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1. Introduction

By using certain fractional integrals and derivatives it is possible to con-
struct a continuum of Hilbert spaces within the space L2(0, oo); these are
the spaces &x of functions f{x) for which1 a^f(X)(x) eL2(0, oo), and they
exhibit in variance properties under generalized Fourier transformations.
They are described in (6) and (7).

It is possible also to extend the continuum beyond L2(0, oo). This can
appropriately be done by completing the spaces ^_A of functions f(x) for
which x~xf{-X){x) e L2(0, oo), /(~A) for A > 0 now denoting a A-order integral
of /. These complete spaces <^_A form the subject of the present paper. The
elements of the spaces are not always functions, but rather "generalized
functions", akin to distributions; however, since the resulting theory is more
specialized than that of Schwartz (8) and Temple (9, 10) and is closer to
Love's (4), we shall follow Love in calling the elements "sequence-functions".
Particular sequence-functions can be identified with ordinary functions:
there results a continuum of Hilbert spaces of sequence-functions

each space forming in its successors a dense subset. And the invariance
property holds throughout the continuum: Watson's generalized Fourier
transformations in L2 can be extended to the larger spaces so that each space
is invariant with respect to these transformations, which include in particular
the Fourier sine and cosine transformations. In fact, Watson kernels them-
selves appear as sequence-functions in Jf_v

In this paper the spaces 34? are described, together with their principal
properties (§§ 2—9) and their applicability to Watson transforms (§ 11);
the latter are used in constructing a "delta function" for the spaces out of the
"discontinuous-integral property" of Watson kernels (§ 10). Finally
(§ 12), sequence-functions are compared with distributions.

1 Here fW(x) is not always the derivative of f(x); see § 2, below.
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282 John Boris Miller [2]

We postpone discussion of continuity, differentiation, integration and
multiplication of sequence-functions; and also of certain interesting series
developments of sequence-functions in terms of Watson kernels, analogous
to Fourier and Schlomilch series.

I arn indebted to Prof. E. R. Love for his close interest and the benefit of
several discussions, and to a referee for suggesting some improvements in
the present paper.

2. Definitions

For given complex-valued functions f{x), fx{x) defined in 0 < x < oo we
write

1/(0\2dt, (/, h)0 = j"f(t)K(j)dt,

and say that / e L2 when ||/||0 < oo.
We extend the notation of (6) to define for given f(x) (for x > 0 and X > 0)

the functions /<±A>, /[±A] by 2

fix) = r(A)-i f°° (t - z)*>-y*>(t)dt,
(2.1) Jx

f{x) = riX)-1^^ (x - t)x-

(2.2)
tu 1^ \°°(t - x)x-xt-xf{t)dt.

JX

The integrals are presumed to be Lebesgue (absolutely convergent), at least
for almost all x. We are principally concerned with /(A) and /(~A), which we
call the border derivative and integral of /, respectively; /[±A] are "deriva-
tive" and "integral" in a less direct sense. The functions within the integrals
are determined uniquely: cf. (3), § 5.

From these functions and the above norm we define four function spaces,
as follows.

I. f{x) belongs to the space ^A {X > 0) whenever there exists some func-
tion /<A>(*) for which *A/(A)(0 e Z2; and ^0 = L2.

II. f{x) belongs to ^_A (X > 0) whenever /(-A)(x) exists almost every-
where (as a Lebesgue integral) and x~xf{~X)(x) e l 2 ; ^_0 = ^0 = Z,2.

III. f(x) belongs to ^^ (X > 0) whenever there exists some function
for which txfW(t)eL2; and 0[o] = L2.

8 Integrals of this type are discussed in Kober (3). We shall use /"(A)"1 as an abbreviation
for
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IV. f{x) belongs to ^[_A] (̂  > 0) whenever x~xf-~x^(x) exists almost
everywhere (as a Lebesgue integral) and x~kf-^ (x) e Z,2; ^[_0] = ^[o] = L2.

