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Lipschitz 1-connectedness for
Some Solvable Lie Groups

David Bruce Cohen

Abstract. A space X is said to be Lipschitz 1-connected if every Lipschitz loop y:S! — X bounds
a O(Lip(y))-Lipschitz disk f: D? — X. A Lipschitz I-connected space admits a quadratic isoperi-
metric inequality, but it is unknown whether the converse is true. Cornulier and Tessera showed
that certain solvable Lie groups have quadratic isoperimetric inequalities, and we extend their result
to show that these groups are Lipschitz 1-connected.

1 Introduction

1.1 Lipschitz 1-connectedness

Consider a complete, simply connected Riemannian manifold X that is homogeneous
in the sense that some Lie group acts on X transitively by isometries. It is well known
that in such a manifold, every loop admits a Lipschitz filling (see Proposition 2.6; for
a much stronger result see [9, Corollary 1.4]). A classical way to study the large scale
geometry of X is by asking how hard it is to fill loops in X.

Definition 1.1  Let y:S'>X be a loop. The filling span of y, denoted Span(y), is
defined to be inf{Lip(f)|f: D*~>X ; f|s: = y}.
We say that X is Lipschitz 1-connected if there exists a constant C such that

Span(y) < CLip(y)

for all Lipschitz loops y: ' X. (The term filling span is derived from Gromov’s filling
span function [6, §5]).

For instance, Euclidean n-dimensional space E” is Lipschitz 1-connected because
one may “cone off" loops in E": given a loop y: S'>X with y(1) = 0, we may take
f(re’®) = ry(e'?) to obtain a 1-Lipschitz filling. A similar argument shows that all
CAT(0) manifolds are Lipschitz 1-connected.

1.2 Solvable Groups

In this paper, we will be interested in the case where X is some solvable real Lie
group G equipped with a left invariant metric. To motivate this, note that Lipschitz
1-connectedness is a QI-invariant (Proposition 2.7), and that every Lie group is quasi
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isometric to a solvable Lie group. We will further assume that G has the form U x A,
where the following conditions hold.

* Ais an abelian Lie group.

* U is a closed subgroup of the group of real #n x n upper triangular matrices with
diagonal entries equal to 1 (for some n).

* Aand U are contractible.

We will now see some examples of groups that are not Lipschitz 1-connected.
1.3 Groups of SOL Type

Fix real numbers t, > 1> #; > 0 and consider the group G of matrices of the form

H 0 x
0 & yf
0 0 1

where s, x, y € R. Note that G decomposes as U x A as above if we take A to be the
diagonal matrices of G and U to be the matrices with diagonal entries equal to 1. It is
known [5, Theorem 8.1.3] that there exist loops y in G such that the minimal area of
any filling of y is on the order of exp(Lip(y)). Hence, G is not Lipschitz 1-connected.
Groups of this form are called groups of SOL type.

More generally, Cornulier and Tessera have shown that if a group G = U x A as
above surjects onto a group of SOL type, then it has loops of exponentially large area,
and hence cannot be Lipschitz 1-connected [4, Theorem 12.C.1]. If G surjects onto a
group of SOL type, we say that G has the SOL obstruction.

1.4 Tame Groups

On the other hand, if the conjugation action of some a € A contracts U, then G = UxA
will be Lipschitz 1-connected (Proposition 4.5). For a to be a contraction means that
there is some compact subset Q of U such that for any compact subset K of U, some
positive power of a conjugates K into Q. If such a and Q exist, G is said to be tame.

1.5 The Theorem of Cornulier and Tessera

It is clear that a space that is Lipschitz 1-connected admits a quadratic isoperimetric
inequality, i.e., any loop of length £ must bound a disk of area O(¢?). Cornulier and
Tessera have given a large class of solvable Lie groups admitting quadratic isoperimet-
ric inequalities, and we shall extend their result to show that these groups are Lipschitz
I-connected.

Given an action of the abelian group A on a vector space V, let V; c V be the
subspace consisting of vectors v such that WQO as n—oo for all a € A. Their
theorem [4, Theorem F] states that G = U x A satisfies a quadratic isoperimetric
inequality if the following conditions hold.

* (U/[U,U])o = 0. (G is said to be standard solvable if this condition holds.)
* G does not surject onto a group of SOL type.
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* H,(u)o = 0, where u is the Lie algebra of U and H, denotes the second Lie algebra
homology, see Definition 4.2.

* Kill(u)p = 0, where the Killing module Kill(u) is the quotient of the symmetric
square u @ u of u by the A-subrepresentation spanned by elements of the form
[x,y]0oz-y0O[x,2].

Our primary objective in this paper is to establish the following theorem, proved as
Theorem 5.1, improving Cornulier and Tessera’s result to show Lipschitz 1-connected-
ness.

Theorem 1.2 Let G be a group of the form U x A, where U and A are contractible real
Lie groups, A is abelian, and U is a real unipotent group, i.e., a closed group of strictly
upper triangular real matrices.

If (U/[U, U))o, H2(ut)o, and Kill(u), are all trivial and G does not surject onto a
group of SOL type, then G is Lipschitz 1-connected.

1.6 Quadratic Isoperimetric Inequality Versus Lipschitz 1-connectedness

As noted above, if X is Lipschitz 1-connected, then it has a quadratic isoperimet-
ric inequality. It is not known whether the converse is true, that is, there are no
known examples where X has a quadratic isoperimetric inequality, but is not Lips-
chitz 1-connected. Recently, Lytchak, Wenger, and Young [8] showed some results
about the existence of Holder fillings in spaces admitting quadratic isoperimetric in-
equalities.

1.7 Organization

This paper is organized as follows. Section 2 recalls some known results about Lips-
chitz filling in homogeneous manifolds. Section 3 develops a combinatorial language
for describing fillings in Lie groups. Section 4 specializes to solvable Lie groups and
reviews the theory of tame groups and Abels’s multiamalgam. Finally, we prove our
main theorem in Section 5.

2 Preliminaries

2.1 Filling

In this section, X will be a complete, simply connected Riemannian manifold admit-
ting a transitive Lie group action by isometries. We will collect several facts about
filling loops in X. Everything in this section is both trivial and well known, but it
seems easier to write the proofs than to find them in the literature. The key facts we
will prove are as follows. Proposition 2.4 shows that X is Lipschitz 1-connected on a
small scale. That is, there is some constant D such that Span(y) = O(Lip(y)) when
Lip(y) < D. Corollary 2.5 shows that all loops in X have Lipschitz fillings. Proposi-
tion 2.6 proves the existence a filling span function, meaning that there is a function
C(X, R) such that Span(y) < C(X, Lip(y)) for all Lipschitz loops y: S’ X. Proposi-
tion 2.7 shows that Lipschitz 1-connectedness is a QI-invariant in this setting.
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Figure I: On the right, a decomposition of the unit disk into O(e*) triangles uniformly bilip-
schitz to D? as in Proposition 2.2. On the right, a decomposition of D* into a central disk
together with O(e™") sectors uniformly bilipschitz to D? as in Proposition 2.3

2.2 Generalizing to the Cocompact Case

These results are still true if X is merely assumed to admit a cocompact group action
(by isometries) rather than a transitive Lie group action. Although we do not need
these generalizations, we will mention them and sketch their proofs for the sake of
future researchers.

