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Abstract
This paper is concerned with developing low variance simulation estimators of probabilities related to the sum
of Bernoulli random variables. It shows how to utilize an identity used in the Chen-Stein approach to bounding
Poisson approximations to obtain low variance estimators. Applications and numerical examples in such areas
as pattern occurrences, generalized coupon collecting, system reliability, and multivariate normals are presented.
We also consider the problem of estimating the probability that a positive linear combination of Bernoulli random
variables is greater than some specified value, and present a simulation estimator that is always less than the Markov
inequality bound on that probability.

1. Introduction and summary

For a given set of 𝑛 events, let 𝑋𝑖 be the indicator variable of event 𝑖, and let 𝑊 =
∑𝑛

𝑖=1 𝑋𝑖 denote the
number of these events that occur. We are interested in using simulation to estimate 𝑃(𝑊 ∈ 𝐴) for a
specified set 𝐴. We show how to utilize an identity used by Chen and Stein in their work on bounding
the error of a Poisson approximation to 𝑃(𝑊 ∈ 𝐴) (see [1] or [5]) to yield a new approach for obtaining
an unbiased simulation estimator of 𝑃(𝑊 ∈ 𝐴).

In Section 2, we review the relevant Chen-Stein theory for Poisson approximations and illustrate our
starting point in utilizing the identity to obtain a simulation estimator. To highlight the promise of the
proposed approach, Section 3 considers the case where the Bernoulli random variables 𝑋1, . . . , 𝑋𝑛 are
independent. In Section 4, we present a simulation estimator in the general case of dependent 𝑋1, . . . , 𝑋𝑛.
We prove that the variance of the new simulation estimator of 𝑃(𝑊 > 0) is at most 𝐸2 [𝑊] . In Section
5, we consider the problem of estimating 𝑃(𝑁 > 𝑚) where 𝑁 is the time of the first occurrence in the
sequence𝑌1, 𝑌2, . . . of a certain pattern. In Section 5.1, we develop a simulation estimator when𝑌1, 𝑌2, . . .
are independent and identically distributed, and in Section 5.2, when they represent the sequence of states
of a stationary Markov chain. Numerical examples compare the variance of the proposed estimators with
those of the raw simulation estimator 𝐼{𝑁 > 𝑚} and of the conditional Bernoulli sampling estimator.
Numerical examples related to the generalized coupon collecting problem, partial sums of independent
normal random variables, and system reliability are presented in Section 6.

To obtain the simulation estimator we are proposing, one has to be able to simulate the Bernoulli
random variables 𝑋1, . . . , 𝑋𝑛 conditional on 𝑋𝑖 = 1, which may be difficult in certain models. When
this is so, we show in Section 7 how we can unconditionally simulate 𝑋1, . . . , 𝑋𝑛 and still make use
of our proposed estimator, as long as none of the values 𝐸 [𝑋𝑖] are very small. (This is analogous
to using a post-stratification simulation estimator, see [6].) In Section 7, we consider the problem
of estimating 𝑃(∑𝑛

𝑖=1 𝑎𝑖𝑋𝑖 ≥ 𝑘) where 𝑎1, . . . , 𝑎𝑛 are positive constants, and present a nonnegative
unbiased simulation estimator that is always less than or equal to the Markov inequality bound on this
probability.
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2. Some relevant Chen-Stein theory

Suppose that 𝑋𝑖 , 𝑖 = 1, . . . , 𝑛, are Bernoulli random variables with means 𝜆𝑖 = 𝐸 [𝑋𝑖], 𝑖 = 1, . . . , 𝑛;
set 𝑊 =

∑𝑛
𝑖=1 𝑋𝑖 and let 𝜆 = 𝐸 [𝑊]. Also, let 𝑃𝜆 (𝐴) =

∑
𝑖∈𝐴 𝑒−𝜆𝜆𝑖/𝑖! be the probability that a Poisson

random variable with mean 𝜆 lies in 𝐴.
For any set of nonnegative integers 𝐴, let 𝑓𝐴 be recursively defined as follows:

𝑓𝐴(0) = 0 (1)

𝜆 𝑓𝐴( 𝑗 + 1) = 𝑗 𝑓𝐴( 𝑗) + 𝐼{ 𝑗 ∈ 𝐴} − 𝑃𝜆(𝐴), 𝑗 ≥ 0. (2)

The following lemma is key to the Chen-Stein approach.

Lemma 1. For all 𝐴, | 𝑓𝐴( 𝑗) − 𝑓𝐴(𝑖) | ≤ ((1 − 𝑒−𝜆)/𝜆) | 𝑗 − 𝑖 |.

It follows from (2) that

𝜆 𝑓𝐴(𝑊 + 1) −𝑊 𝑓𝐴(𝑊) = 𝐼{𝑊 ∈ 𝐴} − 𝑃𝜆(𝐴).

Taking expectations yields that

𝜆𝐸 [ 𝑓𝐴(𝑊 + 1)] − 𝐸 [𝑊 𝑓𝐴(𝑊)] = 𝑃(𝑊 ∈ 𝐴) − 𝑃𝜆 (𝐴). (3)

Now,

𝐸 [𝑊 𝑓𝐴(𝑊)] =
𝑛∑
𝑖=1

𝐸 [𝑋𝑖 𝑓𝐴(𝑊)]

=
𝑛∑
𝑖=1

𝐸 [ 𝑓𝐴(𝑊) | 𝑋𝑖 = 1]𝜆𝑖

=
𝑛∑
𝑖=1

𝐸 [ 𝑓𝐴(1 +𝑉𝑖)]𝜆𝑖 (4)

where 𝑉1, . . . , 𝑉𝑛 are any random variables such that 𝑉𝑖 =𝑠𝑡
∑

𝑗≠𝑖 𝑋 𝑗 | 𝑋𝑖 = 1. It follows from (3) and (4)
that ∑

𝑖

𝜆𝑖 (𝐸 [ 𝑓𝐴(𝑊 + 1)] − 𝐸 [ 𝑓𝐴(1 +𝑉𝑖)]) = 𝑃(𝑊 ∈ 𝐴) − 𝑃𝜆(𝐴).

Hence,

𝑃(𝑊 ∈ 𝐴) − 𝑃𝜆(𝐴) =
∑
𝑖

𝜆𝑖𝐸 [ 𝑓𝐴(𝑊 + 1) − 𝑓𝐴(1 +𝑉𝑖)] (5)

which, from Lemma 1, yields that

|𝑃(𝑊 ∈ 𝐴) − 𝑃𝜆(𝐴) | ≤ 1 − 𝑒−𝜆

𝜆

∑
𝑖

𝜆𝑖𝐸 [|𝑊 −𝑉𝑖 |] (6)

which is the Chen-Stein bound. (It is important to note that the preceding bound holds for any random
vector 𝑉1, . . . , 𝑉𝑛 for which the distribution of 𝑉𝑖 is the conditional distribution of

∑
𝑗≠𝑖 𝑋 𝑗 given that

𝑋𝑖 = 1.) For more about Poisson approximation bounds, see [1] or [5].
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We propose to use the identity (5), which we rewrite as

𝑃(𝑊 ∈ 𝐴) = 𝑃𝜆 (𝐴) +
∑
𝑖

𝜆𝑖𝐸 [ 𝑓𝐴(𝑊 + 1) − 𝑓𝐴(1 +𝑉𝑖)] , (7)

as the starting point of our simulation approach for estimating 𝑃(𝑊 ∈ 𝐴). In all cases, we will make
modifications so as to increase the efficiency of the simulation estimators. We first consider the case
where the 𝑋𝑖 are independent.

