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Abstract We show that for a non-flat bornological space there is always a bornological countable
enlargement; moreover, when the space is non-flat and ultrabornological the countable enlargement may
be chosen to be both bornological and barrelled. It is also shown that countable enlargements for barrelled
or bornological spaces are always Mackey topologies, and every quasibarrelled space that is not barrelled
has a quasibarrelled countable enlargement.
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1. Introduction

We are concerned with the important class of bornological spaces, which may be defined
as inductive limits of normed spaces and include all metrizable locally convex spaces.
When the defining spaces are required to be Banach spaces we obtain the subclass of
ultrabornological spaces; these are both bornological and barrelled and appear naturally
in closed graph theorems. For properties of bornological and ultrabornological spaces see
Chapter 6 of [5].

Let (E, T ) be a locally convex Hausdorff space with real or complex scalar field and dual
E′, and let M be a subspace of the algebraic dual E∗ transverse to E′ (i.e. E′∩M = {0}).
The coarsest locally convex topology η on E finer than both T and σ(E, E′+M), denoted
as sup{T , σ(E, E′+M)}, is said to be an enlargement of T . It has basic 0-neighbourhoods
of the form U ∩ A◦, where U is a basic T -neighbourhood of 0 and A is a finite subset of
M . When η is either barrelled or bornological, it is the Mackey topology τ(E, E′ + M),
and in such a context the Mackey topology is sometimes taken as the definition of the
enlargement corresponding to M , but the present definition seems more generally suitable
(see [13]). If M is finite- (ℵ0-) dimensional, then η is a finite (countable) enlargement,
abbreviated by FE (CE). An extension of the Banach–Mackey Theorem will show that
there can be no disagreement as to what is an FE or CE of a barrelled or bornological
space, since they all must be Mackey. That is to say, we will prove that if (E, T ) is
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barrelled or bornological and dim(M) � ℵ0, then the Mackey topology τ(E, E′ + M) is
the only one finer than T for which the new dual becomes E′ + M .

In 1952 Dieudonné [3] proved that every finite-codimensional subspace of a barrelled
(bornological) space is also barrelled (bornological) by essentially proving that FEs pre-
serve the property of being barrelled (bornological). Obversely, preservation by finite-
codimensional subspaces implies preservation by FEs: if M is finite-dimensional, then
(E, η) is the direct sum of M⊥ and a finite-dimensional subspace (see [5, 4.5.3]).

Proposition 1.1 (Dieudonné). Every FE of a barrelled (bornological) space is bar-
relled (bornological).

We note a related elementary fact.

Lemma 1.2. If A is a barrel in a locally convex space E such that A ∩ F is a 0-
neighbourhood in F for some finite-codimensional subspace F , then A is a 0-neighbour-
hood in E.

Proof. The closure B of A ∩ F is a 0-neighbourhood in the closure G of F , and
B ⊂ A. Since G is closed and finite-codimensional, any algebraic complement H of G

is a topological complement, and C = A ∩ H is balanced, convex and absorbing in the
finite-dimensional H, and therefore is a 0-neighbourhood in H. Thus 1

2B + 1
2C is a

0-neighbourhood in E that is contained in A. �

The countable case is more complicated: every countable-codimensional subspace of a
barrelled space is barrelled [9,18], but if a barrelled space admits a CE, it admits one that
is not barrelled [6]. On the other hand, countable-codimensional subspaces of bornological
spaces need not be bornological [20], although countable-codimensional subspaces of
ultrabornological spaces are always bornological [19]. Of course there are bornological
spaces that admit CEs with every CE bornological. For example, if E is any infinite-
dimensional metrizable space, then every CE for E is metrizable, hence bornological,
and E surely admits a CE: let {Bn}∞

n=1 be a pairwise disjoint partition of a denumerable
linearly independent set; by multiplying the elements of Bn by suitable non-zero scalars
we may assume that each Bn forms a null sequence in E; then take fn ∈ E∗ such that
fn(Bm) is {1} for n = m and is {0} otherwise, and set M = span({fn : n ∈ N}). In
fact, if E is either barrelled or bornological with E′ �= E∗ (i.e. with E non-flat in the
terminology of [12]), then E admits a CE. The barrelled case is proved in [6], and when
E is bornological it is non-flat if and only if there exists an infinite-dimensional bounded
set, which allows us to proceed with null sequences Bn as above.