2.3 Templates

Let D? be the unit disk equipped with the Euclidean metric. Purely as a matter of
convenience, we will think of D? and the unit circle S' as subsets of C. We will need
some convenient cellular decompositions of D2

Definition 2.1 Let D? be the Euclidean disk of radius e.

Proposition 2.2 There exists a constant C such that for any 0 < € < 1 there is a
triangulation of D* into at most Ce™? triangles that are C-bilipschitz to DZ.

See the left side of Figure 1 for a decomposition of this type. The proof of Proposi-
tion 2.2 is left to the reader.

2.4 Using Templates

Proposition 2.2 will help us fill loops in the following way. Suppose that C is a class of
loops in X such that Span(y) = O(Lip(y)) for y € C; typically, € will consist of loops
having small Lipschitz constant. Now given some other loop y: S’ X, we may wish
to find a O(Lip(y))-Lipschitz filling f: D?—X of y. We can often use the following
abstract strategy to construct f.
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* For some sufficiently small ¢, take a decomposition of D? as in Proposition 2.2. For
a 2-cell A of this decomposition, let yo: A—D? be a C-bilipschitz map, where C is
the universal constant guaranteed by the proposition.

e Take f to be y on dD?, and extend f over the l-skeleton of the decomposition in
such a way that Lip(f) = O(Lip(y)) and the restriction of f to the boundary of
each 2-cell represents an element of C. That is, we want f to be such that for every
2-cell A, the map ya: S'— X given by yaze’® = fla oyl (ee'®) satisfies ya € C.

* For each 2-cell A, observe that Lip(ya) = O(eLip(y)), so a O(e Lip(y))-Lipschitz
filling fa: D*~X of y, exists.

* Extend f over A with Lipschitz constant O(Lip(y)) by taking, for each 2-cell A,

fls(@) = £ Sva(2).

The nontrivial part of this type of argument comes when we try to extend f over the
1-skeleton with the desired properties, so we will typically suppress the other details.

Proposition 2.3  There exists a constant C such that, for each 0 < € < 1, the unit disk
D? may be cellularly decomposed into an inner disk of radius 1 — €, surrounded by an
annular region divided into 2-cells (we call these sectors) with the following properties.

(i)  Each sector is bounded by two radial line segments, an arc of dD?, and an arc of
the boundary of the inner disk.

(ii)  Sectors are C-bilipschitz to D?2.

(iii) The number of sectors is between é and %

See the right side of Figure 1 for a decomposition of this type. The proof of Proposi-
tion 2.3 is left to the reader. Typically, this proposition will be used to convert a filling
of aloop y to a filling f of a nearby loop y, by taking f restricted to the inner disk to
be a slightly rescaled filling of y.

2.5 Basic Results on Filling in Homogeneous Manifolds

Proposition 2.4  Let X be a simply connected, complete homogeneous Riemannian
manifold. There exist constants C(X) and D(X) such that the following hold.

(i) Ifx,yeXandd(x,y)< D(X), then there is a unique geodesic in X connecting
x toy.
(ii) Supposey:S'—X is such that 0 < Lip(y) < D(X). Then Span(y) < C(X) Lip(y).

Proof It is clear that there is a uniform upper bound on sectional curvatures of X,
since X is homogeneous. Therefore, X is a CAT(x) space for some x > 0 [3, Theo-
rem 1A.6]. This implies [3, Proposition 1.4(1)] that there is some constant D(k) de-
pending only on « such that points of X separated by less than D(x) are connected
by a unique geodesic, so taking D(X) < D(x) ensures unique geodesics.

By the existence of normal coordinates in Riemannian manifolds [7, Proposition
8.2], there exists a bilipschitz map y: U—V where U is a neighborhood in X and V
a neighborhood in R*™®)_Take D > 0 small enough that there is some x € U with
U > Bp(x) and (Bp(X)) c V, c V for some convex set V. Now let y: S'—X be
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D-Lipschitz with y(1) = x. Without loss of generality, y(x) = 0, and we may fill y o y
by coning off, that is, we define a Lip(y) Lip(y)-Lipschitz filling fo: D>~V of y o y
by letting fo(re’®) = ry(y(e®)). Iif welet f = y~' o fy, then f is a filling of y and
Lip(f) < Lip(y™") Lip(y) Lip(y). Taking D(X) < D and C(X) > Lip(y~") Lip(y),
the result follows. [ |

2.6 Extending Proposition 2.4 to the Cocompact Case

Proposition 2.4 is still true if, instead of assuming that X admits a transitive Lie group
action, we only ask that X admits a cocompact action of some group by isometries.
We sketch the proof here. First, it is clear that X still has an upper bound on sectional
curvature, and hence sufficiently close points are connected by a unique geodesic by
[3, Proposition 1.4] as before. Now, arguing as above, we may cover the compact quo-
tient of X by a finite collection of open neighborhoods U; whose preimages in X are
bilipschitz to convex neighborhoods in Euclidean space. Taking D(X) sufficiently
small, we see that any D(X) Lipschitz loop y in X must be contained in a lift of a
single U;, and hence admit a O(Lip(y)) filling by the same argument as above.

Corollary 2.5  For all Lipschitz maps y: S'— X, we have Span(y) < oco.

Proof Let f D*-X be a (continuous) filling of a Lipschitz y: $'—X. We must find
a Lipschitz filling f of y. For € > 0, let 7. be the triangulation of D* given in Proposi-
tion 2.2, and for each 2-cell A of 7, let 5: A - D? be the C-bilipschitz map guaran-
teed by the proposition. Let F(e) be the largest value of d(f(x), f()) such that x, y
are adjacent vertices of 7.. Since f is a continuous function on a compact set, f must
be uniformly continuous and thus F(e)—0 as e—0.

We will now use Proposition 2.4 to produce a Lipschitz filling f of y as follows. Set
f(x) = f(x) for each vertex x of 7., where ¢ is small enough that CF(¢) < D(X),
where C is the constant given by Proposition 2.2 and D(X) is the constant given by
Proposition 2.4. Set f to be a constant-speed geodesic on each edge of 7, so that the
map S'-X given by e’® > f(y;!(ee’®)) is D(X)-Lipschitz. By Proposition 2.4, f
now admits a Lipschitz extension over 2-cells. [ ]

2.7 Extending Corollary 2.5 to the Cocompact Case

If we relax the assumption that X is homogeneous, and instead assume that X admits
a compact quotient, Corollary 2.5 is still true, because, as noted above, Proposition
2.4 is still true for such X.

Proposition 2.6  Let X be a simply connected, complete homogeneous Riemannian
manifold. For any L > 0, there exists C(X, L) > 0 such that if y: S'>X is L-Lipschitz,
then Span(y) < C(X,L).

Gromov [6, §5] referred to C(X, L) as the filling span function of X.

Proof Fix L (henceforth, all constants will be presumed to depend uncontrollably
on L). Let Cp denote the L-Lipschitz loops in X with some fixed basepoint x, and
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equip Cr, with the uniform metric. By Arzela-Ascoli, Cy is compact. Certainly, Span
is not continuous on €, because there exists y € €y arbitrarily close to the constant
map with L = Lip(y) < Span(y), but we will show that it is bounded. Because Cy, is
compact, for every € > 0, C; may be covered by a finite number of € balls. Hence, it
suffices to find a constant C > 1 such that for y,, y € € with d(y, o) < % we have

Span(y) < C max{1, Span(yy)}.