3. The independent case

Suppose 𝑋1, . . . , 𝑋𝑛 are independent. Because
∑

𝑗≠𝑖 𝑋 𝑗 is independent of 𝑋𝑖 , it follows that
∑

𝑗≠𝑖 𝑋 𝑗 =𝑠𝑡∑
𝑗≠𝑖 𝑋 𝑗 | 𝑋𝑖 = 1, which allows us to let 𝑉𝑖 =

∑
𝑗≠𝑖 𝑋 𝑗 = 𝑊 − 𝑋𝑖 . Hence,

𝐸 [ 𝑓𝐴(𝑊 + 1) − 𝑓𝐴(𝑉𝑖 + 1)] = 𝐸 [ 𝑓𝐴(𝑊 + 1) − 𝑓𝐴(𝑉𝑖 + 1) | 𝑋𝑖 = 1]𝜆𝑖

= 𝐸 [ 𝑓𝐴(𝑊 − 𝑋𝑖 + 2) − 𝑓𝐴(𝑊 − 𝑋𝑖 + 1)]𝜆𝑖 .

Thus, from (7), we see that

𝑃(𝑊 ∈ 𝐴) = 𝑃𝜆(𝐴) +
∑
𝑖

𝜆2
𝑖 𝐸 [ 𝑓𝐴(𝑊 − 𝑋𝑖 + 2) − 𝑓𝐴(𝑊 − 𝑋𝑖 + 1)] . (8)

We propose to simulate 𝑋1, . . . , 𝑋𝑛 and to estimate 𝑃(𝑊 ∈ 𝐴) by the unbiased estimator

E = 𝑃𝜆(𝐴) +
∑
𝑖

𝜆2
𝑖 ( 𝑓𝐴(𝑊 − 𝑋𝑖 + 2) − 𝑓𝐴(𝑊 − 𝑋𝑖 + 1)). (9)

Note that it follows from Lemma 1 that�����∑
𝑖

𝜆2
𝑖 ( 𝑓𝐴(𝑊 − 𝑋𝑖 + 2) − 𝑓𝐴(𝑊 − 𝑋𝑖 + 1))

����� ≤ 1 − 𝑒−𝜆

𝜆

∑
𝑖

𝜆2
𝑖

and so

𝑃𝜆 (𝐴) − 1 − 𝑒−𝜆

𝜆

∑
𝑖

𝜆2
𝑖 ≤ E ≤ 𝑃𝜆 (𝐴) + 1 − 𝑒−𝜆

𝜆

∑
𝑖

𝜆2
𝑖 .

Because 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 1 implies that Var(𝑋) ≤ (𝑏 − 𝑎)2/4, it follows from the preceding that

Var(E) ≤
(
1 − 𝑒−𝜆

𝜆

∑
𝑖

𝜆2
𝑖

)2

. (10)

For instance, if 𝑛 = 100, 𝜆𝑖 = 𝑖/𝑐, then when 𝑐 = 1, 000 we have Var(E) ≤ 0.00443. Even in cases
where the Poisson approximation is not particularly good, the approach works well. For instance, when
𝑐 = 200 (and so 𝜆𝑖 becomes as large as 0.5), we have Var(E) ≤ 0.1122. That is, even in the latter case,
the variance of the estimator of any probability concerning 𝑊 (even one having probability close to 1/2)
cannot exceed 0.1122. However, in any particular case, the actual variances may be quite a bit smaller
than the preceding bounds. We illustrate by an example.

Example 1. Let 𝑋1, . . . , 𝑋20 be independent Bernoullis with means 𝐸 [𝑋𝑖] = 𝜆𝑖 = 𝑖/50, 𝑖 = 1, . . . , 20.
In this case, 𝐸 [𝑊] = ∑20

𝑖=1(𝑖/50) = 4.2. Suppose we want to estimate (a) 𝑃(𝑊 ≥ 5) and (b) 𝑃(𝑊 ≥ 11).
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Using that 𝑃(𝑍 ≥ 5) = 0.410173, 𝑃(𝑍 ≥ 11) = 0.004069, where 𝑍 is Poisson with mean 4.2, a
simulation consisting of 10, 000 runs yielded that for 𝐴 = {𝑊 ≥ 5}

𝐸 [E𝐴] ≈ 0.414851, Var(E𝐴) ≈ 0.003741,

whereas, for 𝐵 = {𝑊 ≥ 11}

𝐸 [E𝐵] ≈ 0.000517, Var(E𝐵) ≈ 0.000044,

where E𝐶 refers to (9) when 𝐴 = 𝐶. Consequently, the variance of the estimators is much below
0.072487, the upper bound given by (10). The variances are also much below those of the indicator
estimators which have Var(𝐼{𝑊 ∈ 𝐴}) ≈ 0.242750 and Var(𝐼{𝑊 ∈ 𝐵}) ≈ 0.000517.

Remark. We have considered the case of independent 𝑋𝑖 not because a simulation is needed to
determine the distribution of their sum but to indicate the promise of our approach. (To compute the
mass function of 𝑊 when 𝑋1, . . . , 𝑋𝑛 are independent, let 𝑃(𝑖, 𝑗) = 𝑃(𝑋1 + · · · + 𝑋𝑖 = 𝑗). Starting with
𝑃(1, 0) = 1 − 𝜆1, 𝑃(1, 1) = 𝜆1, and using that 𝑃(𝑖, 𝑗) = 0 if 𝑖 < 𝑗 , we can recursively compute these
values by using that 𝑃(𝑖, 𝑗) = 𝑃(𝑖 − 1, 𝑗 − 1)𝜆𝑖 + 𝑃(𝑖 − 1, 𝑗)(1 − 𝜆𝑖).) The exact values in Example 1
are 𝑃(𝑊 ≥ 5) = 0.4143221438 and 𝑃(𝑊 ≥ 11) = 0.0004586525.

4. The general case

In this section, we no longer suppose that 𝑋1, . . . , 𝑋𝑛 are independent, but allow them to have an arbitrary
joint mass function. The proposed simulation approach for estimating 𝑃(𝑊 ∈ 𝐴) starts by noting that if
we let 𝐼 be independent of all the other random variables and be such that

𝑃(𝐼 = 𝑖) = 𝜆𝑖/𝜆, 𝑖 = 1, . . . , 𝑛

then we obtain from (7) that

𝑃(𝑊 ∈ 𝐴) = 𝑃𝜆 (𝐴) + 𝜆𝐸 [ 𝑓𝐴(𝑊 + 1) − 𝑓𝐴(1 +𝑉𝐼 )] .

