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Abstract

Erdos, Harary and Tutte have defined the chromatic number of the plane to be the least number
of sets partitioning the plane such that no set contains two points at unit distance apart. By analogy,
the chromatic number ^(S,), of the sphere, S,, of radius r is defined to be the least number of sets
partitioning the surface of S, such that no set contains two points at unit chordal distance apart. In
this paper it is proven that

| 4g^(S,) for l /V3Sr
5 and that this bound is best possible since

4=x(S,/v2).

Define the chromatic number, ^(Sr), of the sphere, Sr, of radius r to be the
least number of sets partitioning the surface of Sr such that no set contains two
points at unit chordal distance apart. The general question of determining the
value of x(S') appears to be new to the literature, however, values for at least
two special cases have been conjectured by P. Erdos. For the plane, S~, Erdos,
Harary and Tutte (1965) introduced the terminology chromatic number of the
plane for x(S*)- 1° t r n s c a s e '* ' s weH known that 4^^ (S* )^7 ; Hadwiger,
Debrunner and Klee (1964), Moser and Moser (1961), Woodall (1973). One of
Erdos' long standing conjectures is that /y(S») = 4. More recently Erdos had
conjectured that it was possible to 3-color the unit sphere so that every inscribed
equilateral triangle of side V3 would have one vertex of each color, i.e. that

/3) = 3. Simmons (1974) disproved this by showing 4 S x(^</V3) while Straus
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established an upper bound of 5 by constructing a permissable 5-coloring. In this
paper we show that 4g^(S r ) for all 1/V3 S r using a generalization of the
argument used for x(Svvi)- It is interesting that the case r = 1/V3 chosen by
Erdos for one of his conjectures is one of the two degenerate cases (in a sense to
be explained shortly) which must be disposed of by special arguments.

The key element in the constructions which follow is an equilateral diamond
consisting of two unit side equilateral triangles sharing a common base edge.

For all 1/V3 S r it is obviously possible, by folding the diamond about the
common base edge, to inscribe it in S, so that all four vertices lie on the surface
of the sphere. Figure 1 illustrates this for S0.sn- The important property of the
inscribed equilateral diamond to this paper is that in any 3-coloring of Sr the two
tip vertices, a, must be colored alike. Hence if the diamond is rotated about the
diameter through one tip vertex, the circle swept out by the other tip vertex must
be colored like the fixed vertex.

In Figure 1, two parameters are labeled; / and x. The chordal distance, /,
between the tip vertices of the inscribed diamond is given in terms of the radius
of Sr by

(1) 1 _ 2
1 ~ Z 4r2-l

which clearly achieves a maximum value of V3 at r = °c, i.e. the height of the
equilateral diamond when drawn in the plane. The minimum distance from one
tip vertex of the diamond to the diameter through the other tip vertex, x, is given
by either

m 2(2r2-l) , _
(2) x = ) . 2 ' V3r 2 -1

r(4r - 1)
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or

(3)
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X =

Define a to be the acute central angle between the radius to the rotating tip
vertex and the diameter through the fixed tip vertex, then

(4) sin a = - .r

As has already been noted, if a 3-coloring of Sr is possible then when the
inscribed diamond is rotated about the diameter through one tip vertex, the
other tip vertex must describe a monochrome circle of radius x. If \ Si JC, then at
least four colors are obviously needed to color S, since a chord of length 1 could
be placed in this monochrome circle — to contradict the assumption that Sr had

Figure 1
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Figure 2

been properly 3-colored. Incidentally, this construction in the plane gives the
finite subgraph used by the Mosers' (1961) to prove that 4g^(S«).

IfCXx <\, then every point on the monochrome circle swept out by the
rotating tip vertex could be taken as the fixed tip vertex and the diamond rotated
in turn about the diameter through that vertex to form a closed monochrome cap
of half angle 2a, where a is given by Equation (4). A similar operation is then
again possible on the points at the edge of this cap to give a new monochrome
cap of half angle 3a etc., until finally the maximum chord length inscribable in
the cap exceeds 1. This again leads to a contradiction of the assumption that S,
has been properly 3-colored. However if x = 0, then the two tip vertices are both
fixed under the rotation — and hence this construction does not contradict the
assumption of a proper 3-coloring of S,. There are, therefore, three cases to be
considered: 0 < x < \ and \ Si x which have just been treated and x = 0 which is
considered in the next paragraph.