To do this, let D(X) be as in Proposition 2.4 (assuming without loss of generality that
D(X) < 1), and let o,y € Cp with d(yo,y) < D(X). Let fo: D>~>X be a Lipschitz
D(X)

filling of yo. Let e = =~ and decompose D? into an inner disk and sectors as in

Proposition 2.3. We will produce a filling f: D*~>X of y that is LiIff({")—Lipschitz on
the inner disk and O(1)-Lipschitz on the annular region as desired.

Define f|g to be equal to y. Let R = 1 - ¢ be the radius of the inner disk and define
f to be a rescaled copy of fo on the inner disk, i.e., f(re’®) = fo(ﬁeie) for r < R. This

implies that f is Lipngr")-Lipschitz on the inner disk. If x and y are the images under

f of the endpoints of a radial segment separating two sectors, then d(x, y) < D(X),
because d(y,y9) < D(X). Define f to be a minimal speed geodesic on each of the
radial segments separating two sectors, so that f is O(1)-Lipschitz on the boundary
of each sector (considering L as fixed). Since sectors are uniformly bilipschitz to DZ,

f admits a O(1)-Lipschitz extension over each sector by Proposition 2.4.
We see that f is O(1)-Lipschitz on the annular region and Li%({")-Lipschitz on the
inner disk, implying the desired bound for Span(y), taking any sufficiently large C.
|

2.8 Generalizing Proposition 2.6 to the Cocompact Case

Because Proposition 2.4 and Corollary 2.5 remain true if X is assumed to be cocom-
pact rather than homogeneous, the proof of Proposition 2.6 remains valid in this case,
except that we must take €y to consist of all L-Lipschitz loops in X based in some
compact set K c X that projects surjectively onto the cocompact quotient of X.

Proposition 2.7 Let X and Y be simply connected, complete, homogeneous Riemann-
ian manifolds, and suppose that X is quasi-isometric to Y. If Y is Lipschitz 1-connected,
then so is X.

Proof Lety: X—Y beaquasiisometryand ¥: Y—X a quasiinverse to y. Let y: S'> X
be an L-Lipschitz loop, where L > 1 without loss of generality, and let e = % To obtain
a O(L)-Lipschitz filling for y, we proceed as follows.

Using Proposition 2.2, subdivide D? into O(L?) triangles bilipschitz to D?, so that
adjacent vertices on the boundary are mapped to within O(1) of each other by yo y.
Lety:S'>Y bea O(L)-Lipschitzloop in Y that agrees with yoy on vertices of our tri-
angulation. By assumption, Y is Lipschitz 1-connected, so y admits a O(L)-Lipschitz
filling f: D*-Y.

We wish to convert Wo f into a filling f: D,~X of y. Let fy: D>~ X bea O(L)-Lip-
schitz map that agrees with ¥ o fon vertices of our triangulation: such a map exists
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because we can fill edges with constant-speed geodesics and then fill triangles in X
by Proposition 2.6, as ¥ o fmaps adjacent vertices to within O(1) of each other. This
gives us a O(L)-Lipschitz filling of fy|s:. Note that the distance from y to fp|s in the
uniform metric is O(1) because fo|s: agrees with ¥ o y o y on vertices.

Now we take a new subdivision of D?, using Proposition 2.3 to subdivide D? into
an inner disk surrounded by O(L) sectors that are uniformly bilipschitz to D?. We
build our filling f of y as follows. On the inner disk, let f be given by a rescaled copy
fo. On radial segments, take f to be a constant speed geodesic, and fill sectors using
Proposition 2.6. |

2.9 Generalizing Proposition 2.7 to the Cocompact Case

The above proof works even if we assume that X and Y have compact quotients in-
stead of being homogeneous. Indeed, it works for any X and Y admitting filling span
functions that go to 0 as L—0.

3 Lipschitz Moves

We now specialize to the case where X is equal to some simply connected Lie group
G equipped with a left-invariant Riemannian metric. Our main goal in this section
is to reduce questions about filling loops in G to questions about manipulating words
in some compact generating set for G.

Notation. Any simply connected Lie group G admits a compact generating set S. The
set 8* consists of all words s;s, - -- s, where sy,...,s, € § and £ € N, together with the
empty word ¢. The length of a word w € 8* will be denoted £(w). Given w = s;--sp €
8*, w™! denotes the word s;'---s;%. If w € 8* represents the identity element 15 of
G, w is said to be a relation. If w, w’ € 8" represent the same element of G, we write
w =g w'. The word norm with respect to 8 will be denoted by |- |s. That is, for g € G,
we define |g|s to be inf{€(w) : g =g w € 8*}.

Assumption  Any time we take a compact generating set S for G, we assume without
loss of generality that 8 is symmetric (meaning that s € 8 if and only if s* € 8) and that
1g € 8, unless otherwise indicated.

3.1 It Suffices to Fill Over the Unit Square

It will be convenient to consider loops as maps [0, 1]—X, rather than $'—X, and fill-
ings as maps from the unit square [0, 1] x [0,1]—X, rather than D*-X.

Definition 3.1 Given 8:[0,1]—X with (0) = (1), afilling of 8 over the unit square

isa map f:[0,1] x [0,1]—X with the following properties:

(i)  f agrees with f3 on the bottom edge of the unit square, meaning that f(¢,0) =
B(t) forall t € [0,1];

(ii) f is constant on the set on the other three edges of the unit square, meaning that
f(x,y)=p(0) forall (x,y) € ([0,1] x1) u (0% [0,1]) U (1 x [0,1]).
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We define Span(f) to be the infimum of Lip(f) as f ranges over Lipschitz fillings of
B over the unit square.

Similarly, given §, y:[0,1]—-X, a homotopy from f3 to y is a map [0,1] x [0,1]-X
such that f(t,1) = y(t), f(£,0) = B(t), and the restrictions flo[o,1] and f|ix[o,1] are
constant.

We will now see that it makes no difference whether we consider loops as maps
from [0,1] or S*. The key tool is the following lemma.

Lemma 3.2 There exists a constant C such that, given loops f: S'>X and y: S'-X
such that y is a reparameterization of 8, and given a filling f: D*~X of y, we have

Span(B) < Cmax{Lip(f), Lip()}.

Proof An equivalent statement was proved in [10, Lemma 8.13]. ]

Corollary 3.3  'There is a universal constant C > 0 with the following property. Sup-
pose that y:S'—=X is a Lipschitz loop and :[0,1]-X a Lipschitz path with B(t) =
y(e*™), for all t € [0,1]. Then % < Span(y) < C Span(p).

Proof Let By:9([0,1]*)—X be equal to B on the bottom edge and 3(0) on the other
three edges, and fix a bilipschitz map y: D*~[0,1] x [0,1]. Observe that y is a repa-
rameterization of By o y: S'=X. If f: D*~X is a Lipschitz filling of y, then by Lemma
3.2 there is some O(Lip(f))-Lipschitz filling f: D?>~X of o o ¥, so f o y~" is an
O(Lip(f))-Lipschitz filling of . We see that Span(f3) = O(Span(y)). The reverse
inequality is proved similarly. [ |

3.2 Filling Relations
3.2.1 It Suffices to Fill Words

Let S be a compact generating set for G. For each s € 8, choose a Lipschitz curve

95:[0,1]=G connecting 1 to s such that the following properties hold. There is some

uniform bound on Lip(y;) as s ranges over 8, y;, is constant, y;(1 - t) = y,-1(¢), for

alls € Sand t € [0,1]. Given aword w = s;55---sp € 8%, let y,,:[0,1]>G denote the

concatenation of the paths y;,, $19s,5 - . . » 1+ - S¢—1Ys,> reparameterized so that the i-th
i-1 i

of these paths is used on [, ; ]. Thatis, for 0 < t <land i =1,...¢, we have

yw( i_2+ t) = 8183+ Si1Ys, (1).