This yields the unbiased estimator

E = 𝑃𝜆 (𝐴) + 𝜆( 𝑓𝐴(𝑊 + 1) − 𝑓𝐴(1 +𝑉𝐼 )). (11)

That is, the simulation procedure is to generate 𝐼, and if 𝐼 = 𝑖 to then generate 𝑊 and 𝑉𝑖 to obtain the
value of the preceding estimator. To utilize this approach, we must be able to generate 𝑉𝑖 for each 𝑖. In
addition, we want to couple the generated values of 𝑊 and 𝑉𝐼 to be close to each other, so as to result
in a small variance of the estimator.

One important case where we can analytically show that Var(E) is very small in comparison to
𝑃(𝑊 ∈ 𝐴), at least when the latter probability is itself small, is when 𝐴 = {0}. The following examples
illustrate the ubiquity of this important case, which occurs when we are interested in the probability of
a union of events.

1. Consider independent trials that each result in any of the outcomes 1, . . . , 𝑛 with probabilities
𝑝1, . . . , 𝑝𝑛,

∑𝑛
𝑖=1 𝑝𝑖 = 1, and suppose that there are specified numbers 𝑟1, . . . , 𝑟𝑛.

The generalized birthday problem is interested in 𝑀 , the number of trials until there have been 𝑟𝑖
type 𝑖 outcomes for some 𝑖 = 1, . . . , 𝑛. (The classical problem has
𝑛 = 365, 𝑝𝑖 = 1/𝑛, 𝑟𝑖 = 2, 𝑖 = 1, . . . , 𝑛.) With 𝑁𝑖 being the number of type 𝑖 outcomes in the first 𝑘
trials, 𝑖 = 1, . . . , 𝑛, and 𝑋𝑖 = 𝐼{𝑁𝑖 ≥ 𝑟𝑖}, we have that 𝑃(𝑀 > 𝑘) = 𝑃(∑𝑛

𝑖=1 𝑋𝑖 = 0).
The generalized coupon collecting problem concerns 𝑁, the number of trials until there have been
at least 𝑟𝑖 type 𝑖 outcomes for every 𝑖 = 1, . . . , 𝑛. (The classical coupon collecting problem has all
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𝑟𝑖 = 1.) With 𝑁𝑖 defined as the number of type 𝑖 outcomes in the first 𝑘 trials, 𝑖 = 1, . . . , 𝑛, and
𝑋𝑖 = 𝐼{𝑁𝑖 < 𝑟𝑖}, we have that 𝑃(𝑁 ≤ 𝑘) = 𝑃(∑𝑛

𝑖=1 𝑋𝑖 = 0).
2. In reliability systems with components 1, . . . , 𝑚, we often suppose that there are specified subsets

of components 𝐶1, . . . , 𝐶𝑛, none of which is a subset of another, such that the system fails if and
only if all components in at least one of these subsets are failed. Thus, with 𝑋𝑖 being the indicator of
the event that all components in 𝐶𝑖 are failed, 𝑃(system works) = 𝑃(∑𝑛

𝑖=1 𝑋𝑖 = 0). The subsets
𝐶1, . . . , 𝐶𝑛 are called the minimal cut sets of the system.

3. With 𝑌1, 𝑌2, . . . being the successive states of a stationary Markov chain, a quantity of interest is 𝑁,
the first time that the pattern 𝑦1, 𝑦2, . . . , 𝑦𝑟 appears. With 𝑋𝑖 defined as the indicator of the event
that 𝑌𝑖 = 𝑦1, 𝑌𝑖+1 = 𝑦2, . . . , 𝑌𝑖+𝑟−1 = 𝑦𝑟 , then 𝑃(𝑁 > 𝑛 + 𝑟 − 1) = 𝑃(∑𝑛

𝑖=1 𝑋𝑖 = 0).
4. In DNA matching problems (see [2]), we are often interested in the largest common subsequence in

the sequences 𝑍1, . . . , 𝑍𝑟+𝑘−1 and 𝑌1, . . . , 𝑌𝑠+𝑘−1. In particular, we often want to determine the
probability that there would be a common subsequence of length 𝑘 if the 𝑟 + 𝑠 + 2𝑘 − 2 data values
were independent and identically distributed with a specified mass function 𝛼𝑡 , 𝑡 ≥ 1. If we let
𝑋𝑖, 𝑗 , 𝑖, 𝑗 ≥ 1, equal the indicator of the event that 𝑍𝑖+𝑚 = 𝑌 𝑗+𝑚, 𝑚 = 0, . . . , 𝑘 − 1 the probability
there are such subsequences is 𝑃(∑𝑖≤𝑟 , 𝑗≤𝑠 𝑋𝑖, 𝑗 > 0).

5. If 𝑌1, . . . , 𝑌𝑛 is multivariate normal, then 𝑃(max𝑖 𝑌𝑖 ≤ 𝑥) = 𝑃(∑𝑛
𝑖=1 𝐼{𝑌𝑖 > 𝑥} = 0).

The unbiased estimator of 𝑃(𝑊 = 0) given by (11) is

E = 𝑒−𝜆 + 𝜆( 𝑓0(𝑊 + 1) − 𝑓0(1 +𝑉𝐼 )) (12)

where 𝑓0 = 𝑓{0} . To bound the variance of E, we use, as shown in [7], that

𝑓0( 𝑗) =
∫ 1

0
𝑒−𝜆𝑡 𝑡 𝑗−1 𝑑𝑡, 𝑗 ≥ 1 (13)

from which it follows that 𝑓0( 𝑗) is, for 𝑗 > 0, a decreasing, convex, positive function. Because this
implies that for 𝑖 > 0, 𝑗 > 0

| 𝑓0(𝑖) − 𝑓0( 𝑗) | ≤ 𝑓0(min(𝑖, 𝑗)) ≤ 𝑓0(1) = 1 − 𝑒−𝜆

𝜆
,

we obtain from (12) that
|E − 𝑒−𝜆 | ≤ 1 − 𝑒−𝜆. (14)

Consequently,
Var(E) ≤ (1 − 𝑒−𝜆)2 ≤ 𝜆2.

Because typically 𝑃(𝑊 > 0) ≈ 𝜆 when 𝑃(𝑊 > 0) is small, it appears in this case that Var(E) is an
order of magnitude lower than 𝑃(𝑊 > 0)(1 − 𝑃(𝑊 > 0)) ≈ 𝜆(1 − 𝜆) ≈ 𝜆, which is the variance of the
raw simulation estimator 𝐼{𝑊 > 0}.

The bound given by (14) can be strengthened when𝑊 and𝑉𝐼 can be generated so that𝑊 ≥ 𝑉𝐼 , which
is possible when 𝑊 is stochastically larger than 𝑉𝑖 for all 𝑖, as is the case in the generalized birthday and
coupon collecting problems. With such a coupling, it follows from (12) and the fact that 𝑓0 is decreasing
that E ≤ 𝑒−𝜆, and so

2 𝑒−𝜆 − 1 ≤ E ≤ 𝑒−𝜆

showing, in this case, that

Var(E) ≤ (1 − 𝑒−𝜆)2

4
≤ 𝜆2

4
.
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Remarks.