It is part of these definitions that the appropriate form from (2.1) or (2.2)
holds, in each case. For example, if a function g has the property

dl

tl—g(t) e L2, for some fixed positive integer /,
CLZ

and we define / by

fix) =

then

- / ( * ) =

so that f(x) and (— l)lg(x) differ by a polynomial of degree not greater than
I — I. Here /, but not necessarily g, belongs to ^,: g "belongs to <Sl to within
a polynomial of degree / — 1". Notice also that /(l) (x) is the actual Ith deriva-
tive multiplied by (—I)1.

Except where the contrary is stated, we shall henceforth assume A to be
real and positive.

3. Preliminary properties of the spaces

Absolute summability is specified in II, IV above in order to justify ap-
plications of Fubini's theory and Minkowski's inequalities which we make
later. Thus definition II implies that a function of ^_A necessarily belongs
to L (0, X) for all finite X > 0. In consequence, we have

LEMMA 1. If f e ^_A, then f{~a)(x) for a > 0 exists as a Lebesgue integral
almost everywhere.

Since /(*) e L(0, X) for X > 0, \f{t)\{y — t)* is summable in (0, y), and

by Tonelli's theorem (5, p. 145); the inside integral exists for almost all x,
and so therefore does f{~a){x).

For these Riemann-Liouville integrals there is the iteration formula, valid
if A < n and if the Lebesgue integral (2.2) for /(~'*) exists,

(3.1) P~»{x) = r{}x - A)"1 JQ
X (x - t)^-xfi-
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If / e @_x the integral converges absolutely, everywhere if fi — A > £, or
almost everywhere i f O < / a — A £S £ (cf. (6), § 1). For derivatives there is
the corresponding formula

(3.2)

however, the formula connecting an integral /(~a) and a derivative /(/?),
a, /S > 0, is far more complex. Iteration formulae for the functions /̂ ±A^ take
such forms as

x-

We are interested principally in the spaces S?A, ^_A. It will become appar-
ent that the properties of @[jq, @\-x\ respectively are similar. In fact (Kober
(3), p. 207),

and we shall show that the closures of ^_A and 3?[_A] may be identified.
Within each space we can define a scalar product and norm: for &x,

 <S_X

we write

(/, gh =

with analogous definitions for the other spaces. With these, ^A becomes a
complete and separable Hilbert space; ^_A on the other hand is incomplete
(cf. § 10, below). This essential distinction between the two reflects the dif-
ferent placings of the L% restriction in definitions I and II: for the former
space it is upon the integrand, whereas for the latter it is upon the integral.
Similar remarks apply to

4. Mellin transforms

The L2 theory of Mellin transforms is applicable.3 Let f{x), xxf(X)[x),
xxfM(x) have Mellin transforms %(s), $A(s), $[A](5) respectively, where
* = i + it'- e.g.

= l.i.m. f{x)x'-1dx, f(x) = —:l.i.m. %{s)x-*ds.
x-̂ -oo Ji/x 2m r-̂ oo Ji-iT

It can be shown that

8 For the theory and notation see Titchmarsh (11), pp. 7, 94—5. We assume here that
(s) = J. By "Mellin transforms of L*" we imply f(x) eL*{0, oo), g(^ + it) €Ls(— oo, oo), etc.
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if fe &x (or ^ [ A ] ) ; a proof for A > 0 follows the method of (3), Theorem 5 (a),
while for X > \ the Mellin Parseval relation suffices.