Proposition 3.4  Suppose that there exists a constant C such that for every w € 8*
with w =g g, there exists a C€(w)-Lipschitz filling of y,, over the unit square. Then G
is Lipschitz 1-connected.

Proof Note that G = U}, 8, and each 8¥ is compact. Hence, by the Baire category
theorem, some power 8% must contain an open neighborhood, so §2* contains some
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open neighborhood of the identity, which in turn contains the r-ball around the iden-
tity for some r > 0. Take K to be a natural number larger than %, so that 8¥ contains
the 1-ball around the identity in G.

Given a loop y:[0,1]—G, we produce an O(Lip(y))-Lipschitz filling f:[0,1]*~G
of y as follows. Let n = [Lip(y)]. By Propositions 2.4 and 2.6 it suffices to consider
only y such that » is at least 2. Cellularly decompose the unit square into the rectangle
[0,1] x [%, 1] together with the collection of squares [i, ’—::1} x [0, %] as i runs from
Oton-1

Define f to be constant on all the vertical edges. Note that for each i, the ele-
ment y(%)‘ly(%l) lies in the 1-ball in G, so it may be represented by some w; € 8¥.
On the horizontal edge connecting (£, 1) to (21, 1), let f be a copy of y,,, trans-
lated by y(). that is, for 0 < ¢ < 1, take f(££, 1) = y(L)y,, (¢). Letting w =
Wi+ Wy, observe that f agrees with y,,, the bottom of the rectangle [0,1] x [+,1],
so f may be extended over this rectangle with Lip(f) = O(Lip(y,)) = O(€(w)) =
O(Lip(y)), where the first bound comes from our hypothesis. Finally, f admits a
O(Lip(y))-Lipschitz extension over each square by Proposition 2.6. ]

Definition 3.5 Suppose C is a collection of pairs (v, w), where v, w € 8* are words
in 8. We say that v ~ w for (v, w) € C if there exists some constant C depending only
on C with the following property: given (v,w) € C, the map from 9([0,1] x [0,1])
to X that is equal to y, on the bottom edge, y,, on the top edge, and constant on the
sides admits a C€(v)-Lipschitz filling.

We now give some basic rules for manipulating fillings. Often, the set C will be
inferred from context.

Lemma 3.6  The following rules hold in any simply connected Lie group G.

(i) Suppose C c 8 x 8*. Thenv ~ w for (v,w) € C if and only if vw ~ ¢ for
(v,w) € Cand Lip(w) = O(Lip(v)), for each pair (v,w) € C.

(ii) Fix n, and suppose given sets C; ¢ 8" x 8" for i = 1to n. If, for each i = 1to
n, we have v ~ w, for (v,w) € C;, then vi---v, ~ wy---wy, for all (vi,w;) €
Chrvees (Vi wy) € Cy.

(iii) Given C,C" c 8* x 8%, if vi ~ vy for (v1,v2) € Cand v, ~ v; for (v2,v3) € €,
then vi ~ v3 for pairs (v1, v3) such that there exists v, € 8* with (v1,v,) € C and
(Vz, V3) e@.

(iv) ww™l ~ eforweS8*,

(v) Let U c G be a bounded neighborhood of the identity in G. If D is the collection
of relations w = s; -+~ sp € 8 such every prefix s, - - - s; represents an element of U,
then w ~ ¢ for w € D.

(vi) G is Lipschitz 1-connected if and only if v ~ ¢ for every relation v € 8*.

Proof (i) follows immediately from Lemma 3.2.

To prove (ii), subdivide the unit square into rectangles of the form [ =2, £] x [0, 1]
fori =1,...,n. Suppose (vi,w;) € Cy,...,(vy, wy,) € C, are given. By hypothesis,
there exists a homotopy f;:[0,1] x[0,1]—G from v; to w; with Lip(f;) = O(Lip(v;)).
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Define a map f:[0,1] x [0,1] by putting a rescaled copy of f; in [ =}, £] x [0, 1], that
is, for 0 < t <landi =1,...,n, we take f(=*,y) = fi(t,y). Thus Lip(f) =
O(max{nLip(f;):i=1,...,n}) = O(Lip(v)) because n is fixed. Since f restricted
to the top of the unit square is a reparameterization of v; - - - v,,, and f restricted to the
bottom of the unit square is a reparameterization of w; - - - w,,, we are done.

The proof of (iii) is similar: divide the unit square into two rectangles [0,1] x [0, 1]
and [0,1]x[3,1] and putarescaled copy of the homotopy from v; to v, into the bottom
rectangle and a rescaled copy of the homotopy from v, to v into the top rectangle to
get the desired homotopy v; to v;.

To prove (iv), let w € 8* and let £:[0,1] x [0,1] be defined by

f(t,s) = pw(2max{0, min{t - s,1-t —s}}).

The reader may check that f is a Lip(y,,,,-1)-Lipschitz filling of y,,,,1.

To prove (v), let K be such that 8¥ contains U. Given w € D, let £ = £(w), so that
we can write w = s;---s,. We will find an O(¢) filling f of y,, as follows. Subdivide
[0,1] x [0,1] into the rectangle [0,1] x [,1] together with the squares of the form
[£7, 21 %[0, $]. Define f to be constant on [0,1] x [ },1]. For each i, choose w; € 8¥
such that w; =g s;---s; and take f to be y,,, on the vertical edge % x [0, %], that is
F(5,55) = pu, (1), for0 <t <land i = 0,...,n. We may extend f over each square
with Lipschitz constant O(£) by Proposition 2.6.

(vi) is a consequence of Proposition 3.4. [ |
3.3 Normal Form Triangles

We now discuss normal forms w and w-triangles. Using a technique of Gromov, we
shall see that G is Lipschitz 1-connected if w-triangles are Lipschitz 1-connected.

Definition 3.7 A normal form for a compactly generated group G equipped with
compact generating set 8 is a map w: G—>8* such that £(w(g)) = O(|g|s) for g € G. If
w is a normal form, then an w-triangle is a word in 8* of the form w(g1)w(g2)w(g3),
where g19243 =g 1.

Lemma 3.8 Let w:G—8* be a normal form. If A ~ ¢ for w-triangles A, then G is
Lipschitz 1-connected.

Proof This was proved in [10, Proposition 8.14]. The proof is sketched in Figure 2.
|

4 Tame Subgroups and the Multiamalgam

Assumption  From here on, we specialize to the case where G = U x A, where U
and A are contractible Lie groups, with A abelian and U a closed group of strictly upper
triangular real matrices.
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Yd(r(1) Yo(y(2)1)

Ya(y(Ly) Yor(H1y(3) Yor(H(N) Yop(2))

Figure 2: This figure indicates how to fill y = y,, for an arbitrary relation w € 8*, given that one
knows how to fill w-triangles. The top edge and all the vertical edges are taken to be constant,
and each horizontal edge is understood to be an appropriate translate of its label, so that each
rectangle represents an w-triangle, except the bottom row. The bottom edge is taken to be y,,
and there is a row of squares along the bottom that can be filled by Proposition 2.6

4.1 Standard Solvable Groups

Observe that A acts on the abelianization U/[U, U]. Fix a norm on the vector space
U/[U, U]. If there is no vector X such that lim, .., = log [[a" - X|| >0, for all a € 4,
we say that G is standard solvable.