1. Another unbiased estimator of 𝑃(𝑊 = 0) is the conditional Bernoulli sampling estimator
ECBSE = 1 − 𝜆/(1 +𝑉𝐼 ) (see [6] Sect. 10.1). However, in our simulation experiments, it turns out
that CBSE is typically not competitive with E, and that the variance of the best linear combination
of these two estimators is only marginally less than Var(E).

2. When computing 𝑓𝐴( 𝑗) by using the recursive equations given by Eqs. (1) and (2), one must be very
careful that the computation of 𝑃𝜆(𝐴) is very precise. For otherwise, round off errors build up
quickly. This can be avoided for the function 𝑓0( 𝑗) by using Eq. (13) and standard numerical
approximation techniques. (For instance, as it is easily shown that 𝑔 𝑗 (𝑡) ≡ 𝑒−𝜆𝑡 𝑡 𝑗−1 is, for 𝑗 ≥ 2, an
increasing function of 𝑡 for 𝑡 ∈ [0, 1], it follows in this case that for any 𝑚,∑𝑚

𝑖=1 𝑔 𝑗 ((𝑖 − 1)/𝑚)/𝑚 ≤ 𝑓0( 𝑗) ≤
∑𝑚

𝑖=1 𝑔 𝑗 (𝑖/𝑚)/𝑚.)
3. Although the values 𝑓𝐴( 𝑗) must be computed with great precision, their computation does not add

much time to the total simulation. This is because not only does the estimator from each simulation
run require only 2 values of 𝑓𝐴( 𝑗), but once these values are computed they can be used for other
runs needing them. Consequently, when compared with using the Monte-Carlo estimator
𝐼{𝑊 ∈ 𝐴}, the additional computation time needed for our estimator primarily depends on the
additional simulation beyond generating 𝑊 that is needed to generate 𝑉𝐼 .

4. As will be seen in the Examples to follow, the coupling of 𝑊 and 𝑉𝐼 often results in only a minimal
additional simulation effort, beyond that of generating 𝑊 , needed to generate our estimator.

5. Pattern problem examples

In this section, we consider some examples where we are interested in whether a certain pattern occurs
at some point within the sequence of random variables 𝑌1, . . . , 𝑌𝑠 (see [3,4] for applications).

5.1. A pattern problem with independent data

Suppose 𝑌𝑖 , 𝑖 ≥ 1 are independent and identically distributed with mass function 𝑃(𝑌𝑖 = 𝑗) =
𝑝 𝑗 ,

∑𝑘
𝑗=1 𝑝 𝑗 = 1. Let 𝑁 be the first time that there is a run of 𝑟 consecutive equal values. That

is, 𝑁 = min{𝑚 : 𝑌𝑚 = 𝑌𝑚−1 = · · · = 𝑌𝑚−𝑟+1}, and suppose we are interested in estimating
𝑝 ≡ 𝑃(𝑁 > 𝑛 + 𝑟 − 1). To utilize our approach, we generate 𝑌1, . . . , 𝑌𝑛+𝑟−1 to determine 𝑊 =

∑𝑛
𝑖=1 𝑋𝑖 ,

where 𝑋𝑖 is the indicator of the event that 𝑌𝑖 = · · · = 𝑌𝑖+𝑟−1. We now generate 𝐼 which, because
𝜆𝑖 =

∑𝑘
𝑗=1 𝑝𝑟𝑗 , is equally likely to be any of the values 1, . . . , 𝑛. Suppose 𝐼 = 𝑖, we then generate 𝐽

such that 𝑃(𝐽 = 𝑗) = 𝑝𝑟𝑗/
∑𝑘

𝑖=1 𝑝𝑟𝑖 , 𝑗 = 1, . . . , 𝑘 and, if 𝐽 = 𝑗 , reset the values of 𝑌𝑖 , . . . , 𝑌𝑖+𝑟−1 to
now all equal 𝑗 . Letting 𝑉 be the number of times there is a run of 𝑟 equal values when using the
reset values, then 𝑉 =𝑠𝑡 1 + ∑

𝑗≠𝑖 𝑋 𝑗 | 𝑋𝑖 = 1. Consequently, with 𝜆 = 𝑛
∑𝑘

𝑗=1 𝑝𝑟𝑗 , the estimator of
𝑃(𝑁 > 𝑛 + 𝑟 − 1) = 𝑃(𝑊 = 0) is

E = 𝑒−𝜆 + 𝜆( 𝑓0(𝑊 + 1) − 𝑓0(𝑉)). (15)

This estimator can be improved by taking its conditional expectation given all variables except 𝐽.
That is, consider

E∗ ≡ 𝐸 [E | 𝐼,𝑌1, . . . , 𝑌𝑛+𝑟−1] .

Now, letting𝑉∗
𝑗 be the number of times there is a run of 𝑟 consecutive equal values when𝑌𝐼 , . . . , 𝑌𝐼+𝑟−1

are reset to all equal 𝑗 then, with 𝛼 𝑗 = 𝑝𝑟𝑗/
∑𝑘

𝑖=1 𝑝𝑟𝑖 , 𝑗 = 1, . . . , 𝑘, we have

E∗ = 𝑒−𝜆 + 𝜆
𝑘∑
𝑗=1

𝛼 𝑗 ( 𝑓0(𝑊 + 1) − 𝑓0(𝑉∗
𝑗 )). (16)
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Example 2. Suppose that 𝑛 = 1, 000 and 𝑃(𝑌𝑖 = 𝑖) = 1/5, 𝑖 = 1, . . . , 5. The following table, based
on the results from 10, 000 simulation runs, gives for various values of 𝑟, the values (as determined
by the simulation) of 𝑝 = 𝑃(𝑊 = 0), 𝑝(1 − 𝑝) (equal to the variance of the indicator estimator),
Var(ECBSE), Var(E), and Var(E∗), where E∗ is as given in (16). The simulation also gave the value
of Cov(E, ECBSE), which enabled us to determine 𝑉𝑏 , the variance of the best linear combination of
these two unbiased estimators (equal to the variance obtained when using E along with E − ECBSE as a
control variable). That is, it gave the value of

𝑉𝑏 = min
𝛼

Var(𝛼E + (1 − 𝛼)ECBSE) = Var(E)
(
1 − Corr2(E, E − ECBSE)

)
.

As indicated in the table, 𝑉𝑏 is only marginally less than Var(E), and much larger than Var(E∗).


������
𝑟 𝑝 𝑝(1 − 𝑝) Var(ECBSE) Var(E) 𝑉𝑏 Var(E∗)
5 0.276018 0.199832 0.194959 0.028545 0.026579 0.006636
6 0.773515 0.175190 0.009301 0.005185 0.005072 0.000444
7 0.950120 0.047392 3.1819 × 10−4 2.7736 × 10−4 2.7643 × 10−4 8.7166 × 10−6

8 0.989804 0.010092 1.2331 × 10−5 1.1964 × 10−5 1.1958 × 10−5 2.3745 × 10−7


������
.

Remark. Because of our coupling of 𝑉 and 𝑊 , the simulation effort needed to obtain our estimator is
basically the same as needed to obtain 𝑊 .

