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LOCAL SPACES WITH THREE CELLS AS H-SPACES
NANCY L. HAGELGANS

1. Introduction. The question of which finite CW-complexes are H-spaces
has been studied for many years. Since a finite CW-complex is an H-space if
and only if its localization at each prime p is an H-space [21], an examination
of finite local cell complexes as H-spaces yields results concerning CW-com-
plexes. On the other hand, if it is known that a particular CW-complex is not
an H-space, one would like to know for which primes p its localization at p fails
to be an H-space. The main result of this paper gives a condition equivalent
to a three cell local CW-complex’s being an H-space for a prime p > 3.

An H-space of rank one has the homotopy type of an odd-dimensional sphere
S’”. An odd-dimensional sphere S” is an H-space if and only if » = 1, 3 or 7. Its
localization S7, at a prime p fails to be an H-space only for the prime p = 2 [1].

The 2-torsion free rank two H-spaces have been classified up to homotopy.
The only types (g, n) which occur are those such that {q, n} C {1, 3,7} or
(g, ») = (1, 2) or (3, 5). There are exactly sixteen homotopy types of torsion-
free 1-connected H-spaces. Again the results depend on the prime 2 behaving
differently from the other primes (2], 9], [5], [14].

A 1-connected torsion-free CW-complex X which is an H-space of rank
two and type (g, #) has the same homotopy type as the total space of an
S?-fibration over the sphere S"[16]. Such a total space is homotopically equiva-
lent to a CW-complex S?\U ¢" \U ¢"+? [4]. Localization at a prime p yields
another fibration S¢, — X, — 5", [19]. These are the fibrations which will be
studied here. Always we assume that ¢, #n and p are odd and thatn > ¢ > 2.

The main purpose of this paper is to carry through the results of I. M. James
and J. H. C. Whitehead [12] for local spherical fibrations over spheres without
assuming the existence of a cross-section. James and Whitehead considered
fiber bundles S? — B — §" and showed that B is a cell-complex of the form
S U, €t \J e"t4. For bundles S — B; — S" with cross-section (i.e. with a = 0),
there are elements A(B;) in my4,-1(S%) such that A(B;) = £\ (B.) if and only
if (By,5%) and (B, S?) have the same homotopy type. Also, for a bundle with
cross-section, AN(B) = 0 if and only if B and S? X S” have the same homotopy
type. Furthermore, B is an H-space if and only if N(B) = 0 and the spheres
S? and S" are H-spaces.

In Section 2, it will be shown that the total space of a local spherizal fibra-
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tion S¢% — E —S", is homotopically equivalent to a local cell complex
S Uaq €' \J e+,

Section 3 is devoted to fibrations with fixed « and to the construction of an
element N\o(E) in m,4,-1(5% U, €%) for each of these fibrations. If a cross-
section exists, then theinjection¢: .59, — S, U.¢", induces a monomorphism in
homotopy, and the element 14\, (E) in m,4,-1(S%) is uniquely defined; this
element corresponds to James and Whitehead's N(B). Certain subsets of
Im e in mp-1(8% U €,) will be defined in such a way that \.(E:) and
Ne(Es) are in the same subset if and only if (E,, S%) and (E,, S%) are homo-
topically equivalent. IEach subset for fixed « corresponds to James and White-
head’s set {=\(B)} for fixed « = 0.

In Section 4, again « in 7,-1(S%) is a fixed element. The main result is:

THEOREM 4.4. Suppose that g and n are odd integers and that p is an odd prime.
Let 8% — E — 5", be a fibration such that E has first attaching map o. If p > 3,
then No(E) = 0 if and only if E is an H-space. For p = 3, 1f E is an H-space,
then No(E) = 0.

I would like to thank James Stasheff for his help and encouragement in
writing this paper.

2. The total space as a local CW-complex. In this section it will be shown
that the total space of a fibration S% — E — S*, is homotopically equivalent
to a local CW-complex. First, some notation and definitions are needed.