If / is a real function of @x, the latter relation and (4.1) give

if00 i r
= — |$A(| + it)\Ht = —

that is,

(4.2) []

Statement (3.4) is justified in this manner.
If instead / e ^_A, then ar-A/(-A) (a;) necessarily has a Mellin transform

$_A(s) of L2, but f(x) may have none. If $(s) does exist in some sense, then
we should expect

These formulae are valid in particular if f e L2 (proof as for (4.1)): then
clearly #-A/<-A> (#) e ̂ \x\, x~xf--^{x) e ̂ A; moreover, as above we have

(4-4)

5. Ordering among the spaces

We order the spaces ^ by means of inequalities among their norms. It is
true by definition that

W l l o — ll/llA> \\x f \x)\\f) — II/II-A>

more generally we have

LEMMA 2. Let 0 ^ X < JU and f =£ 0. T^e inequalities

^ whenever the righthand sides exist. The same inequalities hold for the
norms of &[a], ^{_ay

For a proof using an integral-integral form of Minkowski's inequality cf.
(6), Theorem 3; see also (2), Theorems 202, 329.

THEOREM 1. The functions spaces & form a system satisfying

(5.2) ar, c srA c L« c flr_^ c sr_,,
for 0 < X < ii.
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To show for example that ^_A Q &_/t) suppose / e ^_A; then ||/||_A < oo,
and so by (5.1), ||/||_^ < oo, whence / e &_/t. As evidence that the spaces are
properly contained, it is sufficient to observe the examples

c(x) = x-i'
[ ' ' d{x) = x*vJ

It may be verified that

c e ^ A for 0 < X < v — \, but not otherwise,
d e ^_A for 0 < v + ^ < X, but not otherwise.

We add here one further useful result.

LEMMA 3 (Fractional integration by parts). The formula

(5.4) j~f(x)g(x)dx = J~

is valid if f e L2, g e &x, X > 0. A similar formula holds with " [±A]" in place
of "(±X)".

The conditions are those given by Kober (3, (3.61)). To prove (5.4) we
notice that the lefthand side equals

^

which is the righthand side. This uses Fubini's theorem; the repeated inte-
grals are seen to be absolutely convergent thus:

(xu)\du)2f

^ ll/llo •/"(« - l)x~xdu[^\xxg^{xu)\Ux^ < oo.

An immediate consequence of the lemma and of Schwarz' inequality is

6. Completion of ^_A to

Let us call a sequence (/„) of functions of ^_A (X fixed) a Cauchy sequence if

ll/n — frn\\-X "^ ° a S

Following Love, we complete ^_A by means of Cauchy sequences; that is,
we construct a strong completion. The process is an example of the completion
of a metric space: for the general theory see (1), pp. 81—7. First the set of
sequences is made a vector space with scalar product, by defining the sum
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and

and

scalar multiple by

(/») +
the scalar product

{(fn), feJ)-A:

(gn)-

and

= lira

= (fn~

norm

\J 71* O 7.
n—>oo

Vgn),

by

J-A,

a(/B)

IK/JII-A

= («/n)

= lim
n—*-oo

these definitions being meaningful. Next, since more than one sequence may
converge to the same limit (when this exists), we use the equivalence relation

Vn)~(gn) when | | ( / J - ( g J | U = 0

to separate the sequences into mutually exclusive equivalence classes. A class
F is determined uniquely by any member sequence (fn); two equivalent se-
quences determine the same class. We call these classes sequence-functions,
and denote them generally by small capitals. We write Stf _A for the space of
sequence-functions.

The sum, scalar multiple, scalar product and norm are then defined in
JP_A in the obvious manner: if (/„) e F, (gn) e G, we take for F -f- G and a-F
the classes determined by the sequences (/„) + (gn) and oc(/n) respectively;
and write

(F, G)_A = ((/J, (gn))_x = lim (/„, gH)_k,

These definitions are unique, and independent of the particular class mem-
bers used. The existence of the last limit, for example, follows from

(6-1) |ll/JI-A-H/JU|^ll/n-/JU

and its uniqueness is proved similarly. In addition, we define F(<XX) for a
positive number a by the sequence (/w(a#)), which is Cauchy, as the identity
IteMIU = «-%(aOII-A shows.