The barrelled countable enlargement problem asks whether every non-flat barrelled
space has a barrelled countable enlargement (BCE). It is known that BCEs exist for many
important types of barrelled spaces (see [6,8,10–12,16]); we note in particular for later
application that every non-flat barrelled normed space has a BCE (see [11] and also [16]).
In the present note we are concerned with the preservation of the bornological property
under countable enlargement. In contrast to the failure of countable-codimensional sub-
spaces of bornological spaces to be bornological in general, we find that every non-flat
bornological space has a bornological CE, from which we deduce that every non-barrelled
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quasibarrelled space has a quasibarrelled CE. It was shown in [16] that a non-flat ultra-
bornological space always has a BCE; now we are able to extend this result to obtain a
CE which is both barrelled and bornological. We begin with a consideration of conditions
under which a CE is a Mackey topology and conclude with several examples to illustrate
our results.

2. Mackey topologies and enlargements

Proposition 1.1 implies that every FE of a barrelled or bornological space is Mackey.
We obtain the same result for CEs. However, some Mackey spaces have non-Mackey
FEs [5, 4.5.2(ii)]. Let us say that the enlargement η is Mackey inducing (MI) if it has the
property that balanced convex σ(E′+M, E)-compact sets contain only finite-dimensional
subsets transverse to E′ (a set A ⊂ E∗ is transverse to E′ if E′ ∩ span(A) = {0}). Thus
η is MI if and only if each balanced convex σ(E′ + M, E)-compact set is contained in
E′ + N for some finite-dimensional subspace N of M .

Theorem 2.1. An enlargement η = sup{T , σ(E, E′ +M)} of a space (E, T ) coincides
with the Mackey topology τ(E, E′ + M) if and only if η is MI and L⊥ is a Mackey
subspace of (E, T ) for each finite subset L of M .

Proof.

Necessity. Suppose η is Mackey and A is a balanced convex σ(E′ +M, E)-compact set.
Then A◦ is a 0-neighbourhood in (E, η), which means that U ∩ L◦ ⊂ A◦ for some T -
neighbourhood U of 0 and some finite subset L of M . Any f ∈ A is numerically bounded
by 1 on U ∩L⊥, hence has a T -continuous restriction to L⊥, and thus f = g +h for some
g ∈ E′ and some h ∈ span(L), so that A ⊂ E′+span(L). Therefore, η is MI. Furthermore,
if L is any finite subset of M , then (L⊥, η) has a topological complement in (E, η) and
thus is a Mackey space. Now if a balanced convex C ⊂ (L⊥, T )′ is σ((L⊥, T )′, L⊥)-
compact, then it is σ((L⊥, η)′, L⊥)-compact, so that its polar B in L⊥ is a barrel in
(L⊥, T ) and a 0-neighbourhood in (L⊥, η). By definition of η, then, B intersects some
finite-codimensional subspace of (L⊥, T ) in a 0-neighbourhood, so that by Lemma 1.2 B

is a 0-neighbourhood in (L⊥, T ). This proves that (L⊥, T ) is Mackey.

Sufficiency. Let D be a balanced convex σ(E′ + M, E)-compact set with polar D◦ in
E. Since η is MI, there is some finite-dimensional subspace L of M such that D ⊂ E′ +L,
and (L⊥, T ) is Mackey by hypothesis. The set of restrictions D|L⊥ may be thought of
as a subset of E′ (L⊥ is T -dense), which, with the topology induced by σ(E′, L⊥), is
a continuous image of D and is therefore compact. Its polar in L⊥ is D◦ ∩ L⊥, a 0-
neighbourhood in the Mackey space (L⊥, T ), and thus in (L⊥, η). Lemma 1.2 implies
that D◦ is a 0-neighbourhood in (E, η). �

If A is a bounded balanced convex set in a space E (i.e. a disc in E), we may give
its span EA the norm which is the gauge of A. The closed unit ball in EA is just the
algebraic closure of A. If EA is a Banach space, then A is a Banach disc. The Banach–
Mackey Theorem states that if A is a Banach disc in (E′, σ(E′, E)), then A is β(E′, E)-
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bounded [4, § 20.11(3)]. We combine the proof with the result of [9,18] to obtain a useful
extension.