The local sphere S, can be considered as the suspension of S™~1, for r > 2
because the localization of the suspension of a simply-connected space X has
the homotopy type of the suspension of X localized, i.e., (3-X), >~ > (X,)
[19]. Let

S"p = {ny t:“ X 6 S"—-!pv —1 é ¢ é ly [xl, 1] = [.9(:2Y 1] and [xly __1]
=[x, —1] for all xy, xs € S},

and let the base point «, of S7, be [x, 1], where x € S™!,. The local r-cell e’
is defined to be the cone on S™1, with vertex b, = [x, 0], where x € S™!,. As
defined by Sullivan [19], a local CW-complex is a space constructed inductively
from a point or local sphere S™, by attaching local cells ¢”, by maps of local
spheres S’~1, into the cells of lower dimension.

Define a map u,: e, =S by u,([x,t]) = [x,2t — 1] forx € S™!, and
0 <t = 1. Then, on the boundary S, we have that u,([x, 1]) = «,.

The following is a special case of the local form of Proposition 1 in [17] with
a modification of the proof [11].

ProrosiTiON 2.1. Let F — E — 8", be a fibration, and suppose that the fiber
F1s a local CW-complex. Then the total space E has the homotopy type of a local
CW-complex K = F\J (", X F).
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Proof. Let x be the map u,: ¢", —» S, and let »: E — 5", be the fiber map.
Consider the induced fibration =,: E, — €",. Since the cone ¢", is contractible,
the induced fiber space E, is fiber homotopy equivalent to the product %, X F.
Let ¢: ¢", X F— E, and y: E, — ¢", X F be fiber homotopy inverses of each
other such that the map

#lb, X F: b, X F— 7,1 (by)

is homotopic to the identity mapping of the fiber F. Also, let {1 E, — E and
p: ¢, X F—¢", be the natural projections. Let F = 7~'(a,). Then, for
x € ™1, and y € F, we have that ¢¢(x,y) € F. Let v = {¢|S"!, X F, and
use the map » to construct the complex K = FU,(e", X F). The following
lemma completes the proof.

LeMMA 2.2. The spaces E and K are homotopically equivalent.

Proof. Let 6: K — E be the map induced by {¢. A map 8: E — K will be
defined such that 6 and 8 are homotopy inverses of each other.

Let h,: E, — E, be a homotopy such that k; = 1 and ky = ¢y. Using the
definition of ¢*, as the cone on S"~1,, define a map s: ¢", — ¢, by:

s(le, £]) = [x,21) 0=t <1/2, x €S,

Then the map s is homotopic to the identity on ¢*, under a homotopy G which
keeps each point of S"~1, fixed; assume that Gle", X 0 = 1 and G|e", X 1 = s.
Since e", is a metric space, the fibration m: E, — €, is regular [10]. This means
that any homotopy into e, that keeps certain points stable can be lifted to a
homotopy which keeps the same points stable. Then, since G(w, X 1)(x,t) =
G(my X 1)(x,t') for 0 = ¢, =1 and m(x) € S*~Y, there is a homotopy
H: E, X 1 — E such that mH = G(m, X 1), H|E, X 0 is the identity on E,,
and H(x,t) = H(x,t) for 0 = ¢, < 1 and x € E, such that m,(x) € S*1,.

Define a map v: E, — E, by v = H|E, X 1. Then, by the properties of the
map H listed above, we have that m» = sm,, the map v is homotopic to the
identity on E,, and v(x) = x for all x € E, such that m,(x) € S*~1,.

Let e be a point of £ — F. Then n(e) ¢ S", — a,, and there is exactly one
point x € ¢, such that x(x) = w(e). Then the set {~1(e) consists of the one
point (x, e) € E,. Let j: F— K be the inclusion, and let 3: ¢*, X F — K be
the map induced by ». Define a map 8: E — K extending the identity on F by:
if e € E — F such that m¢~1(e) = [y, 1],

B(e) = mpws='(e) fo<st=<1/2
= jtha,wi'(e) if 1/2 <t < 1.