From Equation (2) one sees that x = 0 only for r = 1/V3 and r = 1/V2. The
only way that the equilateral diamond can be inscribed in S1/V3 is by folding it
completely closed on itself to form a unit edge equilateral triangle. This is the
special case dealt with by Simmons (1974) in his Magen David construction
where it was shown that

The equilateral diamond, when inscribed in S,/V2 has the two tip vertices
diametrically opposed, i.e. the diamond becomes two faces of an inscribed
octahedron.

To see that x(SVV2) = 4 in this case we first show that a 3-coloring is
impossible and then exhibit a suitable 4-coloring found by J. Davis. Assume
three colors, say red, green and blue, suffice — then clearly; 1. every great circle
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must be 2-colored, 2. every pair of diametrically opposed points must be the same
color, and 3. any pair of points 90° separated on a great circle must be colored
differently.

Figure 3 shows a polar projection of S,/v2 in which P is one tip vertex of the
inscribed diamond, the outer circle through the points i?, is the equator swept
out by the rotating mid vertices, and arcs R2 Q, Q4 R*, Ri Qi Q3 Re,
Rs Qi Qi Rt and R» Q4 Q3 R4 are great circles symmetrically inclined with
respect to the polar arcs so that Q, and Q, are 90° apart on the great circle
Ri Q> PQ3 K5 and Q2 and Q4 are 90° apart on the great circle R7 Q4 PQ2R3.
Let P be red, then the equator is blue-green. Assume R, is blue, then R5 is also
blue and R, and R7 are necessarily green. With no loss of generality let R2 be
blue, so that R6 is also blue and R4 arid R8 are green. Since the great circle
through R7 Q4 PQi R3 is red-green and Q2 and Q4 are 90° apart either Q2 is red
and Q4 green or vice versa. First, assume Q4 is red and Q2 is green then the great
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Figure 4

circle through Rs Q4 Q3 R4 is red-green while the one through R2 Q2 Q, R6 must
be blue-green. Thus Q3 must be green — but this is impossible since it lies on the
blue-red great circle through R, Q, PQy, R5. If Q4 is green and Q2 red, then the
same argument shows that Q, must be green, etc. Hence a three coloring is
impossible.

A permissable 4-coloring of S,/V2 is the following partition into four sets, Q
of points (x, y,z) where

C, — x, y and z are of the same sign U (a, b, 0) U (a, 0, b) U (0, a, b)
where a b > 0

C2 — x is different in sign from y and z U (a, fc,0)U (a,0, b)U (± 1,0,0)
where a Z> < 0
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C3 — y is different in sign from x and z U (0, a, b) U (0, ± 1,0)
where a b < 0.

C4 — z is different in sign from x and y U (0,0, ± 1)
Figure 4 illustrates this partition, where a bold boundary or solid vertex

indicates that the points are to be included in the shaded set. It is of some
interest to know where the transitions between the various cases occur. Figure 5
plots r and x as functions of I2 which was chosen for the abscissa rather than r
since 0 S / 2 s 3 , while r is unbounded. The upper curve is r, since j t S r i n all
cases. Equality holds only for the two indicated values

/ = / • =

7±yi7

x = \ at the values of r corresponding to the three roots of Equation (5)

(5) 4 M 3 - 1 6 W 2 + 1 7 U - 4 = 0

where

(6) 1 I 4 - u
2 V

2.0 r

Figure 5
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Hence, we have |s=x, i.e. the second case, only for the approximate ranges.

.586,158SrS .627,745

or

.819,417 g r

which have been shaded in Figure 5.
The proofs by contradiction given earlier showing that 4S^(S,) for

1/V3S r and JC^O combined with the results for the two special cases where
x = 0 of 4 g x(Svvi) = 5 from Simmons (1974) and 4 = x(S1/V2) given here prove
that

4 =£*(&) for l /V3Sr .

The fact that 4 = ^(S1/V2) also shows that this is the best possible uniform bound.
Trivially Y(S,) = 1 for r < \ and x(S$) = 2, so that the lower bound for *(Sr)

is only an open question for the range of radii \< r < 1/V3.
It seems appropriate to close with two new conjectures about the chromatic

number of the sphere and a reiteration of Erdos' open conjecture on the
chromatic number of the plane:

1. 4§x(S,) for i<r

2. 4 =

3. 4 =
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