Among the Cauchy sequences in ^_A are the principal sequences, f, f, f, • • •
formed by repetition of a single element of ^_A; these we distinguish by the
notation {/}. A sequence-function possessing a principal sequence is called
principal. It is easily seen that a sequence-function F is principal if and only if
all its sequences converge to an element of ^_A. Certainly if it possesses one
such sequence, converging to / € ̂ _A, it also possesses the principal sequence
{/}, and any other sequence (f'n) of F converges to the same limit, since by the
definition of equivalence,

n—>oo

We shall identify such a principal sequence-function with its limit, and
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thus write

It is then permissible to say, when (fn) e F, that \\fn — F||_A -> 0 (the norm
being that of 3^_A); for if also (fn) e F,

11/. - *IU = IK/J - O U
|/n — / J | - A - > 0 asw->oo.

TO—»-00

This limit in «5f _A will also be shown as

F = lim /„
(—A)

(in particular, lim(_0) is the limit in mean square, "l.i.m."). If ||/n||_A con-
verges to 0, ||/n — 0||_A -> 0, then (/J ~ {0}; o = {0} is a principal sequence-
function, and ||.F||_A = 0 if and only if F = o.

We know from the general theory that «5f _A is complete and contains ^_A

as a dense subset. The scalar product and norm (which fulfil the usual re-
quirements) make <^_A a Hilbert space. The space ^[_A] can likewise be com-
pleted to a Hilbert space $f \-x\, later we put «?f_A = «^[_A].

By writing f = fn — fm in Lemma 2, we see that a sequence which is
Cauchy in ^_A is also Cauchy in ^_fl, for fj, > X: hence we identify the se-
quence-functions defined by it in 3^_x a n d ^-p a n d write

(It may be verified that the elements of ^ - / t which are not in ^_A define
principal sequence-functions in 3%?_lli which do not belong to «^_A; thus
«5f _A is properly contained.) In particular, if F of J f _A has a defining sequence
converging in L2, we say F e L2. The order of a sequence-function F is the
greatest lowest bound of numbers o> for which \\gn — gm||_w-> 0 for some
sequence (gn) e F.

7. Isometries among the spaces

By the definition of Jf_A, for every sequence-function F = (fn) the se-
quence (a;~A/^~A)(a;)) converges in L2 and so defines a principal sequence-
function, which it is appropriate to write

(7.1) x~kF(-^(x) = lim arA

(0)

This defines for almost all positive x a (not necessarily sequence-) function
F<~A), which coincides with the A-integral of F when F c ^_A. (A sequence-
function F ( # ) , hke a distribution, does not necessarily possess numerical
values for all x. The class of those which are "numerical" in this sense clearly
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contains the principal sequence-functions; so that ar~A.F(-A)(x) is numerical.)
Equation (7.1) implies that Jf _A can be mapped onto L2 and ^A. We prove

THEOREM 2. The relations

X-*.F(-X)(X) = $(x) = XXgX(x)

among elements F e <*f _A, <f> e L 2 , g e ^ determine i s o m e t r i e s

among the spaces by

<f> = Z A F , g = yA<^, g

is, linear biunique correspondences for which

The isometric nature of YA is implied in the definition of ^A. We remarked
above that Xx maps uniquely; it remains to show that Xj1 is also unique,
i.e. that <j> determines F uniquely. For this purpose we assume the identity
of <§x and gr[A].

It is known4 that ^A is dense in L2; thus we can find a sequence (<f)n),
<f>n e @x f° r aU n> f° r which \\<f> — </>J|0 -> 0 as w -> 00. Now each »̂w can be
written, by (3.4),

4>H{x) = r(X)-ix-*j"o (x - t)*-H*<f>w (t)dt.