Lemma 2.2. If η = sup{T , σ(E′ + M, E)} is an FE or a CE of a space (E, T ) and D

is a Banach disc in (E′ + M, σ(E′ + M, E)), then B = D ∩ E′ is β(E′, E)-bounded.

Proof. Since M has countable dimension, (E′)B is a countable-codimensional sub-
space of the Banach space (E′ + M)D and thus is barrelled with norm the gauge of B.
(Barrelledness also follows from Satz 2 in [1].) Since B is σ(E′, E)-bounded, each member
of E may be considered a linear functional on E′

B which is bounded on the unit ball and
thus is continuous. Consequently, any σ(E, E′)-bounded set in E becomes a pointwise
bounded subset of the dual of the barrelled space (E′)B , hence equicontinuous, hence
uniformly bounded on the unit ball, hence on B. It follows that B is uniformly bounded
on each σ(E, E′)-bounded set; equivalently, B is β(E′, E)-bounded. �

Tsirulnikov [14] defined a space E to be dual locally quasicomplete (dlq) if the strong
dual (E′, β(E′, E)) is locally complete; equivalently, E is dlq if every bounded balanced
convex closed set in (E′, β(E′, E)) is a Banach disc. Every quasibarrelled space is dlq; in
fact, this is the weakest of the weak quasibarrelled conditions in [5, Chapter 8]. Since it
is a duality-invariant property, one easily finds non-Mackey dlq spaces with CEs that are
thus non-Mackey. On the positive side we greatly extend [5, 4.5.8] from barrelled spaces
to dlq spaces.

Theorem 2.3. Every CE η = sup(T , σ(E, E′ + M)) of a dlq space (E, T ) is MI.

Proof. Any balanced convex σ(E′+M, E)-compact set C is the unit ball for a Banach
space X. By Lemma 2.2 and the dlq hypothesis, B = C ∩ E′ must also be a Banach
disc, so that it spans a closed subspace Y of X. Now dim(X/Y ) = dim((E′ + X)/E′) �
dim((E′ + M)/E′) = ℵ0 implies that the dimension of the Banach space X/Y is finite.
Consequently, C ⊂ E′ + L for some finite-dimensional subspace L of M . �

Theorem 2.1 suggests two ways to construct non-Mackey CEs of Mackey spaces. The
space (c, T ) of all convergent scalar sequences given the Mackey topology τ(c, �1), where
the bilinear form is that of the pairing 〈�∞, �1〉, is a Mackey space that is dlq, but its dense
hyperplane c0 is not Mackey, so that any CE of T that makes c0 a closed hyperplane of c

is a MICE that is not Mackey. On the other hand, if we take E to be an ℵ0-dimensional
Mackey space with dim(E∗/E′) = ℵ0, then the CE for which E′ + M = E∗ is not a
MICE, for we can find a bounded linearly independent sequence in M whose σ(E∗, E)-
closed absolutely convex envelope must be σ(E∗, E)-compact, but it is not contained in
E′ + N for any finite-dimensional subspace N of M .

However, Valdivia proved that every finite-codimensional subspace of a quasibarrelled
space is quasibarrelled [17], and thus Mackey. Combining this with Theorems 2.1 and 2.3
we now have our desired result.

Theorem 2.4. Every CE of a quasibarrelled space is Mackey.

Corollary 2.5. Every CE of a barrelled or bornological space is Mackey.
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Most (partial) solutions to the BCE problem involve the Tweddle–Yeomans Criterion
[16, Theorem 2] in some version (cf. [8]). The criterion and its quasibarrelled analogue
apply to non-countable enlargements as well.

Theorem 2.6. An arbitrary enlargement η = sup(T , σ(E, E′ + M)) of a (quasi)bar-
relled space (E, T ) is (quasi)barrelled if and only if every (β(E′ +M, E)-) σ(E′ +M, E)-
bounded set is contained in E′ + L for some finite-dimensional subspace L of M .

Proof.

Necessity. Suppose (E, η) is (quasi)barrelled. If the subset A of E′+M is (β(E′ + M, E)-)
σ(E′ + M, E)-bounded, it is η-equicontinuous and A◦◦ is σ(E′ + M, E)-compact. Since
η is Mackey, Theorem 2.1 ensures that η is MI, so that A ⊂ A◦◦ is contained in some
E′ + L as required.