Then B is a continuous map because the two definitions for ¢ = 1/2 agree, and
Chowi—1(e) lies in F for t = 1/2 and equals e for t = 1.
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The maps 88 and 68 are homotopic to the appropriate identities. This com-
pletes the proof of the lemma.

COROLLARY 2 3 Let 8% — E — S*, be a fibration. Then the total space E s

homotopically equivalent to a local CW-complex K with decomposition
S, U e", U et

Proof. The total space E is homotopically equivalent to a complex
K = 5% U,(e", X S%) by Proposition 2.1. Let h: ¢*, X S% — K be the map
determined by v; let 2 = h(1 X u,): ", X e% — K. (This notation, which will
be used throughout the rest of this paper, is that used by James and Whitehead
[12] in discussing the cellular decomposition of the total space of a bundle.)

Then we have that

k(S"1, X e%) C S%, k(Inte", X S1,) C €', X a, = €%, and
k(a,—1 X S%71,) = a point €.

This yields a decomposition of K as the local CW-complex e°\J ¢%, \J, ", \J
e"+4,, where

e® = k(tp1, 1), S% = " \Jeh, ey = k(" X ag-1),a = »[S"71, X qq,

and "+, = k(e", X e%),

which is attached by the map k|(¢", X e%,)".

3. Homotopy type of (£, S%). Let @ € 7,.1(5%) be a fixed homotopy class.
We will consider only those fibrations .S%, — E — .S”, such that £ has the homo-
topy type of a local CW-complex K with first attaching map a. Then K has
the form:

K =389 U, e, \J et

Let L denote the subcomplex of K defined by: L = 5% U, ¢*,. Certain subsets
of 14Tyt g-1(S%) C mppe—1(L) will be designated in such a way that each subset
corresponds to a homotopy class of pairs (£, S%,).

The map k of the preceding section determines particular generators 1,
of m,(L, S%) and ¢, of 7,(S%). Let 1, = [k|e*, X a,—1], and let 7, = [k|a,—1 X e%,].

In order to study the homotopy class of the boundary of the map %, maps f
and g of the boundary of ¢", X ¢%, into itself will be defined. Composing the
boundary of & with these two maps will lead to expressing the homotopy class
of the boundary of k as a sum of two elements. One of these elements deter-
mines the homotopy type of the pair (E, .S%), and the other element is similar
to a Whitehead product of 7, and 7,. We first define this product in general.

Suppose that 4 is an H-space and a subspace of a space X. Let 8 in 7,(4)
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and v in 7, (X, 4) be represented by the maps:
b: (e?, S-1) — (4, *), and
ci (e, 1, 1) — (X, 4, *), where
e = {[x, ] € e ¢t = 0},
el = {[x, ] € et =0}, and
o= {x, f] € 252 ¢ = 0}.

Let ¥ be the space (&% X S71) U (e"1. X ef) \J ("' X e?), which is
homotopically equivalent to e"t¢~!. Consider the map (b, ¢): ¥ — X defined
by:

(b, ¢)(u,v) = c(u) if (u,9) € " X S,
b () if (u,v) € "1y X el

c(u) -bw) if (u,v) € e X e,

Il

Il

where the product means multiplication in the H-space 4. The first two parts
of this definition give a representative of the relative Whitehead product
[8,9] in m,y_1(X, 4), and the last part is the usual map for showing that any
Whitehead product (and, in this case, 4(8,v] = [8, dv]) is trivial for an H-
space. Since any homotopies b, and ¢, yield a homotopy (b,, ¢;), we can
define the product:

Definition 3.1. [8, v]x is the homotopy class of (b, ¢) in 7, -1 (X).

Alternately, the representative of the product [8,v]x could be defined as
follows: use the H-structure of A to deform a representative of the relative
Whitehead product [B8,+v] to a map which is trivial on the boundary of
¢"; X e% The next proposition lists the properties of this product.

ProrosiTION 3.2. Suppose that A is an H-space and subspace of a space X.
Consider homotopy classes 8, 1 and By n w,(4) and v, v1 and vq in =, (X, 4).
Then:

1. 7. (8, v]x) = B, 7], where j: (X, %) — (X, A) 1s the incluston.