Put t^W (t) =fn(t), so that cf>n(x) =z-A/<-A)(x) and/„ eL2. Since | | ^ - ^ | | 0

ll/n -/mll-A = ll^n ~ <f>m\\o ^ ° aS W, W ^ 00,

and (/„) defines a sequence-function F , for which

that is, >̂(ic) ^ x~xFi-X)(x). Thus every ^ of L2 is the image under Xx of an
•P" of f̂_A. The equalities among the scalar products are obvious. Therefore
if Fj and F2 both determine <j>, \\FX — F%\|_A = 0 and Fx = F2: XA

X is unique.
Since Zx = YAXA, ZA and ZA

X are likewise isometric.
We notice that if / e L2, <f>(x) = x~xf(-X){x) belongs to ^ w ; i.e. Xx maps

the subset L2 onto ^[A-j when taken as an endomorphism in i f _A. But XA and
YA do not coincide in L2, for

XJ(x) = zr*f<-»(x), Yxf{x) = x-*fi-X{x).

Consider the analogous correspondences defined in $P\-\\ by

Z"AF[-A] (X) = <f>{x) = X*gW(x).

* Kober (3), Theorem 6(b).
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Examination of the integral forms of § 2 shows that these can be written
<j> = YXF, g = Xx<f), giving an extension of YA from L2 to Jf^_xy.

X, : L« s 9W, YA : ̂ _ A ] ~ L«.

By the previous argument we can show that Yj1 maps L2 onto «^[_A]

uniquely. Then Y~^XX determines a mapping of ^ _ A onto <*f [_A] which is
again an isometry, and maps subset L2 onto Z,2.

It is now easily seen that 3^_x is a separable Hilbert space, and that L2 is
dense in J f _A. The first is a consequence of the isometry XA

X and the separa-
bility of the Hilbert space L2. The second follows by noting that Xj1 maps <&x

onto L2, and that ^A is dense in L2.
A corollary is that &^ is dense in J f _A; for F in «5f _A can be approximated

in ^ _ A by a sequence (fn) from Z,2, and each fn can be approximated in L2

by a sequence (gntm) from ^ . Since convergence in L2 implies convergence
in Jf_A (cf. Lemma 2), a subsequence of (gn>m) can be chosen converging in
<5f _A to F. The property of denseness allows an arbitrary sequence-function
to be specified by a sequence of functions all of L2—"(fn), fneL2"—or even
of ^ / t . This is the principal means by which we extend operations from L2 to
^ _ A . For many purposes it is preferable to regard J4?_A as a completion of
L2 rather than of ^_A. We summarize these results in

THEOREM 3. For a fixed positive X, ^ _ A is a complete and separable Hilbert
space; and for 0 < X < n,

(7.2) S% C ^A C L2 C #>_A C ^ % ,

£<zcA s/>#C£ being dense in every succeeding space (with the norm of the latter).

Let us now identify ^ _ A and ^ [ _ A ] other than by the isometry Y^X^, as
follows. Let F e £?-\, and define F by a sequence (/„), /„ e L2. Then by (4.4),

ll/» - /«II[-A] = ll/n ~ /mll-A -> 0 as », m -> oo,

and (/J defines a sequence-function F in ^ [ _ A ] . Also | | /J | [_A] = ||/B||_A f° r

all n, and since by (6.1) the limit of each side exists, we find on taking the
limit that \\F\\^X^ = ||^||_A. H F € L

2 then

and F = F. We identify P and F for the whole spaces and write

(7.3)

The relation ||-P||_A = ||-F||[;_A] is now valid throughout.
In (7.1) the /l-order integral of a sequence-function was defined. It is

possible to define integrals of any other order, but discussion of these and of
derivatives is deferred to a later paper. We turn to the integral (F, g)0,
defined for F
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8. The scalar product between J f _A and <&x

The scalar product (/, g)0, which of course is distinct from the scalar pro-
ducts of the Hilbert spaces ^f _A and ^A, can be given an extended meaning
if one member belongs to the first space and the other to the second; in this
way the notion of weak convergence can be introduced. Let F be an arbitrary
sequence-function of 3F_X defined by (fn), fn€L2: the limit

n—»-oo

exists if g e &x> by virtue of Kober's formula (Lemma 3) and the properties
of mean convergence. We take this limit as a definition of the scalar product:

(8-1) (F> g)o = \" *{*)&*)** = l i m (L> g)o =

The definition coincides with the ordinary one if F e L2, and is consistent
when F € 2/e_K, 0 < /c < A.