In this section we will be interested in the structure and geometry of standard
solvable groups. Section 4.2 will describe the so-called standard tame subgroups of a
standard solvable group. Lemma 4.9 will show how to find Lipschitz fillings for words
that already represent the identity in the free product of the standard tame subgroups.
Theorem 4.12, quoted from [4], will give conditions under which G can be presented
as the free product of its standard tame subgroups modulo certain easily understood
amalgamation relations.

4.2 Weights

Let G = UxAbe standard solvable, and let u be the Lie algebra of U, identified as usual
with the tangent space of U at 1y, and fix any norm | - | on u. For a € A, we denote
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the conjugation action of a on u by Ad(a), so that Ad(a)X = %|t=0a’l exp(tX)a.
Observe that Hom (A, R) is a vector space.

Definition 4.1 ([4,$4.B]) Forahomomorphism a: A— R, define the a-weight space
Uy C U to consist of 0 together with all X € u such that forall a € A,

1
lim —log| Ad(a)"X| = a(a).
n—oo 1

Define the set of weights W to consist of all « € Hom(A, R) for which dimu, > 0. Bya
conic subset, we mean the intersection of W with an open, convex cone in Hom (4, R)
that does not contain 0. Denote the set of all conic subsets by C. For C € C, let Uc
denote the closed connected subgroup of U whose Lie algebra is @4cc Uq, and let
G¢ = Uc x A. These groups G are referred to as standard tame subgroups of G (see
remarks in §4.4).

As an exercise, the reader may wish to compute the weights and weight spaces for
a group of SOL type. We have that C is finite, that u = @ 4cw Uy, and that [us, ug] c
U p for a, B € W [4, §4.B]. We now define H,(u) and recall the definition of Kill(u)
so that we will be able to state Theorem 5.1, our main theorem.

Definition 4.2 Let ds: A2 u— A?u and dy: A2 u—u be the maps of A-modules in-
duced by taking

ds(xnynz) =[x,y Az+ [y, z]Ax+[z,x]Ay da(xny)=—[x,y]

Define H, (ut) = ker(d,)/image(d;). Define Kill(ut) to be the quotient of the symmet-
ric square u®u by the subspace spanned by elements of the form [x, y]©z-y®[x, z].

4.3 H,(u) and Kill(ut) Are A-representations

Observe that the natural A-action on A® u descends to an A-action on H,(ut) because,
by the Jacobi-like identity

Ad(a)[X, Y] = [Ad(a)X, Y] + [X, Ad(a) Y],

the subspaces image(ds) and ker(d,) are preserved by the action of A. Similarly,
Kill(u) is also an A-representation. Recall that for an A-representation V we define
Vo to consist of 0 together with vectors X such that lim, o + log|a” - X|| = 0 for all
a € A. We thus define the subspaces H, (1) and Kill(1t),.

4.4 Tame Subgroups

Definition 4.3 Given a € A, a vacuum subset for a is a compact Q c U such that
for every compact K c U, there is some n > 0 with Ad(a)”K c Q. We say that G is
tame if there exists a € A with a vacuum subset.

We say that G is tame if and only if there is some a € A with a(a) < Oforalla € W,
so G is tame for C € C [4, Proposition 4.B.5]. We now wish to show that if G is tame,
then it is Lipschitz 1-connected. Our starting point is the following.
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Proposition 4.4  Suppose G is tame. Then there is some a € A and a compact gener-
ating set 8 c U for U such that Ad(a)8?* c 8.

Proof By hypothesis, there is some b € A with a vacuum subset Q. Let §) be a
compact generating set for U. As in the proof of Proposition 3.4, we see that some
power of 8y contains an open ball around the identity. Hence, for some M > 0, the set
8M contains Q. As Q is a vacuum set for b, there exists L such that Ad(b)*82M c Q.
Taking a = b" and 8§ = 8}, we have that § is a generating set because it contains 8,
(because 1 € §, by our standing assumption that generating sets contain the identity),
and Ad(a)8* = Ad(b)"82M c Q c § as desired. [

Proposition 4.5 If G = U x A is tame, then G is Lipschitz 1-connected.

Remark A tame group G is probably CAT(0) for some choice of metric, but we do
not know how to prove this, so we give a combinatorial proof using Lemma 3.8.

Proof As in Proposition 4.4, fix a € A and a compact generating set Sy ¢ U such
that Ad(a)8%, c Sy. Let S be a generating set for A with a € 84, and let 8 = Sy U84,
so that 8 is a generating set for G. Note that Ad(a)(s) = s for s € 8 4, and observe that
if £ > [log, j] > 0, then

Ad(a)*(8}) c Ad(a)*'(821) c Ad(a) 2812 c ..
o c Ad(a)t Mo 1(8,) ¢ 8y,

because the function f: j — [%] satisfies f11°82/1 = 1 for natural numbers j. In other
words, given u € U, there exist k < [log, |uls,] and s € Sy such that u =g a*sa~*.
It follows, letting ¢4: G—A denote projection, that we may define a normal form

w: G—8” such that

e forany g € G, the word w(g) is given by w(¢4(g))w(da(g)™'g),
o for g € A, the word w(g) € 8 is a minimal length word representing g,

s and for g € U\ {1}, w(g) is of the form a¥sa™*, where s € Sy and 0 < k =
O(log glsy)-

To check that this is a normal form, i.e., that £(w(g)) = O(|g|s), note that [¢p4(g)[s <

8ls and [¢4(g)"gls, = O(exp|gls), so that

64()7'(g)ls = O(log(O(expgls))) = O(lgls),

because U is at most exponentially distorted in G [4, Proposition 6.B.2].

It will suffice to show that A ~ ¢ for w-triangles A € 8*. An w-triangle A has the
form a;yw(u;)aw(uz)azw(us), where for i =1,2,3, we have u; € U and a; € 8% with
the a; and u; satisfying (Ad(asa,)u;)(Ad(as)uz)us = 1. To show that A ~ &, it thus
suffices to establish the following two facts:

e w(u)b ~ bw(b™'ub) foru e Uand b e 8%,
e w(u)w(uz)w(us) ~ ¢ for uy, uy, uz € U such that ujuus = 1.
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Lemma 3.6 will be crucial for showing the first fact, in particular, we use the lemma to
provide homotopies between words that stay inside a bounded neighborhood of the
identity.