5.2. A pattern problem with Markov chain generated data

Consider a stationary Markov chain 𝑌𝑚, 𝑚 ≥ 1, with transition probabilities 𝑃𝑢,𝑣 and stationary
probabilities 𝜋𝑢 . Let 𝑄𝑢,𝑣 = 𝜋𝑣𝑃𝑣,𝑢/𝜋𝑢 be the transition probabilities of the reverse chain. We are
interested in the probability that the pattern 𝑦1, . . . , 𝑦𝑟 does not appear within the first 𝑛 + 𝑟 − 1 data
values. To use our method, let 𝑋𝑖 be the indicator of the event that 𝑌𝑖 = 𝑦1, . . . , 𝑌𝑖+𝑟−1 = 𝑦𝑟 and note
that 𝜆𝑖 = 𝑃(𝑋𝑖 = 1) = 𝜋𝑦1𝑃𝑦1 ,𝑦2 · · · 𝑃𝑦𝑟−1 ,𝑦𝑟 . With 𝑊 =

∑𝑛
𝑖=1 𝑋𝑖 , we are interested in 𝑃(𝑊 = 0).

To estimate 𝑃(𝑊 = 0), first generate 𝐼, equally likely to be any of 1, . . . , 𝑛. Suppose 𝐼 = 𝑖.

1. Set 𝑌𝑖 = 𝑦1, . . . , 𝑌𝑖+𝑟−1 = 𝑦𝑟 .
2. For 𝑗 ≥ 𝑖 + 𝑟, if 𝑌 𝑗−1 = 𝑢, then let 𝑌 𝑗 = 𝑣 with probability 𝑃𝑢,𝑣 . (In other words, starting at time

𝑖 + 𝑟 − 1, generate the remaining states in sequence by using the transition probability 𝑃𝑢,𝑣 .)
3. For 𝑗 < 𝑖, if 𝑌 𝑗+1 = 𝑢, then let 𝑌 𝑗 = 𝑣 with probability 𝑄𝑢,𝑣 . (So going backwards from time 𝑖 we

generate the states using the transition probabilities of the reversed chain).

Let 𝑉 = 1 +𝑉𝐼 be the number of times the pattern 𝑦1, . . . , 𝑦𝑟 appears in 𝑌1, . . . , 𝑌𝑛+𝑟−1.
To generate 𝑊 , we will define a new Markov chain with transition probabilities 𝑃𝑢,𝑣 and let 𝑊 be the

number of times the pattern appears. However, we will do it in a way so that it is related to the 𝑌 -chain
above. It is defined as follows. To begin, recall that the generated value of 𝐼 was 𝐼 = 𝑖. We define the
new chain—let its states be 𝑊1, . . . ,𝑊𝑛+𝑟−1—as follows:

1. Simulate 𝑊𝑖 by using that 𝑃(𝑊𝑖 = 𝑘) = 𝜋𝑘 .
2. For 𝑗 < 𝑖,

if 𝑊 𝑗+1 = 𝑌 𝑗+1, set 𝑊𝑘 = 𝑌𝑘 for all 𝑘 = 1, . . . , 𝑗 .
2. if 𝑊 𝑗+1 ≠ 𝑌 𝑗+1, then if 𝑊 𝑗+1 = 𝑢, then let 𝑊 𝑗 = 𝑣 with probability 𝑄𝑢,𝑣 .

3. For 𝑗 > 𝑖. Starting with the simulated value of 𝑊𝑖 , generate the states 𝑊𝑖+1 up to 𝑊𝑖+𝑟−1 by using the
transition probabilities 𝑃𝑢,𝑣 . For the states at times 𝑗 ≥ 𝑖 + 𝑟 do the following:

if 𝑊 𝑗−1 = 𝑌 𝑗−1, set 𝑊𝑘 = 𝑌𝑘 for all 𝑘 ≥ 𝑗 .
3. if 𝑊 𝑗−1 ≠ 𝑌 𝑗−1, then if 𝑊 𝑗−1 = 𝑢, let 𝑊 𝑗 = 𝑣 with probability 𝑃𝑢,𝑣 .

Let 𝑊 be the number of times the pattern appears in 𝑊1, . . . ,𝑊𝑛+𝑟−1.
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So in generating the chain for determining 𝑊 we start by generating the value of 𝑊𝑖 and using its
value we then use the transition probabilities until we have generated the values of 𝑊𝑖 , . . . ,𝑊𝑖+𝑟−1. For
times larger than 𝑖 + 𝑟 − 1, we will continue generating according to the transition probabilities 𝑃𝑢,𝑣 ,
except that if at some time we are in the same state as the Y-chain was at that time then we just let the W
chain’s value equal the Y-chain’s value from then on. We do the same thing going backwards in time,
except that we use the reverse transition probabilities. (If it is easier to generate from the original chain
than from the reversed chain, we can reverse the procedure by first generating the states of the forward
chain to determine 𝑊 and then generate the chain that determines the value of 𝑉 , coupling its values
with those of the first chain when appropriate.)

The estimator of 𝑃(𝑊 = 0) is

E = 𝑒−𝜆 + 𝜆( 𝑓0(𝑊 + 1) − 𝑓0(𝑉)).

Example 3. The following example will consider 4 Markov chains, all with states 0, 1. The transitions
probabilities for these chains are

Case 1: 𝑃00 = 0.3, 𝑃10 = 0.2
Case 2: 𝑃00 = 0.3, 𝑃10 = 0.8
Case 3: 𝑃00 = 0.5, 𝑃10 = 0.6
Case 4: 𝑃00 = 0.5, 𝑃10 = 0.8

For each chain, we use the preceding approach to estimate 𝑝, the probability that the pattern
0000011111 does not occur in the first 5,009 data values. The following table, based on 10, 000 simu-
lation runs, gives (as determined by the simulation) the variances of E and of ECBSE = 1 − 𝜆/𝑉, as well
as 𝑉𝑏 , the variance of the best convex linear combination of these estimators.


������
Case 𝑝 𝑝(1 − 𝑝) Var(ECBSE) Var(E) 𝑉𝑏

1 0.074597 0.069033 0.309118 0.000458 0.000456
2 0.976097 0.023332 3.61369 × 10−6 1.43963 × 10−8 1.43420 × 10−8

3 0.111967 0.099430 0.268122 0.0004628 0.0004627
4 0.857370 0.122287 7.95539 × 10−4 2.2507 × 10−6 2.2445 × 10−6


������
.

Remarks. 1. Because 0 ≤ 1 − ECBSE = 𝜆/𝑉 ≤ 𝜆, it follows that Var(ECBSE) ≤ 𝜆2/4, and so always
has a small variance when 𝜆 is small. However, its variance can be large when 𝜆 > 1, and that is
the reason why it is large in Cases 1 and 3, which have respective values 𝜆 = 2.58048 and
𝜆 = 2.18182. The estimator E has a small variance in all cases.