2. [51 + B2, ’Y]X = [B1,v]lx + [B2y vlx.

3. 8,71 + Yolx = (8, vilx + (8, Yolx.

4. Suppose that B is an H-space and subspace of @ space ¥ and that f: (X, A) —

(Y, B) is a map. Then fu (I8, v]x) = [fsB, fsv]¥-

Proof. The first three properties follow immediately from the definition of
the product. We now prove the last property.
Let the maps b and ¢ represent 8 and y. Then

f(b,¢)(u,v) = fc(u) if (u,v) € % X S,
= fb(v) if (u,v) € 1 X e,
= f(c(u) -b()) if (u,v) € 1 X v

https://doi.org/10.4153/CJM-1979-107-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1979-107-2

1298 NANCY L. HAGELGANS

The only difficulty lies in the third line; here we know that
fle@) - b@)) = fm(c(u),b@)) = fm(c X b)(u,v),

where m is the multiplication in 4. We want to show that fm (¢ X 0) is homo-
topic to m’ (fc X fb), where m’ is the multiplication in B. For [a¢] in7,(4 X 4),
projections p;: A X A — 4, and diagonal map A: S” — 5" X 57, we have that

[fma] = fulm(pra X pra)A] = fe([pra] + [p20]) = [ fpra] + [ fPaa]
= [m' (fpra X fpaa)A] = [m'(f X f)al.
Then, letting a = ¢ X b, we find that
[fm(c X b)] = [m'(f X f)(cXb)]=[m'(fcX[b)],
and thus fm(c X b) is homotopic to m’(fc X fb). Therefore,
f+B, ¥lx = [fiB, farlv,

and the proposition is proved.

Since e, is the cone on 5™, and 5", is the suspension of S"~!,, local spheres
and cells are related in ways analogous to those of the usual spheres and cells.
For example, the boundary (¢", X ¢%,)" of ", X e%, is

(§"=1, X e%) U (e, X Si=1,)

and e*, X e9%, is homeomorphic to ¢"*%,. The following notation will be used
(Figure 1):

ey = {[x,t] € XS5t =20} and - = {[x,f] € 2SL|t <0} C S,
e’y = {lx,t] € e Lt 20} and e’y = {[x, ] € e L[t £ 0} C e,
Define a map f: (¢", X ¢%)" — (¢", X €%,)" as follows (Figures 1 and 2): for
Lo, 1] € ¢ = 2", x € €7 ¥ € €Yy,
f(le, t],y) = (v, 20 + 1], y) if =1 =t = 0;
([x, 1], ¥) if0=t=1.

Il

The map f is homotopic to the identity on (e, X €%,)".

The points of ¢, can be parametrized in the unusual form (|x, 7], t), where
x €S, x,r] e, =CS,0=r=<1,and7r — 1=t =<1—r. In this
representation, boundary points of ¢, have the form ([x,7], &= (1 — r)). We
refer to lines where [x, 7] is fixed and ¢ varies as lines orthogonal to ¢*~1,. Define
amap g: (e" X e%) — (e" X e%) by (Figures 1 and 2):

g([xyr}»try) = ([xyr]yr_lry) lff—l étgoyyésq—lzi;
= ([x,7,2t =1 4+7r,9) f0=t =1 —r,yc S,
= ([x,7],4,9) ify € e%, ([x,7], 1) € 5",

The map g is homotopic to the identity on (e, X e%,)’, and g|S"~1, X €%, is the

https://doi.org/10.4153/CJM-1979-107-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1979-107-2

LOCAL SPACES 1299

er—l

ey X e
h , g(h)
l g(l2)
2
I3 ‘ g
g(ls)
enp X Y, y E Sq—lp enp X Y, yé Sq~)”

FiGURE 1. Subsets of e7,; the maps f and g.
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A

g(h)
[y
g(l2) o)
g(P) x
g2(l4) (s /
g(ls)
{
f
fog (I2)
/< fog (P)
= fog (I5)

fog

fog (ls)

FIGURE 2. The map fg on e”, X y, y € S9-1,,.

https://doi.org/10.4153/CJM-1979-107-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1979-107-2

LOCAL SPACES 1301

identity. If the points (x1, y) and (xs, y) of ", X S, lie on a line orthogonal
to e"~1, X y, then g(x1, y) = g(x2, ¥).