4.5 Conjugation

To show that w(u)b ~ bw(b~'ub) for u € U and b € 8}, note that w(u) may be
written as a¥sa~* for some s € 8y and k > 0. Because Ad(a)8? c 8, there is some
C > 1such that, for all a’ € 84, we have Ad(a)¢ Ad(a’)$ c 8. Let K = C&(b) + k, so
that Ad(a)X~* Ad(b")8 c 8 for any word b’ € 8% with £(b") < €(b), and let s, 5" € 8
be given by s’ = Ad(a)X *s and s” = b™'s’b. We homotope as follows, liberally using
Lemma 3.6.

w(u)b = a*sa™¥b ~ a¥a"KsaXF*aXp

~ a¥s'ba™® ~ a®bb''ba* ~ ba®s"a X ~ bw(bub).
4.6 Filling w-triangles in U

To show that w(u;)w(uy)w(us) ~ & for uy, uy, us € U such that ujupus = 1, write
w(u;) as akis;a™i for i =1,2,3, with k; > 0and s; € Sy. Let K = k; + k, + k3 and let
st = Ad(a*K)s; € 8. We homotope as follows.

w(u)w(uy)w(us) = (uk‘sla_kl)(akzsza_kz)(ak353a_k3)
~ (aKakl—KslaK—kla—K)(aKakz—KszaK—kza—K)(aKak3—K53aK—k3a—K)

~ (a%sla®) (aXsha ™) (a®sia™) ~ afslsisia ™ ~ afa K v e m
4.7 Filling Freely Trivial Words

We now return to the case where the standard solvable group G = U x A is not nec-
essarily tame. Recall that the collection of conic subsets C is finite. For C € C, let G¢
be the tame group Uc x A, and let S, be a compact generating set for this group. Let
H = *¢ceGg, and let Sy c H be the union of the 8. There is a natural map from H
to G. Lemma 4.9 will show that if w € 8; represents the identity in H, then its image
in G admits an O(€(w))-Lipschitz filling.

We will need the following auxiliary results first. (The reader should probably skip
directly to the proof of Lemma 4.9 to understand the point of these propositions).
Proposition 4.6 shows that a word w € 8}, representing the identity in H may be re-

duced to the identity by repeated deletion of subwords r; € 8¢, such that r; represents
S

the identity in G¢;. Proposition 4.8 describes an appropriately Lipschitz rectangular
homotopy between words obtained by these deletions. Proposition 4.7 describes a
part of the homotopy given in Proposition 4.8.

Given v,w € 8}, we will write w =g+ v if v and w are the same word and write
w =g v if v and w represent the same element of H. Similar notation will be used for
equality in other groups when there is any ambiguity.
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Proposition 4.6 ~ Given a word w € 8 such that w =y 1, there exists a natural number
n <€(w) and, for j=0,...,n, words aj,r;, bj € 8§, with the following properties.
(i) w =gy aorobo.
(11) An>Tns bn =&
(iii) Forall j=0,...,n, thereissome C;j € Csuchthatr; €8 _ andr; =G, 1
]

(iV) Cljbj :g;; aj+1rj+1bj+1forj =0,...,n—-1L

Proof Note that each element of Sy lies in some G¢. If w # € represents the identity,
then by the theory of free products, w has a (nonempty) subword that is comprised of
elements of some S, and represents the identity in G¢. Thus, we may write w =gx
agrobo, where o € 8¢ as desired. Applying this argument recursively, we obtain
aj,7j, bjas desired. ]

Proposition 4.7  Given a natural number k and w € 8, there exists an O(k +£€(w))
Lipschitz map f:[0,1] x [0, ﬁ(w)] —G with the following properties.

(i)  Along the bottom, f is given by 1*w, meaning f(t,0) = y,, (t), for0< t < 1.
(ii) Along the top, f is given by w1¥, meaning f( t, ﬁ(w)) =,k (f), foro<t <1
(iii) f is constant on the sides, so f(0,s) and f(1,s) do not depend on s.

Proof Let y:R—G be given as follows: y(t) = 1g, for t < 0, y(t) = yi,,(¢) for
0<t<1and y(t) = yix, (1), for £ > 1. Observe that Lip(y) = O(k + £(w)) Then we
may take f(t,s) = y(t +s) as our desired filling. [ |

Proposition 4.8  Given a,b € Sy, r € 8 a relation in G¢ for some C € C, and any

natural number k, let £ = £(arb1*¥) and h = @. There exists an O(¢€)-Lipschitz map
£:[0,1] x [0, h]—G with the following properties.

(i)  Along the bottom, f is given by arb1¥, meaning f(t,0) = ya,p1 (t), for t € [0,1].
(ii) Along the top, f is given by ab1**¢("), meaning

f(t,h) = yapikeen (1),  forte[0,1].
(iii) f is constant on the sides, so f(0,s) and f(1,s) do not depend on s.
Proof (See the right-hand side of Figure 3.) Subdivide the rectangle into [0,1] x

[0, /2] and [0,1]x[h/2,1]. Define f to be a1 b1% on [0,1]x{h/2}, i.e., f(t, h/2) =

Va1t pix ( t)'
First, we extend f over the top rectangle [0,1] x [h/2,1]. For

(t,5) € [o@] x [h)2,1] u[l—%,l] x [h/2,1],

we have that y,1-516 () = Yap1e004x (2), S0 we can just set f to be constant vertically,
i.e., we define f(t,s) = yp1e0)+x (t) for these (t,s). To extend f to

(b5) e [LL1- 2]
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ln
1k+€(r)
1n—1 @ len—l
a
-~
— oo ——
a 2 b, 1%
al n by )
1 4 1k
ao 7o bo

Figure 3: The figure on the left depicts our strategy for filling of the freely trivial word w =
aorobo, where the aj, rj, b; are as in Proposition 4.6. The figure on the right depicts the proof
of Proposition 4.8 that allows us to fill in each rectangle in the left-hand figure.

we simply apply Proposition 4.7. Thus, we have given an O(¢)-Lipschitz extension of
f over the top rectangle.
Now we extend over the bottom rectangle [0,1] x [0, h/2]. For

¢(a) 4
(t,5) [o, 7] % [0,h/2] U [
define f(t,s) =y, (t). Finally, we apply Proposition 4.5 to extend f over
€(a) €(ar
| % (e ) | x[0.1/21,
since this is equivalent to filling r. ]

Zr),1] « [0, 1/2],

Lemma 4.9  Recalling the notation introduced at the start of Section 4.7, we have
w ~ & (in G) for all w € 8F; such that w =g 1.

Proof (See Figure 3.) Let w € 8}; be a relation in H and take a sequence of words
aj,rj,bj, j = 0,...,n as in Proposition 4.6. We will define an O(€(w))-Lipschitz
filling £:[0,1] x[0,1]—>G of y,, as follows. Let £ = ;i €(r;),so that £, = 0 and ¢, =
£(w), and subdivide [0,1] x [0,1] into rectangles [0,1] x [£;, €j1] for j=0,...,n~1L
Set f(t,¢;) = Yayribiti (1), noting that £(a;r;b;1%) = £(w).

Proposition 4.8 now shows that f may be extended over each rectangle [0,1] x
(¢, £j41] with Lipschitz constant O(&(w)). [ |

4.8 Generalizing Lemma 4.9.

A careful examination of the proof of Lemma 4.9 shows that we have not used most of
our hypotheses. In particular, the same proof shows that if Gy, . .., G, are compactly
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presented groups whose presentation complexes have Lipschitz 1-connected universal
covers, then the presentation complex of the free product G * - -- * G,, has Lipschitz
1-connected universal cover as well.

4.9 Distortion

We now see that if G is standard solvable, then elements of U may be expressed much
more efficiently in the generators of G than in the generators of U.

Proposition 4.10  Suppose G = U x A is standard solvable, § is a compact generating
set for G, and Sy is a compact generating set for U. There exists C > 1 such that if
ue U~ {ly}, then £log(1+|uls,) < |uls < Clog(1+|uls,).