2. Because the pattern 0000011111 has “no overlap” (in the sense that no part of an occurring
pattern can be utilized in the next occurrence of the pattern), the Poisson approximation
𝑃(𝑊 = 0) ≈ 𝑒−𝜆 would be expected to be quite accurate, and indeed it yields the following
estimates of 𝑝 in the four cases: 0.075738, 0.976098, 0.112836, and 0.857404. On the other hand,
if the pattern were 1111111111, then it would not be expected to be so accurate. Indeed, when the
transition probabilities are as given in Case 3, the Poisson estimator of the probability that this
pattern does not occur within the first 5,009 data values is 0.55172, whereas simulation shows that
𝑝 = 0.69673, 𝑝(1 − 𝑝) = 0.21130, Var(E) = 0.021106. Thus, once again E has a very small
variance.

Example 4. Consider the Markov chain with states 1, 2, 3 and transition probability matrix


��
0.5 0.4 0.1
0.6 0.2 0.2
0.2 0.3 0.5


��
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and suppose we are interested in estimating 𝑝, the probability, starting in steady state, that the pattern
1, 2, 3, 1, 3, 2, 2, 1, 2, 3 does not occur within 5, 009 data values. In this case, a simulation based on
10,000 runs, yielded the estimates

𝑝 = 0.9893264, Var(ECBSE) = 3.18819 × 10−7, Var(E) = 1.97215 × 10−31.

Remark. Because we need to generate two Markov chains to obtain our estimator, the simulation effort
could be twice what is needed to generate 𝑊. However, because of the coupling of these two chains, if
the number of states of the Markov chain is not too large, then the number of additional simulations
needed beyond generating one chain is minimal. In any case, in the preceding examples, the variance
of our estimator is much smaller than Var(𝐼{𝑊 = 0}) = 𝑝(1 − 𝑝).

5.3. Additional examples

Example 5 (A Generalized Coupon Collecting Problem).. Suppose that 1,000 balls are independently
distributed into 10 urns with each ball going into urn 𝑖 with probability 𝑝𝑖 , 𝑖 = 1, . . . , 10. Let 𝑁𝑖 denote
the number of balls that go into urn 𝑖 and set 𝑋𝑖 = 𝐼{𝑁𝑖 < 𝑟𝑖}. With 𝑊 =

∑10
𝑖=1 𝑋𝑖 , we are interested in

estimating 𝑃(𝑊 = 0).

To determine the value of our estimator E = 𝑒−𝜆+𝜆( 𝑓0(𝑊+1)− 𝑓0 (𝑉)), first generate the multinomial
vector (𝑁1, . . . , 𝑁10) and use it to determine 𝑊 . We will also use these 𝑁𝑖 to determine 𝑉 (= 𝑉𝐼 + 1).
Let 𝜆𝑖 = 𝐸 [𝑋𝑖] = 𝑃(Bin(1, 000, 𝑝𝑖) < 𝑟𝑖), where Bin(𝑛, 𝑝) is binomial with parameters (𝑛, 𝑝); let
𝜆 =

∑10
𝑖=1 𝜆𝑖 , and do the following:

1. Generate 𝐼 where 𝑃(𝐼 = 𝑖) = 𝜆𝑖/𝜆. Suppose 𝐼 = 𝑗 .
2. If 𝑁 𝑗 < 𝑟 𝑗 let 𝑉 = 𝑊 .
3. If 𝑁 𝑗 ≥ 𝑟 𝑗 generate 𝑌, a binomial (1, 000, 𝑝 𝑗 ) random variable conditioned to be less than 𝑟 𝑗 .

Suppose 𝑌 = 𝑘. Then, remove 𝑁 𝑗 − 𝑘 balls from box 𝑗 , putting each of these balls into one of the
urns 𝑖, 𝑖 ≠ 𝑗 with prob 𝑝𝑖/(1 − 𝑝 𝑗 ). Let 𝑁∗

1 , . . . , 𝑁
∗
10 be the new number of balls in each urn after

the preceding is done. Let 𝑉 =
∑10

𝑘=1 𝐼{𝑁∗
𝑘 < 𝑟𝑘 }.

A simulation of 10, 000 runs, when 𝑝𝑖 = (10 + 𝑖)/155, 𝑟𝑖 = 60 + 4𝑖, 𝑖 = 1, . . . , 10, yielded the result

𝑃(𝑊 = 0) = 0.572859, Var(E) = 0.006246.

Because 𝜆 = 0.493024, the Poisson approximation of 𝑃(𝑊 = 0) is 𝑒−𝜆 = 0.610779.

Remark. Because of our coupling of 𝑉 and 𝑊, the simulation needed beyond obtaining 𝑊 is minimal.
Either no additional simulation, except for 𝐼, is needed or, no matter how many urns, one would need to
then simulate a binomial conditioned to be smaller than some value (easily done by the discrete inverse
transform algorithm) and then generate a small number of additional random variables that are used
to modify the number of balls in urns 𝑗 , 𝑗 ≠ 𝐼.

Example 6 (A Partial Sums Example).. Suppose 𝑍1, . . . , 𝑍20 are independent and identically distributed
standard normals. Let

𝑆𝑖 =
𝑖∑
𝑗=1

𝑍 𝑗 , 𝑋𝑖 = 𝐼{|𝑆𝑖 | > 𝑐
√
𝑖}, 𝑊 =

20∑
𝑖=1

𝑋𝑖 .

Suppose we want to estimate 𝑃(𝑊 = 0) and 𝑃(𝑊 = 2). To obtain our simulation estimators, we
use that the joint distribution of 𝑍𝑘 and 𝑆𝑘 is bivariate normal with correlation 1/

√
𝑘 . From this, it

follows that the conditional distribution of 𝑍𝑘 given that 𝑆𝑘 = 𝑦 is normal with mean 𝑦/𝑘 and variance
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(𝑘 − 1)/𝑘 . Using the preceding and that 𝜆𝑖 = 2𝑃(𝑍1 > 𝑐), the simulation estimator is obtained as
follows:

• Generate 𝐼 such that 𝑃(𝐼 = 𝑖) = 1/20, 𝑖 = 1, . . . , 20.
• If 𝐼 = 𝑖, generate a normal with mean 0 and variance 𝑖 that is conditioned to be greater than 𝑐

√
𝑖.

(This is efficiently done either by using the reject procedure with an exponential distribution—see
[6] pp. 218–219—or, with Φ being the standard normal distribution function and 𝑈 being uniform
on (0, 1), by letting 𝑈∗ = Φ(𝑐) + (1 −Φ(𝑐))𝑈 and using

√
𝑖Φ−1(𝑈∗).) Let the value of this generated

random variable be 𝑠𝑖 .
• Generate 𝑍𝑖 conditional on 𝑆𝑖 = 𝑠𝑖 . Let 𝑧𝑖 be the generated value.
• Generate 𝑍𝑖−1 conditional on 𝑆𝑖−1 = 𝑠𝑖 − 𝑧𝑖 . Let 𝑧𝑖−1 be the generated value.
• Generate 𝑍𝑖−2 conditional on 𝑆𝑖−2 = 𝑠𝑖 − 𝑧𝑖 − 𝑧𝑖−1. Let 𝑧𝑖−2 be the generated value.
• Continue the preceding until you have generated 𝑍1.
• Generate independent standard normals 𝑍𝑖+1, . . . , 𝑍20 and let their values be 𝑧𝑖+1, . . . , 𝑧20.
• With 𝑠 𝑗 =

∑ 𝑗
𝑘=1 𝑧𝑘 , 𝑗 = 1, . . . , 20, let 𝑉 = number 𝑗 : |𝑠 𝑗 | > 𝑐

√
𝑗 .