Define a map F: (¢*, X e%,)" — L to be the composition kfg. Then F is homo-
topic to k since g and f are homotopic to the identities. Let o be the homotopy
class of k in the group m,4,(XK, L). This group is isomorphic to Z,, the integers
localized at p, and o is a generator. The map F represents 910 in w4 ,—1(L, S%),
where 81 7,4, (K, L) = Ty o-1(L, S%) is the boundary homomorphism. Let G
be the restriction of F to (e" X S%71,) U (e""'y X e%). Then the map G
represents the relative Whitehead product [z, 4,] in m44-1(L, S%).

Let H be the restriction of F to (e" X S¢1,) U (¢*7'_ X ¢%). Then the
image of H lies in S%,. The restriction of F to the boundary of ¢"~!, X €%, is a
map which represents the Whitehead product [e, 7,] in m,4,-2(S%). Since S%,
is an H-space, the Whitehead product [e, 7,] is trivial. Use the H-structure to
deform the map F to a new map which is trivial on (¢"~!, X ¢%)". Now call this
new map F, and use the names H and G for the same restrictions of the new F.
Then H maps (¢"~', X €%)" to the point €, and [H] € w4 ,-1(S%).

Let 9: mpy (K, L) = mp44-1(L) be the boundary homomorphism, and let
1: 8% — L be the inclusion.

Definition 3.3. No(£) = 1[H] in mpp—1(L).

The next proposition follows immediately from the definitions of the maps
G and H as restrictions of the map F (Figure 3).

PRroOPOSITION 3.4. 90 = N (E) + [ig, tn)r and 910 = [ig, 1,

Definition 3.5. Vo (E) = {Y € w1 (L)Y = c\a(E) for some unit ¢ of
Z(p)}-

THEOREM 3.6. Let ¢ and n be odd integers, and let p be an odd prime. Assume
that S, — E; — S", is a fibration for 1+ = 1 and 2 and that the first attaching
maps in the local cellular decompositions of the total spaces are the same. Call the
common map a. Then (Ei, S%) and (Eq, S%) have the same homotopy type if and
only 1f \I’a (El) = ‘I’a (Eg).

Proof. Suppose first that ¥,(E;) = ¥,(Es). Then, since N (E1) € ¥Yo(E,),
there exists a unit ¢ of Z,y such that \,(E1) = c\(E2), i.e., ix[H] = cis[H).

Let 8 = ¢j: S — S, where j is the identity mapping. We will apply the
local form of the right distributive law: (u + 7)y = puy + 7y for v € 7,(S7)
and y, 7 € 7,(X) such that the Whitehead product [k, ] = 0 [7, Lemma 6.5,
p. 166]. Since all Whitehead products in the H-space S, are trivial, we have
that By = (¢j)y = ¢(Jy) = ¢y for v € 7,(S%). It follows that fa ~ ca. Also,
we have that 8 induces isomorphisms in the homotopy groups, and thus 8 is a
homotopy equivalence. Then the map B can be extended to a homotopy
equivalence v: L — L such that vy (4,1) = cipe.
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F1Gure 3. The Map F. Points on the same dotted line have the same image under F. Points
in the shaded area of e®, X v, y € S¢-1,, are mapped to ¢ by the map F.