Proof This follows, with some effort, from [4, Proposition 6.B.2]. [ |
4.10 The Multiamalgam

In this subsection, we will define the multiamalgam G of a standard solvable group
G = U x A (first introduced by Abels [1]), and quote a key theorem of Cornulier
and Tessera that states certain conditions under which G = G. This means that G is
put together from its standard tame subgroups in a nice way, which will eventually
let us build fillings in G from fillings in standard tame subgroups. In order to state
this theorem in the proper generality, we must briefly discuss the theory of unipotent
groups.

4.11 Unipotent Groups

For a commutative R-algebra P, and a real unipotent group U, i.e., a closed group of
upper triangular real matrices with diagonal entries equal to 1, the theory of algebraic
groups allows us to define a group U(P) [2, §1.4]. In particular, if U ¢ GL(n;R)
consists of all upper triangular matrices with diagonal entries equal to 1, then U(P)
consists of all upper triangular n x n matrices over P with diagonal entries equal to 1;
such matrices are certainly invertible, having determinant equal to 1. Suppose P =
RY, so that P consists of all functions f: Y—R. Then there is an obvious bijection
U(P) < UY, and for y € Y and u € U(P) we may speak of (y) € U.

Definition 4.11 ([4,§10.B]) Let G = U x A bereal standard solvable. The multiamal-
gam G of the standard tame subgroups G¢ is defined by G = * c.eGe/{(Rg ), where
Rg = {ic(u)tic/(u) : u € GenGer '} and i denotes the inclusion of G¢ in the direct
product.

Similarly, the multiamalgam U is defined by U = *¢cceUc/{(Ru)), where Ry =
{ic(u)Yic/(u) : u € Uc n Uc'} and ic denotes the inclusion of Uc in the direct
product.

For any commutative R-algebra P, we define U(P) and G(P) similarly, where
Gc(P) is understood to be Uc(P) » A.
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Of course, U x A = G. Recall that G admits the SOL obstruction if it surjects
onto a group of SOL type. Cornulier and Tessera give conditions under which U is
isomorphic to U.

Theorem 4.12 Let G = U x A be a standard solvable real Lie group. If H,(ut)o = 0,
Killy(u)o = 0, and G does not admit the SOL obstruction, then U(P) = U(P) for all
commutative R-algebras P.

Proof This follows from [4, Corollary 9.D.4]. The 2-tameness hypotheses of the
corollary is satisfied from [4, Proposition 4.C.3]. [ |

5 Proof of the Main Theorem
The rest of this paper is devoted to the proof of the following theorem.

Theorem 5.1 Let G = U x A, where U and A are contractible real Lie groups, A is
abelian, and U is a real unipotent group, i.e., a closed group of strictly upper triangular
real matrices. If G is standard solvable and does not surject onto a group of SOL type,
and H,(u)o and Kill(u) o are trivial, then G is Lipschitz 1-connected.

Proof Lemma 5.2 will show that there exists a generating set § for G and normal
form w: G—8” with certain properties. Lemma 5.6 will show that if w has these prop-
erties, then A ~ ¢ for w-triangles A. By Lemma 3.8, this will suffice to prove the
theorem. ]

5.1 Defining w

Assumption  Throughout the rest of this paper, we assume that G satisfies the hypothe-
ses of the theorem. That is, G = U x A is a standard solvable group such that H,(u), = 0,
Kill,(u)o = 0, and G does not surject onto a group of SOL type.

Notation. Let H = % cceGe and Hy[P] = * cceUc(P) for any commutative R alge-
bra P, andlet ic: Uc(P)—Hy[P] denote inclusion. We will write Hy for Hy[R]. Let
84 be a compact generating set for A. For C € C, let ¢ be a compact generating set
for Uc. Let Sy = Ucce Sc; by Theorem 4.12 this is a compact generating set for U. Let
8 = 84 U 8y; this is a compact generating set for G. Let Sy be a generating set for H,
which is equal to the union of compact generating sets for G¢ as C ranges over C, and
let Sy, ¢ Hy be the union of the 8¢; this is a generating set for Hy. Given C € C and
x € Ug,letx € (84U8¢)" be a minimal length word representing x. Let ¢ 4: G—A be
projection. Let the set theoretic map ¢y: G—U be defined by ¢y (g) = ¢a(g)'g, so

that g = ¢4 (g)du(g)-

Lemma 5.2 Under our standing assumptions, there exists a finite sequence Cy - -- Cy
of conic subsets and a normal form w: G—8* such that w has the following properties.

(i)  ForanygeG, w(g) = w(¢a(g))w(¢u(g))-
(ii) Fora e A, w(a) € 8} is a minimal length word representing a.

(iii) For u € U, w(u) has the form x; - - - Xy, where x; € Ug,.
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Proof This follows from [4, Proposition 6.B.2], but we will now give a different proof
in order to introduce a trick that will be used later.

5.2 The Cornulier-Tessera Trick

For a set Y, define the commutative R-algebra Py as the collection of all functions
f:Yx[1, 00)— R such that there is some 8 € Nwith |f(y, t)| < (1+t)P. Note that an el-
ement of U(Py) can be identified with a function from Y x[1, 00) to U. Alternatively,
one can think of an element of U(Py) as a family of functions [1, o0 )— U, indexed by
Y with matrix coefficients uniformly bounded by some polynomial (1 + ¢)¥.

Choose Y to have at least continuum cardinality, and let § € U(Py) be such that
for every g € U, there is some y € Y and t = O(|g|s, ) such that g(y,t) = g. Itis
certainly possible to do this; for instance, one might take Y = U and set g(y, t) to be
1y for t < |y|s, and y for ¢ > |y|s,. In claiming that § € U(Py ), we have used the fact
that the matrix coefficients of g € U are at most polynomial in |g]s,, -

Since, by Theorem 4.12, U(Py) is generated by the union of the Uc(Py), we can
write § = Xj - -+ X, where each X; is an element of some Ug, (Py). Observe that there
exist some a € Nsuch that [x;(y, t)[s., < (1+1)% foralli=1,....k,yeY,and t > 1.

Now let g be an element of U. By definition of g, there exist y € Y and t = O(|g|s,)
such that g(y,t) = g. Fori=1,...,k, let x; = X;(y, t). We have that

g=8n ) =%yt Xy t) =x-xp
and x; € Uc,(Py) with [xils, = O(t%) = O(|gl, ). Take w(g) to be X; -y, and
note that [w(g)|s = O(log]gls, ) because [%ls,s,, = O(loglxls,,) = O(log]gls,)
by Proposition 4.10.

We have thus defined w on elements of U, with the desired properties. Define w
on A by taking w(a) to be the shortest word in 8% representing a € A. Extend w to all
of g by setting w(g) = w(¢pa(g))w(Pu(g)). We must show that w is a normal form,
i.e., that, for g€ G, €(w(g)) = O(|gls).

