reason we have attack
a complete version of our program which can be run (and read) by the reader.

The structure of the program is simplified by introducing the concept ehamerated
group. Informally, such a group is a computer representat@rof a finite groupG for
which: (i) we can iterate over the elementseii, and (ii) for any two elements, y in
eG there is a unique element &G representing their multipley. More precisely, the
termenumerated groufs used throughout the program in three very specific senses: in th
presence of a primg it means a group obtained as the output fiehema’s nilpotent
p-quotient algorithm applied to a finitely presented group; in a situation whetel it
means a finite permutation group (often obtained as the outputfteama’s Todd—Coxeter
procedure); in the absence pft can have either of the previous meanings, or it can mean
a finite matrix group.

The original motivation for our program was the desire to compute the kernel

K(G) =ker(G ® (G ® G) — G)

of the homomorphism from the tensor cube of a finite gréu G. Here the action of;
onG ® G is defined on generators by

Fx®y) = (x)® (*y)
for g, x,y € G. Anelementt € G ® G is understood to act oy € G by
Tg=0(r)gd(n) "
whered: G ® G, x ® y — xyx~1y~L. These actions are shown to be well-definedsi [
A certain quotient of KG) provides the calculations of the Baer invariait& (G) listed
in [7] (cf. Theorem). In order to illustrate the nature of our program, we present a sketcl
algorithm for the computation of {G):
¢ Input a finite presentation for a finite grodp Also input a non-negative integer
< Construct an enumerated versiah of G, together with the ‘isomorphismg: G —
eG andgp1:¢G — G.
« Construct the function
GactG:G x G — G, (x,y) — ¢ L(p(xyx™1)).
(SinceG is “represented” by a free group, the wasd (¢ (xyx—1)) will generally
be shorter thamyx—1.)
« Let H be an isomorphic copy of G, and construct a finite presentation for the fre
productG = H.
« Use Propositiori2, the actiorGactG, and the presentation f@¥ = H to construct a
finite presentation of the grou@ « H/J. (As explained in Sectio8, the intersection
of the normal closures af andH in G x H/J is isomorphic toG ® G.)
» Construct an enumerated versietG = H/J) of the groupG x H/J, together with
“isomorphisms™: G« H/J — e(G « H/J) andyL:e(Gx H/J) — G« H/J.
e Construct the subgroup/ (G), v (H)] of e(G x H/J) generated by commutators of
the form[y (g), ¥ (h)]. (This subgroup is an enumerated versiotza® G.)

1
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« Construct a finitely presented groQg, H] isomorphic to[vy(G), v (H)], together
with the “inclusion homomorphism? [G, H] — e(GxH/J) and the “isomorphism”
T (G, v (H)] — [G, H].

¢ Construct the functions

[G, HlactG: [G, H] x G — G, (x, y) = ¥ 2@y ()ix™h)

GaclG, HI:G x [G, H] — [G, H], (y,x) = "X (me)y (™).

e Let L be an isomorphic copy ofr, and construct a finite presentation for the free
product[G, H] * L.

« Use Propositiod 2, the action$G, HlactG andGac{ G, H], and the presentation for
[G, H]* L to construct a finite presentation of the grddh H]* L/J’ in which the
intersection of the normal closures[@f, H] andL is (by Theoremnl1) isomorphic
to(GR®G)®G.

« Construct an enumerated versieiG, H] = L/J’) of the group[G, H] = L/J’,
together with “isomorphisms?: [G, H] « L/J' — (G, H] * L/J’) and v~
e([G,Hl1xL/J) — [G,H]|=L/J'.

 Construct the subgroup ([G, H]), v(L)] of e([G, H] = L/J’) which is generated
by the appropriate commutators. (This subgroup is an enumerated versiGnof
G)®G.)

e Constructthe enumerated gratf(G) consisting of all those elementdin([G, H]),
v(L)] which get sent to the identity by homomorphistiG, H] x L/J') — eG in-
duced b{G, H]x L — G, [g, h]xl — [g, h]l.