• Generate independent standard normals 𝑍1, . . . , 𝑍𝑖 . Using these along with the previously generated
𝑍𝑖+1, . . . , 𝑍20 determine the value of 𝑊 .

• Using the preceding generated values of 𝑉 = 1 +𝑉𝐼 and 𝑊 along with 𝜆 = 40𝑃(𝑍 > 𝑐), obtain the
values of the estimators.

Note that because, given 𝐼 = 𝑖, the distribution of the estimator will be the same whether 𝑆𝑖 > 𝑐
√
𝑖 or

𝑆𝑖 < −𝑐√𝑖, we have arbitrarily assumed the former.
The following table, based on 10, 000 simulation runs, gives the simulation estimates of the variances

of E0 and E2, the proposed estimators for 𝑃(𝑊 = 0) and for 𝑃(𝑊 = 2), for 𝑐 = 2 and 𝑐 = 2.5.


��
Case 𝑃(𝑊 = 0) Var(E0) 𝑃(𝑊 = 2) Var(E2)
𝑐 = 2 0.76980 3.842 × 10−3 0.03788 4.644 × 10−4

𝑐 = 2.5 0.92279 3.519 × 10−5 0.01347 3.177 × 10−6


�� .
Remark. If 𝐼 = 𝑖, both𝑉 and𝑊 use the values 𝑍𝑖+1, . . . , 𝑍20. Consequently, for a given 𝑐, the simulation
effort to obtain our estimators is about 1.5 times that needed to generate 𝑍1, . . . , 𝑍20.

Example 7 (A Reliability Application).. Consider a system of five independent components, and suppose
that the system is failed if and only if all of the components of any of the component sets𝐶1 = {1, 2}, 𝐶2 =
{4, 5}, 𝐶3 = {1, 3, 5}, 𝐶4 = {2, 3, 4} are all failed. Suppose further that component 𝑖 is failed with
probability 𝑞𝑖 where 𝑞1 = 𝑐/10, 𝑞2 = 𝑐/12, 𝑞3 = 𝑐/15, 𝑞4 = 𝑐/20, 𝑞5 = 𝑐/30. We want to use
simulation to estimate the probability that the system is not failed for various values of 𝑐. Thus, with 𝑋𝑖

being the indicator variable that all components in 𝐶𝑖 are failed, and 𝑊 =
∑4

𝑖=1 𝑋𝑖 we are interested in
𝑃(𝑊 = 0). For various values of 𝑐, the following table gives, as determined by the simulation, 𝑃(𝑊 = 0)
as well as Var(ECBSE) and Var(E) where, with 𝜆 = 𝐸 [𝑊],

E = 𝑒−𝜆 + 𝜆( 𝑓0(𝑊 + 1) − 𝑓0(𝑉)), ECBSE = 1 − 𝜆

𝑉
.

The table also gives𝑉𝑏 , the variance of the best unbiased linear combination of these two estimators.
The table is based on the results of 50, 000 simulation runs.


������
c 𝑝 Var(ECBSE) Var(E) 𝑉𝑏

1 0.989579 4.2032 × 10−7 4.8889 × 10−7 3.7883 × 10−7

2 0.95721 2.6329 × 10−5 3.0573 × 10−5 2.3200 × 10−5

3 0.90248 0.000293 0.000315 0.000243
5 0.73230 0.005685 0.005228 0.00422


������
.
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Thus, interestingly, it appears that except for when 𝑐 = 5, the conditional Bernoulli sampling
estimator appears to have a smaller variance than does the one based on the Chen-Stein identity.

Remark. Because 𝑊 is obtained by simulating the state—either failed or not—of each component, and
𝑉 is then obtained by simulating 𝐼 and using the earlier simulated states for all components not in 𝐶𝐼 ,
there is basically no additional simulation effort needed to obtain our estimator.

6. A post-simulation approach

There are many models where it is very difficult to simulate the system conditional on 𝑋𝑖 = 1. (For
instance, suppose a customer has just arrived at a stationary 𝑀/𝑀/1 queueing system and we are
interested in the distribution of number of the next 𝑛 customers that have to spend longer than 𝑥 in the
system.) If none of 𝜆1, . . . , 𝜆𝑛 is very small, one possibility is to unconditionally simulate the system to
obtain 𝑋1, . . . , 𝑋𝑛, and then use the resulting data to yield realizations of the quantities 𝑉𝑖 for those 𝑖 for
which 𝑋𝑖 = 1. In this way, a single simulation run would yield the values of 𝑊 =

∑𝑛
𝑖=1 𝑋𝑖 and of 𝑊 of

the random variables 𝑉1, . . . , 𝑉𝑛. We could then use the identity

𝑃(𝑊 ∈ 𝐴) = 𝑃𝜆 (𝐴) + 𝜆𝐸 [ 𝑓𝐴(𝑊 + 1)] −
𝑛∑
𝑖=1

𝜆𝑖𝐸 [ 𝑓𝐴(𝑉𝑖 + 1)]

to obtain a simulation estimator of 𝑃(𝑊 ∈ 𝐴). Namely, if we have 𝑟 simulation runs, with 𝑋 𝑡
1, . . . , 𝑋

𝑡
𝑛

being the simulated vector in run 𝑡, then we can estimate 𝐸 [ 𝑓𝐴(𝑊 + 1)] by (1/𝑟)∑𝑟
𝑡=1 𝑓𝐴(1 +

∑𝑛
𝑖=1 𝑋 𝑡

𝑖 ),
and 𝐸 [ 𝑓𝐴(𝑉𝑖 + 1)] by

∑𝑟
𝑡=1 𝐼{𝑋 𝑡

𝑖 = 1} 𝑓𝐴(1 + ∑
𝑗≠𝑖 𝑋

𝑡
𝑗 )/

∑𝑟
𝑡=1 𝐼{𝑋 𝑡

𝑖 = 1}.

Example 8. Each of 200 balls independently goes into box 𝑖 with probability 𝑝𝑖 = (10 + 𝑖)/155, 𝑖 =
1, . . . , 10. With 𝑁𝑖 denoting the number of balls that go into box 𝑖, let 𝑋𝑖 = 𝐼{𝑁𝑖 < 12 + 𝑖}, 𝑖 =
1, . . . , 10, 𝑊 =

∑10
𝑖=1 𝑋𝑖 , and let 𝑝 = 𝑃(𝑊 ≤ 3). We want to determine 𝑝 by simulation.

Using our technique, we let 𝑟 = 100 and repeated this procedure 300 times. With E being the
estimator of 𝑝, based on 𝑟 = 100 simulation runs, the simulation gave that

𝐸 [E] = 0.852839, Var(E) = 0.000663.

The preceding variance can be compared to 𝑝(1 − 𝑝)/100 = 0.001255, the variance of the raw
simulation estimator based on 100 runs. (If we would have done the simulation as in Example 5, then the
resulting variance based on a single simulation run is 0.036489, giving that the variance of the average
of 100 runs is 0.000365.)