We have 2(w(¢4(g))) = |¢a(g)|s = O(|gls), so it suffices to show that

t(w(pu(g))) = O0(sgls)-
If w € 8* is a minimal length word representing some g € G, note that w(¢4(g))'w
represents ¢y (g). By Proposition 4.10, there is some constant C > 1 not depend-
ing on g such that |w(¢a(g))'w|s > %log|¢U(g)|gU. Thus, since |w(¢u(g))]s =

0(1(018|¢U(g)|8u)>we have that w(¢u(g)) = O(|¢a(g)ls + [wls) = O([gls) as de-
sired. |

5.3 Filling w-triangles

We wish to show that we can fill w triangles, where w is a normal form produced
by Lemma 5.2. Proposition 5.5 will allow us to homotope w-triangles into relations
of the form X;--- X, where each X; is a word in 84 U 8¢, efficiently representing
an element x; of Ug,, where Ci,. .., Ck is some fixed sequence of conic subsets. In
order to fill such relations, recall from Theorem 4.12 that, under our standing assump-
tions, U(P) = U(?P) for any commutative R-algebra P. Consequently, the kernel of
Hy[P]-U(P) is normally generated by elements of the form ic(u) " ic/(u), where
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u € Uc(P) n U (P). In order to fill x; - - - Xk in Corollary 5.4, we will need to factor
X1 - -+ xg in the free product Hy as a product of a bounded number of elements of the
form g™'ic(u)tic/(u)g, where each g € Hy is a product of a bounded number of el-
ements living in some factors Uc, with |g|s, and |u|s,, controlled by some polynomial

of Z;{:l |xj|5cj'

Lemma 5.3 ([4, Lemma 7.B.1]) Suppose that our standing assumptions are satisfied.
Given a sequence of conical subsets Cy, . . ., Ck, there exist natural numbers N, u, f3 such
that, for any sequence x; € Ug, with x1x2 --- xx =y ly, there is an equality of the form
xiee Xk =ng (Qingit) -+ (gnrngy) satisfying

() g =ny & gju» where gji € Uc,, for some Cji € C;

(ii) eachr;is of the form ic; (uj)ic;f (u;)™" for some conical subsets C’, CY and some

uje Uc; N UC]’,’;
(iii) |gjk|3cjk = 0(eh), |ujls., = O(€P), and lujls,, = O(P), where € =1+ ¥ |xi].
J J

Proof Thisisa special case of [4, Lemma 7.B.1], but we will reprise most of the details
here. We will use the same Cornulier and Tessera trick we used to prove Lemma 5.2.
Take Py as in the proof of Lemma 5.2. Recall that X € Uc(Py) may be thought of as
a function from Y x [0, 00) to Uc. Let Y be a set with at least continuum cardinality,
so that there exists (X,...,%Xk) € Uc,(Py) x -+ x Uc,(Py) that has the following
strong surjectivity property: for any (x;---xg) € Uc,(Py) x -+ x Ug,(Py) with
x1+-xg =y 1, there exists y € Y and t = O(|xi[s, + -+ + |xkls., ) with X;(y, £) = x;.
By Theorem 4.12, we know that there is some equality of the form

XXk =mefry] (8 1181 (BN TNEN),

where g € *Uc(Py) and each 7; has the form icg(ﬁj)_lic;f('ﬁj), for some conical
subsets C}, C/ and u; € Uc]q(ﬂ’y) N Uc}/(?y). Since the Uc(Py) generate Hy[Py],
there must be some y such that forall j = 1,...,N, g; = gj1-*- gju> where each gjx
lives in Uc,, for some Cj; € C. Note that by definition of Py, there is some f8 such

that all [gjx(y, t)[s, and [i#;(y, t)\gC; are O(tP).
Given, xi,...,xg € Ug, x --- x Ug,, let £ = Y% |x;|s.. and choose y € Y and
t = O(£) such thatx;(y, t) = x;, fori=1,...,K. For j = l,...,Nandk = L...,ulet
i =8(nt) gk =gik(y 1), uj =1uj(y,t),and rj = icr (u;) icr (u;). It follows that
xi-- Xk =h, (@ingr') -+ (gnrngy')s and the g; and r; satisfy the desired conditions.
|

Corollary 5.4  Suppose that our standing assumptions are satisfied. Given a sequence
of conical subsets Cy, . .., Ck, we have in G that X1 - - - X ~ €. for any sequence x; € U,
with X1X2 XK =U 1U-

Proof By Lemma 5.3, we have (for 8, N, u independent of the x;),

X1 Xk =n, (ingr ) (ENTNEN )
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where g; =p, gj1--- gju for gjx € Uc,,, each r; is of the form i¢, (u;)ic»(u;) for
some conical subsets C’, C/, and some u; € Uc;nUcy,and |gjk|gcjk , ‘”j|3c; = 0(¢F),
where £ =1+ Y5 |xi].

. — R — —I\—1—11

Foreach j=1,...,N,let g; € 8" be gji--gj,. Let 7; € 8" be equal to (u;)'u;,
where H; € 84U8¢r is a minimal length word representing u; in G+ and E;’ € S4UScr

] J J
is a minimal length word representing u; in G¢r. This implies that 7; represents r;
J
in H.

First we show that 7; ~ &. Note that C; n C}/ is itself a conic subset, so there is
some uj € (§4U SCEQCEI)* that represents u; in Geyney with £(u;) = O(€(7;)). Thus,
by Proposition 4.5, we have 7; = (})™'u} ~ u; 'uj ~ «.

Next, observe that

I H K
€(g) = X 6(@w) = 2 Olloglginlsc, ) - O(Blog(1+ X bl ) = O(ezi-++5x):

by Proposition 4.10, and £(7;) = O(€(x;---xx)) similarly.
Because

J— 1 1
X1 " XK =H (glrlgl )"'(gNT’NgN ),
e((gmg ) (gnragn 1)) = 0(€(x1 - xx)),

we have by Lemma 3.6 and Lemma 4.9 that

X1 Xk ~ (Qing 1)"'(gNVNgN l) ~ (55_1)'”(587_1) ~ €

because 7; ~ ¢ as noted above. |

We need one more proposition before we can fill w-triangles. Given a, x € G, let

9x denote axal.

Proposition 5.5  Fix a sequence of conical subsets Cy,...,Cx € C. We have that
w(a)x; - xg ~ %x; -+ *xyw(a) foralla € Aand x; € Ug,.

Proof By Proposition 4.5,

w(a)x - Xx ~ (e(a)xw(a) ) (0(a)w(a)™) - (v(a)xxw(a) )w(a)

~bx . fxgw(a), W

We now conclude the proof of our main theorem by showing that we can fill w-
triangles.

Lemma 5.6  Under our standing assumptions, if g1, g2, g3 € G with g18,¢3 =¢ 1g, we
have w(g1)w(g2)w(gs) ~ ¢

Proof Recall that w(g) has the form w(a)x;---xx, where u; € 84 U 8¢, for some
fixed sequence Cy, ..., Cy of conical subsets. Let g1, 2, g3 € G with g1¢2¢3 = 1, and

leta; = ¢pa(gi), fori =1,2,3. Let w(¢pu(g)) = X1+ X6 w(pu(g2)) = x{ -+ x} and
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w(pu(gs)) =xl"- xT’c’ Expanding and applying Proposition 5.5 repeatedly, we slide
the a-words to the right to see that

w(g)w(g)w(gs) = w(an)x - Xxw(az)x] - xw(as)x] - x|/

~ rxl...alxkﬂzalxll ...azalx;c‘hazalx”l ...u3a2a1xl’<’w(al)w(a2)w(a3)

~y Bl e By @281yl L azalxl’(ﬂsﬂzﬂlx//l e a3aza1xl’c’.
This resulting word admits a Lipschitz filling by Corollary 5.4. ]
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