The Macma language is near enough to a generic pseudocode, and so more prec
details on this sketch algorithm can be obtained by readingvbusma program. Note
that the program employs two helpful conventions: (i) an enumerated @@upalways
prefixed by a lower-case “e”, whereas a finitely presented gé(ige., a presentation of a
group) is not; (i) a homomorphism from a gro@to a groupH is (nearly) always denoted
by GhomH.

We shall now try to give some indication of the capabilities and limitations of our
program. All timings refer to the CPU time on a Digital AlphaStation 238 with a 100
MHz processor and 64 MB of memory.

Let us first remark that the test input file contained in the attachment calls most of ol
homotopical functions and applies them to various groups. The test file takes 792 secol
to run. However, 436 seconds of this CPU time is taken up by the fundtiicle(G,1)
which invokes the Todd—Coxeter procedure in its computatiod @) for the group
G =< x,y|x?> = y& = (xy)2 = 1 > of order 16. Sinces is a 2-group we could use
Jtilde(G,1) as an alternative method for computifi¢G); this alternative invokes the
p-quotient algorithm in place of the Todd—Coxeter procedure, and takes just 3 seconds
run!

One of the authors of [1] has recently been working on a generalisation of the resul
in that paper. As part of this work he has run the funcie@msorSquare(G,3) on the
d-generator exponent-three Burnside grotps= B(d, 3) for d = 3,4, 5, in the hope of
determining the exponent, nilpotency class, and number of generat®¢g,B) ® B(d, 3).
Ford = 3 he used the presentation given in the example of Se6tithe groupB(3, 3) has
order 3, its tensor square has ordéf3and the function took 59 seconds to complete. For
d = 4 he used a presentation on 4 generators and 56 relations; the B has order
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3%, and the function took just under one hour to completedrer5 he used a presentation
on 5 generators and 152 relations; the gr&p, 3) has order 2, and the function ran for
over five days without completing. In this last case the program was stopped in order
allow other jobs to run.

The program has been used 1 {o compute the Baer invariani$?(G) of all groupsG
of order less than 32. For the non-prime-power groups we compuféd) using output
from the functionTensorCube(G,1). This function took up to an hour to complete
on some of the more difficult groupsf(the above comments atilde(G,1).) (We
should remark that we know of no other programs/computer software for computing tt
Baer invariantsV/¢(G) of finite groups wher > 2.)

The program'’s least successful feature is the funclioindHomologyModP(G,p)
for determining the dimension of the vector spa¢gG, Z,), wherep denotes a prime.
We have encountered difficulties when running this function with certain grouje$
order 64 andgp = 2, in that a parameter iIMaGMA’s p-quotient algorithm was exceeded.
Even allowing for an easily made adjustment in this parameter, we feel it is unlikely the
the function would work for groups of any significantly larger prime-power order. (We
should remark that J.F. Carlson and J.J. Cannon have been developing computer mett
for determining the cohomology rind$* (G, Z,) of prime-power group&. As of April 1,
1997 they had computed these rings for 250 of the 267 groups of order 64. Further dete
can be found atttp://www.math.uga.edu/ jfc/groups/cohomology.hjmi

6. Summary of functions implemented in the program

The following is a list of outMacma functions for calculating a variety of homotopical
functors and related constructions, which are defined on finitely presented finite grouy
Many of the functions require an input variahielf all of the groups called by the function
are prime-power groups them should be set equal to this prime; otherwise get 1.
When p is prime, the p-quotient algorithm is used to enumerate finitely presented grouy
(fp-groups); wherp = 1, the Todd—Coxeter procedure is used.

1. EnumeratedGroup(G, p) = (eG, GhomeG, eGhomG)
FpGrp, RngIntElt — EnumGrp, Map, Map

Given a finite fp-grous, this function yields an enumerated versi@of the group,
together with the ‘isomorphism&homeG:G — eGandeGhomG:eG — G.