Now, letting v = [H,], we find that B84[H:] = ¢[H:]. Then by Propositions
3.2 and 3.4 we have that:

ve0o1 = vyiyHi| + V*Liqh Tu1)L
= 1B 1] + [B*llql» valnilL
= i*C[Iil] -+ [Cti) Cin‘z]L
= ig[H,] + 12, 121
= ¢%9d0s,.
This means that the second attaching map k,|S"*¢~1, of the total space E, is
homotopic to ¢2(ky[S**+=1,). Then the map » can be extended to a homotopy

equivalence 6:F; — E.. Since 6|S% = B, this yields a homotopy equivalence

(Elv qu) - (E2y Sqll)‘

Before considering the converse, we will localize some of James’s results
(13]. If f: X, — Y, is a map, we will use f': X — Y to denote a map such that
(f")p = f. James shows that the homomorphism

(in/)*:'"'n+q—l<env S — 7Tn+q—1<Sa e, SY)

is a monomorphism and that 7, ,1(S?\U ¢*, S?) = Z @ Im (2,')4, where the
Whitehead product [,’, 1,/] is a generator of the infinite cyclic group Z. Then
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we have that
T g=1(8% U €', 8%) = Zpy @ (Im (2,)x),,

where (7., 1,'], = |4, %, is a generator of Z,. James proves that
o0 = mli,/, 1,/] + 4.0,

where
i) _ iy = mo’ and o € muppr(e’, ).

Then 910 = m[i,, 1,] + 2.0. But we know that 90 = [2,, 7,] by Proposition
3.4. Thenm = 1and 7,0 = 0. Thus ¢, _ 1, = o, where 7, and 1, correspond to
the homotopy classes of the same name.

Now we assume that (E,, S%) and (Es, S%) have the same homotopy type
and let 6: (E;, S%) — (Es, S%) be a homotopy equivalence. Then, since the
cohomology groups H"(L S%; Zyy) and H*(S%; Z,)) are both isomorphic to
Zw,

0* (142) = b1, and 6* (1,2) = cip
for some units b and ¢ of Z,. Then
0* (g2  tn2) = bc(ig _ 1n1) in H"F9(Ey).

Fors = land 2,let o, = (B*)7(4ys _ tns), Where &*: H"*(E,, L) — H"™ (E,)
is the isomorphism induced by the inclusion k. Then 6*(ss) = bco; in
H"*+%(E,, L). Since ¢, in cohomology corresponds to the original ¢, in homo-
topy, we have that 04(d1) = bcos. Also, 04(7,1) = i and 04 (2,1) = iy in
homotopy. Thus,

04 (1x[ H1]) = 9*(301 - Uqu 11]z) = bcdoy — bc[i,,g, Tu2) -
Then 0414 H1) = beig[Ho).
Next we will show that 64 H,] = ¢[H:]. Since 04(1,1) = bi,2 and each 1, is
the homotopy class of the identity on S%,, we have that 0|S%, = bi,;. Then
0 H1] = (big) H\] = b[H1] [7], and
biy[H1] = 140[H,] = 1404 H1] = Oin[H1] = bcig[Ho).

Since b is a unit, this gives that 14| H1] = cig[Hs], i.e., ANa(E1) = cAa(Es).

We have shown that A\, (E;) € ¥,(E,). Therefore, we have that ¥,(E,) =
Vo (E2).

This completes the proof of the theorem.

4. The total space E as an H-space. Suppose that « is a fixed element of
mo—1(S%) and that S% — E — S%, is a fibration such that the total space E
has local cellular decomposition S%, U. ", \J €¢"%,. The aim of this section is
to show that, for p greater than 3, E is an H-space if and only if N\,(E) = 0. In
the case o = 0, Curtis [4] shows that E is an H-space if and only if E has the
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same homotopy type as S% X S%,. For a# 0, there is a space E, which plays
the role of S% X S",. The space E, is defined to be the local CWW-complex
S U (€% X S%), where &’ (x, ¥) = a(x) -y, the product - is multiplication in
the H-space S%, and x € S",, y € S%. Stasheff [18] proves that E, is an
H-space if n < (1/2)(p — 2)(¢ + 1).

ProrosITION 4.1. If a 1s nontrivial, then No(Es) = 0. Also No(S% X S",) =0

Proof. 1t suffices to show that the map H (of Section 3) is homotopic to the
trivial map for these spaces.