Sufficiency. Suppose A is a (β(E′ +M, E)-) σ(E′ +M, E)-bounded set. By hypothesis
there is a finite-dimensional subspace L of M such that A ⊂ E′ + L. Now A◦ is a barrel
in (E, η) and (L⊥, T ) is (quasi)barrelled with A|L⊥ ⊂ (L⊥, T )′, so (A|L⊥)◦ = A◦ ∩ L⊥ is
a 0-neighbourhood in (L⊥, T ), hence in (L⊥, η). Therefore, A◦ is a 0-neighbourhood in
(E, η) by Lemma 1.2, and η is (quasi)barrelled. �

Corollary 2.7. If (E, T ) is any non-flat barrelled space, then the enlargement η =
sup(T , σ(E, E∗)) is not Mackey.

Proof. If η were Mackey it would coincide with the barrelled topology τ(E, E∗),
and then by the theorem any σ(E∗, E)-bounded set would be contained in E′ + L for
some finite-dimensional subspace L of any algebraic complement of E′ in E∗. It follows
easily from this, again by the theorem, that any CE of T would be a BCE, which is
false [6, Theorem 3]. �

Remark 2.8. This corollary shows in particular that Theorem 2.4 and Corollary 2.5
are no longer valid in general if CE is replaced by arbitrary enlargement.

3. Bornological and quasibarrelled CEs

Our two main results on bornological spaces arise as corollaries to the following general
theorem. Recall that the statement ‘F is dominated by a bornological space’ means that
there is a finer locally convex topology on F under which it is bornological; G denotes F

with this finer topology.

Theorem 3.1. Let E be a bornological space and F a non-zero subspace of E dom-
inated by a bornological space G. Suppose η is a CE of E corresponding to M ⊂ E∗

such that for every subset A of E′ + M transverse to E′ the set A|F of restrictions is
transverse to G′. If the CE γ of G corresponding to G′ + M |G is bornological, then so is
the CE η.

Proof. Let g ∈ M\{0} and choose h ∈ E′ such that h|F �= 0. Then by applying the
hypothesis to A = {g+h} we deduce that g|F �= 0. It follows from this that the restriction
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mapping g �→ g|F is an algebraic isomorphism of M onto M |F ; thus, as required for γ to
be meaningful, M |G is an ℵ0-dimensional subspace of G∗ transverse to G′.

Since E is bornological it is the inductive limit of all the normed spaces Xι(ι ∈ I) that
dominate a subspace of E. The FE or CE of Xι corresponding to X ′

ι + M |Xι
yields a

metrizable space Yι that is thus bornological. Let Eι denote G + Yι endowed with the
finest locally convex topology for which the canonical injections of H = (G, γ) and Yι

are continuous. This topology, finer than that induced by E, is Hausdorff, and Eι is
bornological, being the inductive limit of two such spaces. Now (E, η̂) := lim

→
{Eι : ι ∈ I}

is also bornological and η̂ is finer than η, itself Mackey by Theorem 2.4. Thus we need only
show that each f ∈ (E, η̂)′ is also in (E, η)′ = E′ +M to show that η = η̂ is bornological.

For any such f its restriction f |Eι is continuous, as are, then, f |H and f |Yι . Thus there
exist two finite subsets L1 and L2 of M and 0-neighbourhoods U1 and U2 in G and Xι,
respectively, such that

{f}◦ ⊃ (U1 ∩ L◦
1) + (U2 ∩ L◦

2).

Thus the restriction u of f to (G + Xι) ∩ (L1 ∪ L2)⊥ is continuous and has, by the
Hahn–Banach Theorem, a continuous linear extension u− to (G+Xι, lim→ {G, Xι}). Thus

f |G+Xι and u− both extend u from the above finite-codimensional subspace, and there
exists g ∈ span(L1 ∪ L2) such that f |G+Xι

= u− + g|G+Xι . Now g is independent of the
given ι ∈ I since

(1) f |G certainly is,

(2) G ∩ (L1 ∪ L2)⊥ is dense in G by hypothesis,

(3) u−|G ∈ G′ is thus uniquely determined by f , hence so is g|G, and

(4) as shown above, each member of M is determined by its restriction to G.