2. EnumeratedKernel(delta) = K
Map — EnumGrp

Given a homomorphismelta: G — H from an enumerated groupto any group
H, this function returns the kernel delta as an enumerated grotp This func-
tion should be used only in situations wheéviacma’s internal Kernel function is
undefined.

3. PresentedGroup(eG) = (G, GhomeG, eGhomG)
EnumGrp — FpGrp, Map, Map

Given an enumerated growg$, this function yields an fp-grou@ together with
“isomorphisms"GhomeG:G — eGandeGhomG:eG — G.
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4. SelfAction(G, p) = (GactG, NiceGeneratorsG)
FpGrp, RngIntElt — Map, Set

Given a finite fp-group, this function yields the mapping
GactG: Gx G:— G, < x, y > x_lyx

from the cartesian produ& x Ginto G. It also yields a “nice” generating set for
G. ( More precisely, the generating iteGeneratorsG  has the formD1(G) U
D2(G)U---UD.(G)UT.(G) whereD; (G) is a generating set for thth term Z; (G)

of the upper central series &, and7,.(G) is a transversal oZ.(G) in G. Such a
generating set is called by Functiafi, cf. Propositionl12.)

5. Action(GhomQ, HhomQ, p) = (HactG, NiceGeneratorsG)
Map, Map, RngIntElt — Map, Set

Given finite fp-groupsG, H and an enumerated grop, and a normal inclusion
GhomQG — Q, and any homomorphissthomQH — Q, this function produces
the mapping

HactG: Hx G— G, < x, y > GhomQ*(HhomQ(x1)GhomQ(y)HhomQ(x))

from the cartesian produ@ x H to G given by conjugation irQ. It also produces

a ‘nice’ generating set foD. The group$,H, Qcan be accessed by the commands
G:=Domain(GhomQ); H:=Domain(HhomQ); Q:=Codomain(GhomQ);.

In order to obtain the conjugation action of a gra@mn itself, the more efficient
function SelfAction should be used. (The generating\ieeGeneratorsG s of

the formD1(G)yUD2(G)yU- - -UD(G)yg UT,.(G)y whereD; (G) g is agenerating
setforZ;(G)y = HN Z;(HxG), andT.(G)y is a transversal of.(G)y in G.
Such a generating set is called by Functidncf. Proposition12.)

6. TensorSquare(G, p) = (GtensorG, delta)
FpGrp, RngIntEIt — EnumGrp, Map

This function is defined for any finite fp-group. It yields an enumerated version
GtensorG of the tensor squar@® G. It also yields the homomorphism

delta: GtensorG — G

which sends a tensor to the corresponding commutat@r. in

7. TensorCube(G, p) = (TCube, delta)
FpGrp, RngIntElt — EnumGrp, Map

This function is defined for any finite fp-grou@. It yields an enumerated version
Tcube of the triple tensor produ¢G® G)® G. The function also returns the homo-
morphism

delta: Tcube — G
which sends a triple tensor to the corresponding triple commutater {ithe tensor
square is understood to act @by conjugation via the homomorphissinG® G —

G. The grougG is understood to act on the tensor square by the diagonal actio
fx®y) = Sx® 8y.)
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8. Jgroup(G, p) = JG
FpGrp, RngIntElt — EnumGrp

This function is defined for any finite fp-grou. It yields the kernelG of the homo-
morphismé: G® G— Gwhich sends each tensor to the corresponding commutator
The groupJG is returned as an enumerated group.

9. Jtilde(G, p) = JtildeG
FpGrp, RngIntElt — EnumGrp

This function is defined for any finite fp-grow. It yields the quotient afG by those
elements(x ® y)(y ® x) for x, y € G The quotient is returned as an enumerated
groupJdtilde.