9. Orthonormal sets in «2f_A

Any (complete) orthonormal set {<xn(x)} of L2 determines a (complete)
orthonormal set {&n{x)} in ^ _ A by

xn(x) = Xx<Pn(x) = x-*&tX)(x),
for which

A particular orthogonal set is found by writing

The theory is an inversion of that for ^A, given in (6), § 6. Using the same
notation 5 we find that

^ / > + 2A+ 1) = / > + 2 A + l ) $

and can prove

THEOREM 4. / / F e «^_A /or some h ' « | < l < 1, ̂ Âw ^ere «s an expansion

F{x) = lim |
i\T->oo (—A) «=0

the coefficients being given by

an = 2A \°°F{x)el{)

(In ^A the roles of K$ and Mj were reversed.)
5 In (6) the factor {/"(A)}"1 in the expression for f(x) in Theorem 15 should be deleted.
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10. A delta sequence-function

It has not yet been verified that @_x is incomplete and actually distinct
from 3^_x. We proceed to do this (at least for X ^ 1) by constructing a
Cauchy sequence in ^_A whose limit is a Dirac delta sequence-function.

Let k be a generalized Fourier kernel of Watson type, generating in L2 the
involutory transformation 6

(10.1) g(x)=l.i.m.j*k{zt)f{t)dt,
n-t-oo

and write

(10.2) dn(x, i) = ^k(xt)k(£t)dt,

supposing £ > 0. We prove

THEOREM 5. For X ̂  1 and for suitable kernel k, we have

00,, ^ ^ M ) -

and the sequence (dn) determines a sequence-function Ag in f̂_A with the
•property

(10.4) \°°Ai(x)cf>(x)dx = <f>(i) for all <j> e S?A.

Sufficient conditions on k for these formulae to hold are: (i) k{x) continuous in
0 5^ x < oo, (ii) k^~^{x) = o(x^) as x -> oo.

If (i), then k(x) is bounded for finite x, and we may assume:
(iii) k(x) eL2(0,X), k(x)x-*eL(0,X) for all positive X.

The superfix (~A) refers for dn to the first variable, so that

- t)^dt f"k{tu)k{£u)du.
v 0

The order of integration may be reversed, by Fubini's theorem and (iii). If
after inversion we make a change of variable ut = xv in the inside integral
and then rein vert (by (iii), again), we have

= A(x, n) — R(x, n).

Now if (ii) holds, the double-integral formula for ^-transforms shows that
r(X)-1A(x, n) converges in mean to the righthand side of (10.3). For, by a
change of variable,

6 Cf. (11), ch. VIII and (1), ch. V. For simplicity we suppose that k{x) eL2(0, X) for all
finite X > 0, so that the integral in (10.1) does not involve a mean limit at t = 0.
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A (x, n) = ^k{xv)dvj"°° {t - £)X~H-Xk

let r(A)-Vg(^) denote the righthand side of (10.3): for I > \, fg{t) belongs
to L2(0, oo) both as a function of £ and as a function of t. Its ^-transform is

v) = l.i.m.<"> \m{t
m—>oo

and

/
/ \ 1 * / 1 > \ i Z- / \ J 1 " f o \ • / J .§ / > • i _^_ i f m i » c / i b t / V ' T I I / I * i \ I l T V I 1 * 1 i #

r»->oo TO—>-oo •

— 1.1.ill. /I \&, 71)

n—»-oo

(since we imply in (ii) that the integral for g^(v) converges pointwise, and
hence the limit and limit in mean are equal almost everywhere). Thus (10.3)
will follow if

(10.6) l.i.m. R(x, n) = 0.
n—>-oo

To prove this we require

LEMMA 4. For r ^ 1 write

kr(x) = ^F-ik^dt, Kr(x) =

so that kx{x) =k<-»(x), K±(x) = x^k^^x). Then if Kx{x) = o(x^) as
x -> oo, also Kr(x) = o(x~r+^) uniformly with respect to r ^ 1. Also