Hence (f − g)|Xι = u−|Xι
is continuous for each ι ∈ I, which means that f − g ∈ E′ and

f ∈ E′ + M . �

Corollary 3.2. Every non-flat bornological space E has a bornological CE.

Proof. Since E is non-flat it has an infinite-dimensional subspace F dominated by a
normed space G and such a G has a CE: for example, we may apply the construction given
in § 1, which provides a CE for any infinite-dimensional metrizable space. Suppose that
the CE corresponds to the ℵ0-dimensional subspace N of G∗ transverse to G′. Extend
each element of N to an element of E∗ by setting it equal to 0 on some fixed algebraic
complement of F in E and let M be the set of these extensions. The theorem now applies
with this M . �

Corollary 3.3. Every non-flat inductive limit of normed barrelled spaces has a borno-
logical BCE. In particular, every non-flat ultrabornological space has a bornological BCE.

Proof. Referring to the proof of the previous corollary, we may now take F to be an
infinite-dimensional barrelled normed space and choose its CE to be a BCE [11]. It is
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easily seen that M now provides a CE which satisfies the conditions of both Theorem 2.6
and Theorem 3.1 (cf. the proof of Theorem 1 in [16]). �

Corollary 3.4. If a quasibarrelled space (E, T ) has an infinite-dimensional bounded
set, then it has a quasibarrelled CE η.

Proof. The dual E′ of (E, T ) is contained in the dual E× of E with its (finer) asso-
ciated bornological topology T. Since T and T have the same bounded sets, (E, T) is
non-flat, and there exists an ℵ0-dimensional subspace M of E∗ transverse to E× such
that η̂ = sup{T, σ(E, E× + M)} is a bornological CE of (E, T). Thus η̂ is quasibar-
relled and must satisfy the appropriate criterion of Theorem 2.6, as must, then, the
CE η = sup{T , σ(E, E′ + M)} for (E, T ). �

We see from Corollary 3.4 that, if there is a quasibarrelled space which does not have
a quasibarrelled CE, then its bounded sets must be finite-dimensional, in which case
the space would be barrelled and quasicomplete. Now, if the bounded sets of (E, T ) are
finite-dimensional, then the σ(E′, E)-bounded sets coincide with the β(E′, E)-bounded
sets; moreover, the bounded sets for any enlargement of T are just the same as the
T -bounded sets, so that barrelledness and quasibarrelledness remain equivalent for an
arbitrary enlargement of T . The remaining corollaries are now evident.

Corollary 3.5. Every quasibarrelled space which is not quasicomplete has a quasi-
barrelled CE.

Corollary 3.6. Every quasibarrelled space which is not barrelled has a quasibarrelled
CE.

Corollary 3.7. If the BCE question has a positive answer in the special case where
the space has only finite-dimensional bounded sets, then the quasibarrelled CE question
always has a positive answer.

4. Examples

In the first example we describe a Mackey space whose dual has infinite codimension in
its algebraic dual, so that CEs exist for it, but no CE can be Mackey since the second
part of the condition in Theorem 2.1 always fails. Here and below ω denotes the product
of a countably infinite collection of copies of the scalar field; ϕ is the corresponding direct
sum.

Example 4.1. Let E =
⊕

λ∈Λ ϕ(τ(ϕ, H)), where H is a dense hyperplane in ω and Λ

is an infinite set. Note that the topology of E is τ(E, E′) and its dual is E′ =
∏

λ∈Λ H.
We show that τ(E, E′) does not induce the Mackey topology on any dense hyperplane
of E. Let e span a supplement of H in ω.

Let F be any dense hyperplane in E and choose x∗ ∈ E∗ having F as null hyperplane.
Now x∗ = (x∗

λ), where x∗
λ ∈ ω, and for each λ ∈ Λ there are unique yλ ∈ H and scalar

αλ such that x∗
λ = yλ + αλe. Moreover, x∗ = (yλ) + (αλe) and E′ + span({x∗}) = E′ +

span({(αλe)}). Clearly, not all the αλ can be zero.
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We can find a sequence {x′
n} in H such that x′

n → e under σ(ω, ϕ). Let B be the
σ(ω, ϕ)-closed absolutely convex envelope of {x′

n : n ∈ N}, which is σ(ω, ϕ)-compact,
and put

A = {(αλx) : x ∈ B}.