10. TensorCentre(G, p) = (TC, phi)
FpGrp, RngIntElt — EnumGrp, Map

This function is defined for any finite fp-growp. It yields an enumerated versio@
of the tensor centrg®(G). It also yields the inclusigohi: TC— G.
11. Tensor(G, H, GactH, HactG, NiceGeneratorsG,
NiceGeneratorsH, p) = (GtensorH, delta, TC,
TChomG, phi, act) FpGrp, FpGrp, Map, Map, Set, Set,
RngIntElt — EnumGrp, Map, EnumGrp, Map, Map, Map

Given two finite fp-groupss, H with compatible actions (i.e., mapping&actH
Gx H— HandHactG: Hx G— Gand “nice” generating sets (for instance, those
which are closed under conjugation and under the given actions, or those given as
output from Functiond or 5), this function yields:

i) an enumerated versidatensorH of the tensor product® H;

i) the homomorphisndelta: GtensorH — Gwhich sends a tensor to the corre-
sponding “commutator” ir;

iii) a subgroupT Cof (an enumerated version dgconsisting of those elemengdor
which g ® h is trivial in G® Hfor all 4 in H;

iv) the inclusion homomorphisChomGTC — G;

v) the mappingphi: : Gx H — GtensorH from the cartesian product into the
tensor product which sends a pair to the corresponding tensor;

vi) the G-actioract: Gx GtensorH — (GtensorH) from the cartesian product
to the tensor product.

12. ExteriorSquare(G, p) = (GexteriorG, delta)
FpGrp, RngIntElt — EnumGrp, Map

This function is defined for any finite fp-grou@. It yields an enumerated version
GexteriorG  of the exterior squar& A G. It also yields the homomorphism

delta: GexteriorG — G

which sends an exterior form to the corresponding commutat@t in

13. Htwo(G, p) = HG
FpGrp, RngIntEIt — EnumGrp
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This function is defined for any finite fp-grou@. It yields the kerneHGof the
homomorphisnG A G — G which sends each exterior form to the corresponding
commutator. The groupiGis returned as an enumerated group. (The grd@is
isomorphic to the Schur multiplier @&, cf. Theoren4.)

14. RelativeSchurMultiplier(G,N,p) = M(G,N)
FpGrp, SubFpGrp, RngIntElt — EnumGrp

This function is defined for any finite fp-grou@with normal subgroup. It yields
the relative Schur multipliek(G,N) as an enumerated group.

15. RelativeEpiCentre(G,N,p) = C
FpGrp, SubFpGrp, RngIntElt — EnumGrp

This function is defined for any finite fp-grou@with normal subgroup. It yields
the relative epicentr€ as a subgroup of an enumerated versioN of

16. ThirdHomologyModP(G,p) = d
FpGrp, RngIntElt — RngIntElt

Given a finitely presented finite p-gro@ this function returns the dimensidrof

the third homology groupiz(G,Z/ pZ) of Gwith coefficients in the integers modulo
p. This homology group is a vector space. In practice, the function works only fo
groupsG of extremely low order. (The function is based on Theofijn

17. Exterior(GhomQ, HhomQ, p) =
(GexteriorH, delta, C, ChomG, phi, act)
Map, Map, RngintEIt — EnumGrp,
Map, EnumGrp, Map, Map, Map

Given three finite fp-group&, H, Q and normal inclusion$ShomQG — Q,
HhomQH — Q, this function yields:
i) an enumerated versidBexteriorH  of the exterior squar& A H;
i) the homomorphisndelta: GexteriorH — Gwhich sends an exterior form to
the corresponding ‘commutator’ @;
iii) a subgroupC of (an enumerated version djconsisting of those elemengsfor
which g A h is trivial in GA Hfor all & € H;
iv) the inclusion homomorphist@homGC — G;
v) the mappinghi: G x H — GexteriorH from the cartesian product into the
exterior product which sends a pair to the corresponding exterior form;
vi) the G-actioract: Gx GexteriorH — GexteriorH from the cartesian prod-
uct to the exterior product. The grou@s H, Q can be accessed by the commands
G:=Domain(GhomQ); H:=Domain(HhomQ); Q:=Codomain(GhomQ).