(10.7) l|a^*r(*)llo

To prove (10.7) we use the identity

(10.8) kr(x) = x'-ik^x) - (r - 1) jxtr~2k^tjdt,

which gives

[\~\x-'kr(x)\*dxf ^ {^Ix-ik^f

^ ||a^1*1(*)||0 + (r - 1) j\r-2du[j°°

The result follows. The first part of the lemma is deducible from an equation
similar to (10.8); the order relation is uniform for r ^ 1.

https://doi.org/10.1017/S1446788700025969 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700025969


294 John Boris Miller

We return to the proof that

R(x, n) = \k{xv)dv | °° (u — v^^u-^k^^d

[14]

u

has mean limit zero. Supposing X non-integral, expand (u — v)A~1 as a
series in v/u and integrate term by term: the process may be justified in terms
of two successive integrations of uniformly convergent series of continuous
functions over finite ranges, if (i) and (ii) hold, by virtue of the lemma. The
details are left to the reader: we find

R(x, n) = f (-1)'(A ~ l\x-^kr+x{nx) • pK^nS),
r=0 \ r I

the series being finite ((i) unnecessary, (iii) retained) if A is a positive integer.
Then by Minkowski's inequality,

}
Now suppose K^y) = o(y *) as y -> oo, and k e &_v The lemma gives

" (V)
r=0 f;1) as n -> oo,

the series converging for X > 1 or reducing to one term if A = 1. Now k e &_x

by hypothesis on k (put f{t) = 1 (0 < t < 1), 0 (t > 1) in (10.1)).
Hence R (x, n) converges in mean to zero under the present conditions, and
(10.3) is established.

It remains to prove (10.4). Let <j>e^x and use (8.1); for all finite n,
dn(x, | ) is the ^-transform of a function of L%, by (iii), so that dn e Z,2, and
we have

Ai{x)<f>{x)dx =

(x - S)*-

This completes the proof of Theorem 5. The conditions (i) and (ii) are not
severe, and allow most Watson kernels.

Theorem 5 is interesting as an attenuated form of the "discontinuous
integral property" which characterizes Watson kernels; cf. (11), (8.2.2) and
§ 8.14.

11. Generalized Fourier transformations in 3^_x

In the present context a Watson kernel (without the restrictions of § 10)
is defined as a sequence-function K of 2^_lt with the property
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1 f4+iT ®(s)
(11.1) z-1Ki-n(x)=—U.m. —^-x-*ds,

2m r->oo J %-iT 1 — S

for some function ® for which

(11.2) ft(i + it)$tQ - it) = 1, |ft(i + **)| = 1.

A generalized Fourier transformation (or Watson transformation) T then
takes the form

(11.3) ar-ig<-«(aO = j"f{t)(xt)-iK<-» (xt)dt, g = T/,

for /, g € L2; see (11), ch. VIII. We show how the spaces ̂ f_A form the natur-
al means of extending these transformations beyond L2.

Among the Mellin transforms, the relations (11.2) and

(a necessary and sufficient consequence of (11.3)) imply the relations (cf.
(4.3))

- it) = 1,

where the function

determines in the manner of (11.1) a kernel .0A. Thus to T there corresponds
a transformation

(11.4) ^ V ^ ) ]

and for this^ t̂he Parseval relation has the form

(11.5)

To extend (11.3) to a transformation in ^_ A , let F be an arbitrary se-
quence-function of «^_A defined by (/„) /„ e L2; and let gn = Tfn be the
^-transform of /„. Then (gn) is also a Cauchy sequence, since by (11.5),

\\gn ~ gJI-A = ll/n - /«II-A ~> 0 as W, W -> 00,

and so (gn) defines a sequence-function G of Jf _A. This is determined uniquely
by F, for if (fn) also defines F and ĝ , = J1/̂ , (11.5) shows similarly that
(Sn) ~ {gn)- We take G to be the transform of F and extend T to ^ _ A by
writing G = T_^F. So constructed, !T_A is a self-adjoint unitary transforma-
tion in 3P_A which coincides with T in £2; and T_K C T_A for 0 ̂  /c < A.
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The transformation is closed and continuous. Asymmetric Watson trans-
formations are extended in the same manner (they are not unitary).