The space S% X S*, can be represented as S% U, (¢", X S%), where, for
(x, ) € S"1, X 8%, v(x,y) = ». Then, since « = 0, we have that y(x, y) =
a(x) - y. Thus, the map v corresponds to o’ in the definition of E,, and it will
be called o'.

Both spaces S, X S", and E, can be decomposed as local CW-complexes
S, \J e", U e+, The first attaching map of E, is a since, on S*~1, X 5%,

a'(x,a,) = alx) - a, = a(x).
The second attaching map is 8, where
Blx,y) = alx) -u,(y) if (x,y) € S, X e%;
= if (x,y) € €% X S,

The map H,.as defined in Section 3, is the composition Bfg restricted to
(e"y X S71,) U (¢"='= X e%). Then, for ([x,t],y) € "71_ X €%, x € (e*74),
—1 =t £ 1, we have that

H([x, 1], y) = Bfe)(lx, 2], ) = a(lx, 2t + 1]) - u,(y).

For (z,9) € €' X S*!, such that g(z,y) = (|x, ], v), we have that H(z, y) =
[x, 2t + 1].

The map H can be extended to a map J: ", X e%, — S?, by defining
J(zy) = alle, 20 + 11) - u,(y),

where 2 € €%, y € ¢% and g¢(z,y) = ([x, ], ). Since H can be extended to
e"s X e%, H is homotopic to the trivial map, and thus A\.(£) = 2[H] = 0.

ProrosiTioN 4.2, Suppose that p is an odd prime and that g and n are odd.
Let S — E — 5", be a fibration such that the total space E has first attaching
map a. If Eis an H-space, then the spaces E and E, have the same homotopy type.

Proof. Let m:E X E— E be the multiplication. We can assume that m
restricted to S% X S%, provides an H-structure for the fiber S%, [3], [6]. Let

p o= m|S, X S0, St X St — St

In E X E define an equivalence relation ~ by: (u, v) ~ (', ") if and only
if m(u,v) =m@,v') and u, «' € 5", and v, v € S%,. Define the map g:
E,— E X E/~ to be the one induced by the product of inclusions ¢*, X S%, —
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E X E. This map is well-defined because m|S%, X S% = u. Now define the map
m': E X E/~ — E to be the one induced by m: E X E — E, and let f:
E, — E be the composition of m’ and g.

We want to show that the map f is a homotopy equivalence. Let 7,
1, € H*(E) and 1./, 1,/ € H*(E.) be the generators corresponding to those in
homotopy constructed from the map & (in Section 3) for the spaces E and E,.
Then, since f |a,_1 X S% is the identity onto S% and f |e*, X a,_ is the identity
onto €%, it follows that f *(z,) = ¢,/ and f *(7,) = 1,”. Thus, we have that

frO_tn) = f¥y _f*, =1 _ 4.
Since these cup products are the generators in dimension n + ¢, f *: H*(E) —

H*(E,) is an isomorphism. Then f is a homotopy equivalence. This completes
the proof of the theorem.

COROLLARY 4.3. If p > 3, then E, ts an H-space.

Proof. There exists a fibration S — X — S such that the total space X
localized at p > 3 is an H-space homotopic to a local CW-complex S%, U, ¢, \J
e"t%, [6]. Then, by the preceding proposition, the spaces X, and E, have the
same homotopy type, and, thus, E, is an H-space.

THEOREM 4.4. Suppose that ¢ and n are odd integers and that p is an odd prime.
Let S — E — S%, be a fibration such that E has first attaching map «. If p > 3,
then No(E) = 0 if and only if E is an H-space. For p = 3, if E is an H-space,
then No(E) = 0.

Proof. Suppose that p = 3 and that E is an H-space. Then the spaces E and
E, have the same homotopy type (Proposition 4.2), and thus N\ (E) = A\ (E,)
= 0 (Theorem 3.6 and Proposition 4.1).

Now let p > 3 and suppose that A\,(E) = 0. Then E and E, have the same
homotopy type (Theorem 3.6 and Proposition 4.1). Since E, is an H-space
(Corollary 4.3), the space E also is an H-space.

This concludes the discussion of H-spaces with three local cells.
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