7. Estimating probabilities of positive linear combinations

As before let 𝑋1, . . . , 𝑋𝑛 be Bernoulli random variables, and let 𝜆𝑖 = 𝐸 [𝑋𝑖], 𝑖 = 1, . . . , 𝑛. With
𝑆 =

∑𝑛
𝑖=1 𝑎𝑖𝑋𝑖 , where 𝑎1, . . . , 𝑎𝑛 are arbitrary positive constants, suppose we are interested in estimating

𝑝 = 𝑃(𝑆 ≥ 𝑘). We now develop a simulation procedure that yields a nonnegative unbiased estimator
that is always less than or equal to the Markov inequality bound 𝐸 [𝑆]/𝑘 .

To obtain our estimator, note that for any random variable 𝑅

𝐸 [𝑆𝑅] =
𝑛∑
𝑖=1

𝑎𝑖𝐸 [𝑋𝑖𝑅] =
𝑛∑
𝑖=1

𝑎𝑖𝐸 [𝑅 | 𝑋𝑖 = 1]𝜆𝑖 . (17)
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Now, let 𝐼 be independent of 𝑅, 𝑋1, . . . , 𝑋𝑛 and be such that

𝑃(𝐼 = 𝑖) = 𝑎𝑖/𝑎, 𝑖 = 1, . . . , 𝑛 where 𝑎 =
𝑛∑
𝑖=1

𝑎𝑖 .

Noting that

𝑃(𝐼 = 𝑖 | 𝑋𝐼 = 1) = 𝑎𝑖𝜆𝑖∑𝑛
𝑖=1 𝑎𝑖𝜆𝑖

=
𝑎𝑖𝜆𝑖

𝐸 [𝑆]
yields that

𝐸 [𝑅 | 𝑋𝐼 = 1] =
𝑛∑
𝑖=1

𝐸 [𝑅 | 𝑋𝐼 = 1, 𝐼 = 𝑖]𝑎𝑖𝜆𝑖/𝐸 [𝑆] =
𝑛∑
𝑖=1

𝐸 [𝑅 | 𝑋𝑖 = 1]𝑎𝑖𝜆𝑖/𝐸 [𝑆] .

Hence, from (17), we obtain the following result.

Lemma 2. For any random variable 𝑅

𝐸 [𝑆𝑅] = 𝐸 [𝑆]𝐸 [𝑅 | 𝑋𝐼 = 1] .

This yields

Proposition 1.

𝑃(𝑆 ≥ 𝑘) = 𝐸 [𝑆]𝐸
[
𝐼{𝑆 ≥ 𝑘}

𝑆
| 𝑋𝐼 = 1

]
.

Proof. Letting 𝑅 = 0 if 𝑆 = 0 and 𝑅 = 𝐼{𝑆 ≥ 𝑘}/𝑆 if 𝑆 > 0, and applying Lemma 2 yields the result.
� �

It follows from Proposition 1 that we can estimate 𝑃(𝑆 ≥ 𝑘) by first simulating 𝐼 conditional on
𝑋𝐼 = 1. If 𝐼 = 𝑖, then simulate 𝑋 𝑗 , 𝑗 ≠ 𝑖, conditional on 𝑋𝑖 = 1, let 𝑆∗ = 𝑎𝑖 +

∑
𝑗≠𝑖 𝑎 𝑗𝑋 𝑗 and return the

estimate 𝐸 [𝑆] 𝐼{𝑆∗ ≥ 𝑘}/𝑆∗. Because 0 ≤ 𝐼{𝑆∗ ≥ 𝑘}/𝑆∗ ≤ 1/𝑘, this estimator is always nonnegative
and at most the Markov inequality bound of 𝑃(𝑆 ≥ 𝑘); thus, it should have a small variance when this
bound is small.

7.1. When the 𝑿𝒊 are independent

In this case, use that

𝑃(𝑆 ≥ 𝑘) =
𝑛∑
𝑖=1

𝐸

[
𝐼{𝑆 ≥ 𝑘}

𝑆

���� 𝑋𝑖 = 1
]
𝑎𝑖𝜆𝑖

= 𝐸

[
𝑛∑
𝑖=1

𝑎𝑖𝜆𝑖
𝐼{𝑎𝑖 + 𝑆 − 𝑎𝑖𝑋𝑖 ≥ 𝑘}

𝑎𝑖 + 𝑆 − 𝑎𝑖𝑋𝑖

]
.

So the simulation approach, in this case, is to generate 𝑋1, . . . , 𝑋𝑛, let 𝑆 =
∑

𝑖 𝑎𝑖𝑋𝑖 , and use the
estimator

∑𝑛
𝑖=1 𝑎𝑖𝜆𝑖 (𝐼{𝑎𝑖 + 𝑆 − 𝑎𝑖𝑋𝑖 ≥ 𝑘}/(𝑎𝑖 + 𝑆 − 𝑎𝑖𝑋𝑖)).

Example 9. Suppose the 𝑋𝑖 are independent with 𝜆𝑖 = (𝑖 + 20)/240, 𝑖 = 1, . . . , 100 and 𝑎𝑖 = 20 −
𝑖/10, 𝑖 = 1, . . . , 100. The mean and variance of the estimator of 𝑃(𝑆 > 410) are, respectively, 0.451232
and 0.173305. The mean and variance of the estimator of 𝑃(𝑆 > 440) are, respectively, 0.286072 and
0.140649. (The variances in these two cases can be compared with the variances of the raw simulation
estimators 𝐼{𝑆 > 410} and 𝐼{𝑆 > 410}, which are, respectively, 0.247622 and 0.204235.)
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7.2. The general case

In the general case, we generate 𝐼 such that 𝑃(𝐼 = 𝑖) = 𝑎𝑖𝜆𝑖/𝐸 [𝑆], 𝑖 = 1, . . . , 𝑛. If 𝐼 = 𝑖, we generate
𝑋1, . . . , 𝑋𝑛 conditional on 𝑋𝑖 = 1, set 𝑆∗ = 𝑎𝑖+

∑
𝑗≠𝑖 𝑎 𝑗𝑋 𝑗 and use the estimator E = 𝐸 [𝑆] 𝐼{𝑆∗ ≥ 𝑘}/𝑆∗.

Example 10. In the multinomial example considered in Example 8, suppose that 𝑎𝑖 = 20 − 𝑖, 𝑖 =
1, . . . , 10 and that we want the mean and variance of the estimators of 𝑝 = 𝑃(𝑆 > 𝑘) for 𝑘 =
40, 45, 50, 55. Using the approach of this section, the results are given by the following table.


������
𝑘 𝑝 = 𝑃(𝑆 > 𝑘) 𝑝(1 − 𝑝) Var(E)
40 0.460100 0.248408 0.135402
45 0.340522 0.224567 0.125781
50 0.200719 0.160431 0.089031
55 0.129894 0.113022 0.060730


������
.

Thus, in all cases, the variance of the proposed estimator of 𝑃(𝑆 > 𝑘) is quite a bit less than
Var(𝐼{𝑆 > 𝑘}).
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