18. Baerlnvariant(G, c, q, p) = (BG, C)
FpGrp, RngIntElt, RngIntElt, RngIntElt — EnumGrp, EnumGrp

Given afinite fp-grouss, a positive integer, andq a positive multiple of the exponent
ofthe c-th BaerinvariaBGof G, this function returnBGas an enumerated group. The
function also returns the cth term of the upper epicentral seri@aesfan enumerated
groupC. (Theorenv¥ and Propositior8 can help with the choice of a suitable value

forq.)
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19. CoveringGroup(G, p) = (DG, delta, Htwo)
FpGrp, RngIntElt — FpGrp, Map, EnumGrp

Given a finite fp-grous, this function returns a finite fp-grogGwhich is a central
extensiorDG— Gof Gwith the property that the Schur multiplier of G is isomorphic
to

[DG,DG] N ke(tDG— G).

It also returns the homomorphistelta: eDG— eGgiven on enumerated groups,
as well as the Schur multiplidditwo as an enumerated group. (The fp-gro@ps
and DG have the same generating set, but the ordeD@fis not minimal. The
groupseDGandeG can be accessed by the commaab$s:=Domain(delta);
eG:=Codomain(delta);.)

20. IsCapable(G,p) = B
FpGrp, RngIntElt — Boolean

Given afinite fp-grougsthis function returns the boolean value TRUE:IS the inner
automorphism group of some group, and returns the boolean value FALSE otherwis
(This function is based on Propositidg.)

21. IsTerminal(G,p) = B
FpGrp, RngIntElt — Boolean

Given a finitely presented finite nilpotent gro@zhis function returns the boolean
value TRUE ifGis a terminal group, and returns the boolean value FALSE otherwise
(This function is based on [15].)

Example 1. To find the order and nilpotency class of the tensor square of the Burnsid
groupG = B(3, 3) of exponent 3 on three generators, enter the following:

F:=FreeGroup(3);

a:=F.1; b:=F.2; c:=F.3;

x1:=(c,a);

x1:=(a,b);

x2:=(a,c);

x3:=(b,c);

x4:=(x1,c);

rels:=[ a"3, b™3, ¢c"3, x1"3, x273, x373, x473,
(b,a)*x1"-2, (c,a)*x2"-2, (x1,a), (x2,a), (x3,a)*x4"-1,
(x4,a), (c,b)*x37-2, (x1,b), (x2,b)*x4°-2, (x3,b),
(x4,b), (x1,0)*x4"-1, (x2,c), (x3,c), (x4,c),

(x2,x1), (x3,x1), (x4,x1), (x3,x2), (x4,x2), (x4,x3) ]
G:=quo<F|rels>;

T:=TensorSquare(G,3);

print Order(T);

print NilpotencyClass(T);.

This tensor square turns out to have ord&ahd nilpotency class 2.
Now let N denote the centre of the Burnside gratipln order to determine the relative
Schur multiplierM (G, N), enter the following:
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eG, GhomeG, eGhomG:=EnumeratedGroup(G,3);
N:=Center(eG);

N:=eGhomG(N);
M:=RelativeSchurMultiplier(G,N,3);

print M;.

It turns out that the relative multiplie¥ (G, N) is elementary abelian of order 27.

Appendix A. MAGMA programs

TheMacma programs discussed in this paper are provided as text files, forming a speci

electronic appendix to this paper (see Sectidor installation instructions). This appendix
is available to journal subscribers at:

10.

11.

12.

13.

14.

http://iwww.Ims.ac.uk/jcm/1/iIms97004/appendix-a/
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