12. Regular convergence and bounded linear functionals

We conclude by comparing f̂_A with Schwartz' distribution spaces.
Although J f _A has been constructed by using strong convergence, it is in
fact equally definable by the kind of weak (regular) convergence used by
Temple in his simplified exposition of distributions, and so as the space of
continuous linear functionals on a space of test functions. We use the product
of § 8.

Following Temple, we call a sequence (fn) of Lz functions "regular in
^ _ A " if

(i) ((f>, fn — fm)0 -> 0 as n, m -> oo, for all <f> e ^A, so that the functional
F((f>) — lim (4>, / J o exists; and

(ii) F is continuous, in the sense that

-+0 if

That is, we take ^A for the space of test functions.
Now (ii) is a consequence of (i) (cf. Schwartz (8), pp. 69, 72). For (i) and

Lemma 3 imply

(12.1) (V(x), x~xf^ (x) - aH7iTA) (*))0 -> 0, for all y> e L\

i.e. {xrxf(~X) (x)) is a weakly converging sequence in L% and is therefore
bounded, by the Banach-Steinhaus theorem ((12), p. 155):

ll/JU=lk-A/rA)(^)!lo^C for all*.

Thus

(12.2) | F ( ^ ) | = l i m | ( ^ , / J 0 | 5g | |6, | | A . lim sup
n—voo n—y<x>

and (ii) follows; also F is a bounded linear functional on ^A. The proof holds
equally if the /„ are sequence-functions, since (5.5) clearly implies

(12.3) |(0, F)o\^ | 0 | |A . | |F| |_A f 0 e ^ A , F

This inequality, with F = Fn — Fm, shows that any Cauchy sequence in
_A is regular; conversely,

THEOREM 6. £?_A is regularly complete: a regular sequence (Fn) converges
regularly to a sequence-function of ^ _ A ; i.e. for some F, (<f>, Fn — F)o -> 0
for all cf> e @x.

PROOF. Since as before (x~xF(~X){x)) converges weakly in L2, which itself
is weakly complete ((12), p. 156), the sequence converges weakly to a
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function of L2 which, by Theorem 2, may be written as x~xF{-^(x), for some
_A. It follows that

(0, Fn)0 = ( a ^ > ( z ) , *-*4-A )(*))o -> W*>(x), ar*Ft-*>(z))0 = (<f>, F)0.

Let ^* denote the conjugate Hilbert space of ^A, with norm Hi*!]*,
whose members F are the bounded linear functionals on &x.

THEOREM 7. Any scalar product (<£, F)0, F € 2%'_A, defines a bounded linear
functional on ^A; «w^ conversely, any bounded linear functional on ^A can be
written in the form

for some unique F e <2f_A; <m^ ||i*]|* = II-^IUA-

The proof of the first part is similar to (12.2).
Let F be an arbitrary bounded linear functional of ^*. By the Fre'chet-

Riesz theorem ((12), p. 138) for the Hilbert space ^A, there exists a unique
/ e <&x such that

= (<f>> fix for all <f> e <$x,

and ||-F||* = ||/||A. By Theorem 2 there exists F, = ZA
X/, for which

i) =x-*Fi~x>(x). Then

and

which was to be proved. Thus ^ * is precisely the set of functionals (<f>, F)o,
F e «^_A. We can set up an isometry between ^ * and «^_A by writing F<-* F
whenever F(<f>) = (<f>, F)o. In this sense ^ _ A is isometric with the space of
bounded linear functionals on ^A.

Thus Cauchy sequences and regular sequences determine the same set of
functionals, namely all the bounded linear functionals on ^A.
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