Then A ⊆ E′ + span({(αλe)}), for if x ∈ B we have x = x1 + αe for some x1 ∈
H and some scalar α, from which we get (αλx) = (αλx1) + α(αλe). Moreover, A is
σ(E′ + span({(αλe)}), E)-compact and absolutely convex. This follows from the fact
that the mapping t : ω →

∏
λ∈Λ ω defined by t(x) = (αλx) is continuous and linear.

By the weak continuity of the restriction map, the set A|F of restrictions of members
of A to F is σ(F ′, F )-compact (note that σ(E, E′ + span({x∗})) induces σ(F, F ′) on F ).
Then, if τ(E, E′) induces on F its Mackey topology, A|F is necessarily equicontinuous
on F ; the denseness of F in E then implies that A ∩ E′ is equicontinuous on E, so that
its σ(E′, E)-closure would be σ(E′, E)-compact. This is false since (αλx′

n) ∈ A ∩ E′ for
all n ∈ N.

We sketch the details of another example of this type.

Example 4.2. Let E be a real or complex vector space of dimension ℵ1, let B be a
basis in E and let E′ be the subspace of E∗ consisting of those linear forms which vanish
on all but countably many elements of B; in the terminology of [1], E′ is the ℵ0-dual of
E with respect to the basis B. Then τ(E, E′) does not induce the Mackey topology on
any dense hyperplane of E. This may be established by showing that any f ∈ E∗\E′ is
the limit under σ(E∗, E) of a σ(E′, E)-bounded net indexed by the countable ordinals,
whose σ(E∗, E′)-closed absolutely convex envelope Af is contained in E′ + span({f}).
The null hyperplane F of f cannot then be a Mackey space in the induced topology since
Af |F is σ(F ′, F )-compact and absolutely convex but not equicontinuous.

According to Corollary 3.3 any non-flat ultrabornological space has a bornological
BCE. The next example shows that such an enlargement need not be ultrabornological.

Example 4.3. From [15] or [21] (see also [5, 6.3.11, 6.3.12]) there exists a dense
hyperplane H of ω which is not ultrabornological. Let E be an infinite-dimensional
Banach space; it contains a dense barrelled subspace F with codimension c = dim(H)
(see, for example, [6, p. 107, Corollary 2]). Let G be an algebraic complement of F in E.
Define M ⊂ E∗ such that M⊥ = F and (G, σ(G, M |G)) ≈ H. Then F is a closed subspace
of (E, τ(E, E′ + M)) and E/F ≈ H, which is barrelled but not ultrabornological. Since
barrelledness is a three-space property [7], the CE τ(E, E′ +M) is barrelled and, since it
is metrizable, is bornological, but is not ultrabornological since it has a quotient which
is not.

Nevertheless, ultrabornological CEs can occur.

Example 4.4. Let E be an ultrabornological space with a dense ultrabornological
hyperplane H (see [2] for an example of such a space). Let f be any element of E∗

having H as null hyperplane. Then E is also ultrabornological under τ(E, E′ +span{f})
since it is then the topological direct sum of H and a one-dimensional subspace. It is
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now easy to see that

τ

( ∞∏
n=1

E,

∞⊕
n=1

(E′ + span{f})
)

is a CE of

τ

( ∞∏
n=1

E,

∞⊕
n=1

E′
)

and
∏∞

n=1 E is ultrabornological under both topologies [5, 6.2.14].

Finally, we give an example of an ultrabornological space with a non-quasibarrelled
CE. Since bornological spaces are always quasibarrelled this will show that a CE for an
ultrabornological (and hence for a bornological) space need not be bornological (cf. Corol-
lary 3.2).

Example 4.5. Let (E, T ) =
⊕∞

n=1 En be the topological direct sum of infinite-dimen-
sional Banach spaces En, and define fn ∈ E∗ so as to vanish on Em for m �= n, and to be
discontinuous on En. The (LB)-space E is ultrabornological, but its CE η corresponding
to M = span{fn : n ∈ N} is not quasibarrelled. Indeed, every η-bounded set A is T -
bounded and hence contained in

⊕k
n=1 En for some k ∈ N, which means that {fn : n ∈ N}

is β(E′ + M, E)-bounded, denying the condition of Theorem 2.6.
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